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ABSTRACT

In this paper we demonstrate that existing cooperative spec-

trum sensing formulated for static primary users cannot accu-

rately detect dynamic primary users regardless of the informa-

tion fusion method. Performance error occurs as the sensing

parameters calculated by the conventional detector result in

sensing performance that violates the sensing requirements.

Furthermore, the error is accumulated and compounded by

the number of cooperating nodes. To address this limitation,

we design and implement the duty cycle detection model for

the context of cooperative spectrum sensing to accurately cal-

culate the sensing parameters that satisfy the sensing require-

ments. We show that longer sensing duration is required to

compensate for dynamic primary user traffic.

Index Terms— Cognitive radio, spectrum sensing, coop-

erating spectrum sensing, dynamic primary user, duty cycle

1. INTRODUCTION

Cognitive radio promotes the concept of dynamic spectrum

access to improve spectral utilisation efficiency [1]. The tech-

nology permits non-licensed, secondary users (SU) to access

spectrum owned by licensed, primary users (PU) while re-

stricting interference to PU activity. Spectrum sensing is a

key component to cognitive radio as SU must accurately de-

tect the presence/absence of PU signals [1]. Spectrum sensing

poses numerous challenges, and often multiple SU must co-

operate to achieve the target sensing requirements.

Cooperative spectrum sensing (CSS) is achieved where

individual nodes of a SU network conduct local spectrum

sensing and combine the local performance at the network

level forming a global sensing performance. CSS can be im-

plemented with varying network topologies, ranging from a

de-centralised and distributed system to a centralised and in-

frastructure based system [1, 2]. For this study we focus on

the centralised topology where SU nodes transmit their local

sensing information to a central coordinator for information

fusion, similar in [2].

Existing spectrum sensing studies are formulated using

the conventional signal model of static PU, where the PU re-

mains in a constant state (either ON or OFF) during the entire

sensing period [1, 3]. However, PU traffic is often described

using channel state probabilities or as a random process [3,4]

and such probabilistic modelling implies it is possible that

PU is dynamic and changes state during the sensing period.

A dynamic PU is only active for a fraction of the sensing pe-

riod (know as the duty cycle), and this behaviour invalidates

the signal model of the conventional, static PU [5]. Various

studies and our prior work have demonstrated that detectors

formulated for static PU cannot accurately detect dynamic PU

as the sensing duration and decision threshold results in incor-

rect sensing performance [4–6].

Existing analyses into dynamic PU based on primary user

traffic have mainly focused on a single SU sensing a single PU

channel. To the best of our knowledge, no studies have inves-

tigated the detection performance of conventional CSS when

sensing dynamic PU. CSS implies that performance error of

a single node will be compounded by the number of cooper-

ating nodes. Furthermore, different fusion rules react differ-

ently to this performance error. Thus it is crucial to investigate

the severity of this phenomenon and address this problem.

In this paper we propose a framework for implementing

the duty cycle detector (DCD) [4] previously developed for

single user in the context of CSS to accurately compute the

sensing performance and sensing parameters. We also anal-

yse the sensing performance of various existing CSS fusion

rules when sensing dynamic PU. The remainder of this paper

is organised as follows: Section 2 briefly outlines two fusion

rules used in CSS. Section 3 analyses the performance error

of conventional hard fusion CSS and implements the DCD for

the context of CSS. Section 4 performs similar analyses and

implementation for soft fusion, while Section 5 concludes this

paper.

2. CONVENTIONAL CSS

Sensing performance for detecting the presence of a PU can

be measured by the probability of detection PD and proba-

bility false alarm PF . Global sensing performance (PDg and

PFg) of the SU must satisfy the global sensing requirements

(PDR and PFR), such that PDg ≥ PDR and PFg ≤ PFR.

When CSS is employed, each node can employ shorter sens-

ing durations to achieve the desired global requirements due
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to cooperative gain [1, 2].

Hard fusion and soft fusion are two categories of informa-

tion fusion rules in conventional CSS. Without lack of gen-

erality, we investigate one rule for each category: OR-rule

and equal gain energy fusion (EF). We denote the following

notation, subscript l for local, g for global, R for required,

superscript O for OR rule and E for EF rule.

2.1. Hard Fusion Rule

For hard fusion, each SU node conducts local sensing using a

sensing detector and generates a binary decision of either PU

absent or present. This decision is transmitted to the central

coordinator where the number of nodes indicating PU present

is counted. The coordinator declares a PU is detected across

the SU coverage zone when the number of local detections

exceeds a specific cooperative threshold [2]. The local sens-

ing performances for individual nodes are denoted as PFl and

PDl for local PF and PD, respectively. We assume the PU

signal observed at each SU is independent and identically dis-

tributed hence the local sensing performance are also identi-

cal.

