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A B S T R A C T  

A  new  method  is  developed  for  the  numerical  solution 

of  the   heat    conduction   equation   in  one   space  dimension  by 

replacing  the   space  derivative  with  a  cubic   spline 

approximation  and  the   time   derivative  with  a  finite- 

difference  approximation.     The  method  is  equivalent  to  a 

new  finite-difference   scheme  and  produces  at  each  time 

level  an  interpolating  spline  function. 

We  are   grateful  to  Professor  J.   Crank  for  his  helpful  comments. 



INTRODUCTION 

The   use   of   cubic   splines   for  the  numerical  solution  of  linear 

two-point  boundary  value  problems  has  been considered  by  Bickley  (1968), 

Fyfe  (1969),  and  Albasiny  and  Hoskins  (1969).   In the  present  paper a 

technique  similar  to  that  of  Albasiny  and  Hoskins  is  developed  for  the 

heat  conduction  equation by  the  use  of  a  cubic  spline  approximation  in 

the   space   direction   together   with  a   finite-difference  approximation 

in  the  time  direction.     This  approximate  representation,  which  is 

shown  to  be  equivalent  to  a  new  implicit  finite-difference  scheme 

with  stability  conditions  and  truncation   error   similar   to   those   of 

a  well  known finite-difference  representation,   produces  at   each   time 

level  a  spline  function which  may be  used  to  obtain  the  solution at 

any  point  in  the  range  of  the  space  variable. 

DESCRIPTION  OF  PROCEDURE. 

Consider  the  heat  conduction problem  in  which  the   function  u(x,t) 

satisfies 

,
t)(x,

2x
u2t)(x,

t
u

∂

∂=
∂
∂       (x,t)   ε   R , 

u(x,0)       =    f(x)   ,     0  ≦ x ≦  1  , 

            (1) 

u(0,t)        =    a(t)   ,     t  ≧ 0, 

u(l,t) =    b(t)   ,     t  ≧ 0, 

where R  =  {(x,t):  0  ≦   x <  1,  t  ≧  0]   and  f(x),  a(t)  and b(t)  are 

given functions. 
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The  region R is  covered  in  the  usual  manner by  a rectangular 

net 

(xitj)  ≡  (ih,jk),  0 ≦   i ≦   N,  j  ≧   0 

where  Nh  =  1.    If  U   denotes  a  discrete  approximation to  u(x, t) j
i

at  the   point   (xi , tj)  and Sj(x )  is   the   cubic   spline   interpolating 

the  values  U   at  the  jth  time  level  then  the   heat   conduction j
i

equation  in  (t)  is   replaced   at   (x i , t j )   by 
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i  =  0,1,...N,    j  ≧  0              (2) 

where  0  ≦  0  ≦   1  and  M   =  S”j  (xj
i i). 

For  the  jth  time level the results of  Ahlberg,  Nilson  and 

Walsh  (1967)  show  that  in  the  interval  xi-1  ≦   x   ≦    xi

h
x)i(x

)j
1iM

2

6
hj

11(U
6h

3)1ix(xj
iM

6h

3x)(xj
1iM(x)jS

−
−−−+−−

+
−

−= i

 

h
)1i-x(x

)jiM
2

6
hj

i(U
−

−+    i  =  1,2   … N.       (3) 

 
,h

j
iUj

jiUj
1iM6

hj
iM3

h)i(x'
jS

Hence
−+++−−=+

 
 i  =  0,1,2....N-1,                  (4) 
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i  =  1,2,....N,                       (5) 

 so that  continuity  of  the  first  derivatives  implies 
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  i = 1,2,….N - 1 .                        (6) 

Similarly,  for the  (j +  1 )th time level, 
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i = 1,2,….N -  1.                       (7) 

The addition of   (7)  multiplied by θ  to   (6)  multiplied by  (1- θ) 

gives,   after the elimination of the M's by means  of  (2), 
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i = 1,2,….N   -1.               (8) 

where δ  is the usual central difference operator in the 

x - direction.     Thus,  for i =  1,2 ...   N- 1,   the discrete 

replacement  (2)  of the heat conduction equation is equivalent 

to the  finite-difference  replacement  (8). 

If U   is assumed to be known at all  mesh points up  to the j
i

j th  time  level,   then  equations   (3) written  as 

1j
1iU)6rθ(11j

iU)6rθ(221j
1iU )6rθ(1 +

−−+++++
−−

=   {1  +   6r(1-θ)}U   + 2{2-6r(1- θ)]U  +  {1 +   6r(1- θ)]Uj
1i-

j
i

j
1i+   , 

 

r =   k/h2 ,       i  = 1 ,2,.... N - 1 (9) 



together  with  the   boundary   conditions  of  (1)  constitute 

a  tri-diagonal  set  of  linear  equations  which   is   solved   for   the 

unknowns 
 
.   Moreover,  if  the  values  are 1j

1-NU1j
2U,1j

iU +++ K j
iM

known  at  all  mesh  points  up  to  the  jth  time  level,  equation  (2), 

together  with the  relevant boundary  values,  gives  the  values 

1j
iM +

 ,   i  =  0,1,2  ...  N,  and  hence  (3)  with  j   replaced by 

j  + 1   produces  the  cubic  spline  approximating  the  solution 

u(x,tj+1 )   at   the   (j + 1)th  time   level.     If  θ ≠ 1   the   determination 

of  the  cubic  spline for the  first  time  level  requires  knowledge 

of  the  values M o
i , i = 0,1, . . .N and,  provided  f (x) ⊂C2 [0,1 ], 

these  may be  determined by  setting 

M°  =   f'' (x i) ,            i =   0,1,2,….   N. 

If  however,  f'(x)  or  f"(x)  is  discontinuous  at  some  point  in 

(0,1)  or  if  f(x)  is  given  in discrete  form,   then   the   values  M o
i  

are  taken  as  the  second  derivatives  of  the  cubic  spline 

approximating  the  initial  function  and  are  determined  in  the 

usual  way by  solving  the  tri-diagonal system 

h
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i  =  1,2,  …..N  -  1 ,                        (10) 
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STABILITY    ANALYSIS 

Equations  (9)   may be written  