OR rule is an example of hard fusion, where the coordi-

nator declares PU present when any nodes detect an occupied

channel. This rule places greater emphasis on PU protection

and minimises the probability of missed detection. The global

and local detection performances are relates as [2]

PO
Fg = 1− (1− PO

Fl)
n , (1)

PO
Dg = 1− (1− PO

Dl)
n , (2)

where n is the number of cooperating nodes. The local re-

quirements PO
DRl and PO

FRl that can achieve the global re-

quirements of PFR and PDR are given as [2]

PO
FRl ≤ 1− n

√

1− PFR , (3)

PO
DRl ≥ 1− n

√

1− PDR . (4)

2.2. Soft Fusion Rule

When soft fusion is implemented, each SU node calculates

a test statistic using the local detector and transmits the test

statistic to the central coordinator [7]. The coordinator then

combines the local test statistics into a single global test statis-

tic and compares to the global threshold. Global performance

is then computed by comparing the distribution of the global

test statistic with the global threshold. We consider the energy

fusion (EF) method with equal gain weighting for demonstra-

tion [7]. The local test statistic calculated by node j is denoted

as Y E
l,j and the global test statistic is the summation of test

statistic for all n nodes,

Y E
g =

n
∑

j=1

Y E
l,j . (5)
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Fig. 1. Examples of dynamic PU activity, with detection hy-

pothesis based on last state during sensing.

3. DCD IMPLEMENTATION FOR HARD FUSION

3.1. Signal Model

A dynamic PU signal can be modelled as a two-state random

process with exponential holding times of mean duration µ0

and µ1 for OFF and ON states respectively [3–5]. As the

traffic model is random, it is possible that the SU observes

multiple PU states during the sensing period of duration τ , as

illustrated in Fig. 1.

The last observed state of a dynamic PU most closely rep-

resent the state of the PU when transmission period starts.

Therefore the detection hypotheses for a dynamic PU is based

on the last PU state [4]: SU declares null hypothesisH0 when

the end state is OFF (Fig. 1a), and declare the alternate hy-

pothesisH1 when the end state is ON (Fig. 1b).

Duty cycle D is defined as the fraction of the sensing pe-

riod occupied by a PU signal, Di =
Ci

τ
, where Ci is the cu-

mulative duration of ON states for hypothesisHi, for i = 0, 1.

An in depth statistical derivation for the distribution of duty

cycle is outlined in [4].

This study focuses on investigating the effect of PU traffic

on the performance of CSS. We implement the energy detec-

tor and model both noise and PU signal as zero mean, Gaus-

sian distributed with variance σ2

n and σ2

s = γσ2

n, respectively,

where γ is PU SNR [3, 8]. Each SU receives an independent

observation of the PU signal exhibiting the same D and γ.

Sensing performance of are measured by the probability that

test statistic YDi exceeds decision threshold λ for hypotheses

Hi

PFD(τ, λ) = P (YD0 > λ) , (6)

PDD(τ, λ) = P (YD1 > λ) . (7)

PFD and PDD of DCD measure the performance of detection

during the sensing period. However, these metrics no longer

indicate the actual interference to PU and lost opportunity of

SU during the transmission period that follows sensing. In-

vestigating the effect of PU traffic during the transmission pe-

riod is beyond the scope of this study.
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3.2. Conventional Hard Fusion Analysis

The conventional detector assumes PU to be completely ab-

sent under H0 (equivalent to D = 0) and fully present under

H1 (equivalent to D = 1). It then calculates sensing param-

eters τc and λc assuming the conventional performance PFc

and PDc satisfy the global requirements,

PFc(τc, λc) = PFR , PDc(τc, λc) = PDR . (8)

We analyse the performance error of conventional hard

fusion CSS using the following framework,

1. PU and SU sets PFR and PDR.

2. SU assigns n, calculates conventional τc and λc.

3. Calculate true PFg and PDg at τc and λc.

4. Investigate error in PF and PD for different n.

This framework is also adapted for soft fusion in Section 4.

In hard fusion, each SU senses a PU of channel bandwidth

W exhibiting duty cycle D and computes the test statistic YD.

YD is Gamma distributed conditioned to the observed D [4],

YD|D ∼ Γ

(

τW

2
, 2σ2

n (1 + γD)

)

. (9)

D varies between observation, hence the density functions of

YD1 and YD0 are calculated by averaging the condition den-

sity of YD|D over the probability of D to get [4],

fYDi
(x) =

∫

1

y=0

fYDi
|Di=y(x)fDi

(y) dy . (10)

fX(x) denotes the probability density function of X .

Local sensing requirements for hard fusion are calculated

using (3) and (4) and applied to (8) to get τOc and λO
c . Here the

conventional performance becomes PFl and PDl to achieve

requirements of PFRl and PDRl. τOc is then used to gen-

erate the true distribution of YDi with (10) and the true de-

tection performance computed by applying λO
c into (6) and

(7). Here PFD and PDD becomes true local performance PO
Fl

and PO
Dl, and the global performance are calculated with (1)

and (2). The calculated PO
Fg and PO

Dg are the actual perfor-

mance achieved by the conventional detector when sensing a

dynamic PU.

A closed form solution for the Gamma distribution is not

possible to solve explicitly for τ and λ in (6) and (7) hence

the algorithm in [4] is used to numerically solve for τOc and

λO
c in (8). To analyse the performance of conventional CSS

and later implement DCD, we simulate the PU signal SNR

as γ = −10dB, W = 200kHz and sensing requirements as

PFR = 0.1 and PDR = 0.9. The number of cooperating

nodes range between n = 1 (equivalent to non-cooperative

sensing) to n = 30. Noise power is equalised to σ2

n = 1. Four
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Fig. 2. OR rule PO
Fg decreases towards PFR with increasing

n but never satisfy the requirements.
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Fig. 3. OR rule PO
Dg initially increases towards PDR with

greater n but exhibits a local maximum and then decreases.

sets of PU traffic {µ0, µ1} are chosen for analysis: {0.25, 1},
{1, 0.25}, {1, 10}, {10, 1}.

Fig. 2 shows that the actual PO
Fg achieved by OR rule

CSS is significantly greater than PFR, especially at lower n.

Increasing n reduces the error between PO
Fgc and PFR, how-

ever the error always exists. Comparing between PU traffic

we see that longer µ0 results in smaller error in PF .

Fig. 3 shows that increasing n initially increases PO
Dg , but

never satisfies PDR and decreases after a maximum is reached

(indicated by circle markers). This implies that performance

error cannot be simply alleviated with larger n; error in a sin-

gle node is accumulated and compounded by the number of

cooperating nodes.

τc and λc are inaccurate when the PU is dynamic as the

conventional detector does not account for D. Therefore PFc

and PDc achieved using τc and λc will not satisfy the re-

quirements and result in performance errors (PFc > PFR,

3
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Fig. 4. τOr that satisfies the detection requirements decreases

with larger n. τOc is shorter than τOr but cannot satisfy the

requirements.

PDc < PDR). CSS must incorporate the effect of PU traffic

when detecting dynamic PU, therefore we implement DCD

to accurately compute parameters that satisfy sensing require-

ments and account for of PU traffic.

3.3. DCD Hard Fusion Implementation

DCD proposed in [4] was designed for a single SU sensing

a single dynamic PU. We now design and implement the de-

tector for hard fusion CSS. DCD integrates the distribution of

D into YD before comparing with λ. The sensing parameters

τr and λr must ensure global requirements PFR and PDR are

met. Longer τ is required if the sensing performance are to

exceed the requirements, however shorter τ is desired for net-

work layer objectives [3,4]. Therefore τr and λr are designed

such that the performance meet the requirements at equality,

PFD(τr, λr) = PFR , PDD(τr, λr) = PDR . (11)

DCD is implemented on each local SU node and makes a

local decision using sensing parameters calculated by Step 1

and 2 of the framework in Section 3.2. PO
FRl and PO

DRl are

calculated from (3) and (4) for a given n, and parameters τOr
and λO

r are adapted from (6) and (7) such that

PFD(τ
O
r , λO

r ) = PO
FRl , PDD(τ

O
r , λO

r ) = PO
DRl . (12)

Satisfying the local requirements at equality will also satisfy

the global requirements at equality.

Implementing DCD ensures the local requirements (hence

global requirements) are satisfied. Fig. 4 plots τOr for differ-

ent PU traffic for increasing n. The detector requires longer

τOr compared to the conventional sensing duration τOc to com-

pensate for increased D underH0 and decreased D underH1.

This is a necessary compromise as the conventional sensing
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Fig. 5. PE
Fg for EF rule decreases with larger n but always

greater than PFR.

τOc cannot satisfy the detection requirements. Comparing be-

tween PU traffic parameters we see that µ0 has greater effect

on τOr with larger µ0 resulting in shorter τOr .

4. DCD IMPLEMENTATION FOR SOFT FUSION

The global test statistic Y E
g defined in (5) of the EF rule is the

summation of n local test statistic following the distribution

in (9) conditioned to observed D. Since D is constant across

all nodes, the conditional distribution of Y E
g |D is defined as

Y E
g |D ∼ Γ

(

nτW

2
, 2σ2

n(1 + γD)

)

. (13)

The average distribution of Y E
g is calculated similar to (10).

4.1. Conventional Soft Fusion Analysis

The conventional detector for soft fusion assumes D = 0, 1
underH0 andH1 respectively in (13). Therefore it calculates

parameters τEc , λE
c to achieve the global performance as

PE
Fg(τ

E
c , λE

c ) = PFR , PE
Dg(τ

E
c , λE

c ) = PDR . (14)

However, D is a random variable when PU is dynamic and

applying τEc and λE
c to the test statistic in (13) results in per-

formance error similar to hard fusion rules.

Performance error of the EF rule show similar results as

the OR rule. Fig. 5 observes larger PE
Fg at low n and decrease

for higher n. PE
Dg in Fig. 6 is initially lower at low n and

increases with n. The rate of improvement of the EF rule for

PE
Fg and PE

Dg with respect to increasing n is better than OR

rule and PE
Dg does not exhibit a maximum.
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Fig. 6. PE
Dg for EF rule increases with larger n but always

less than PDR.
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Fig. 7. τEr decreases significantly with larger n and is less

affected by PU traffic.

4.2. DCD Soft Fusion Implementation

Soft fusion implements DCD at the central coordinator after

local test statistics of each node are combined using (5). Sens-

ing parameter calculations for EF rule follow the same pro-

cedure with (6) and (7), where YD0 and YD1 are Y E
g0 and Y E

g1

with distribution given in (13). From (11), PE
FD and PE

DD are

the global performance that must satisfy the global require-

ments of PFR and PDR such that,

PE
FD(τ

E
r , λE

r ) = PFR , PE
DD(τ

E
r , λE

r ) = PDR . (15)

Similar to hard fusion, sensing duration of each node τEr and

global decision threshold λE
r are calculated numerically.

Fig. 7 shows that τEr decreases more significantly with

larger n compared to OR rule. We also see that τEr is less

affected by PU traffic and the difference between τEc is greatly

reduced at larger n.

5. CONCLUSION

In conclusion, we demonstrated that the conventional detec-

tor creates performance error by violating the sensing require-

ments of a dynamic primary user. The calculated sensing pa-

rameters can only satisfy the requirements of a static primary

user, regardless of fusion rule. Furthermore, multiple sec-

ondary users cooperating implies that performance error of

a single node is compounded by the number of cooperating

nodes. To compensate for this short fall, we designed and

implemented the duty cycle energy detector for the context of

cooperative spectrum sensing using hard and soft fusion rules.

We showed that sensing requirements can be met with no ac-

cumulated error at the expense of longer sensing duration.

6. REFERENCES

[1] T. Yucek and H. Arslan, “A survey of spectrum sens-

ing algorithms for cognitive radio applications,” IEEE

Communications Surveys & Tutorials, vol. 11, no. 1, pp.

116–30, 2009.

[2] E. Peh and Ying-Chang Liang, “Optimization for co-

operative sensing in cognitive radio networks,” in

Wireless Communications and Networking Conference,

2007.WCNC 2007. IEEE, Mar. 2007, pp. 27 –32.

[3] Amir Ghasemi and Elvino S. Sousa, “Optimization of

spectrum sensing for opportunistic spectrum access in

cognitive radio networks,” in Consumer Communica-

tions and Networking Conference, 2007. CCNC 2007. 4th

IEEE, Jan. 2007, pp. 1022 –1026.

[4] K. Chang and B. Senadji, “Spectrum sensing optimisa-

tion for dynamic primary user signal,” Communications,

IEEE Transactions on, vol. 60, no. 12, pp. 3632–3640,

Dec. 2012.

[5] K. Chang, B. Senadji, and V. Chandran, “Analysis of

detection performance in spectrum sensing optimisation

for long sensing periods,” in Personal Indoor and Mo-

bile Radio Communications (PIMRC), 2011 IEEE 22nd

International Symposium on, Sep. 2011, pp. 457 –461.

[6] N.C. Beaulieu and Yunfei Chen, “Improved energy de-

tectors for cognitive radios with randomly arriving or de-

parting primary users,” Signal Processing Letters, IEEE,

vol. 17, no. 10, pp. 867 –870, Oct. 2010.

[7] Rongfei Fan and Hai Jiang, “Optimal multi-channel co-

operative sensing in cognitive radio networks,” Wireless

Communications, IEEE Transactions on, vol. 9, no. 3, pp.

1128 –1138, Mar. 2010.

[8] D. Cabric, A. Tkachenko, and R. W. Brodersen, “Spec-

trum sensing measurements of pilot, energy, and collab-

orative detection,” in Military Communications Confer-

ence, 2006. MILCOM 2006. IEEE, 2006, pp. 1–7.

5


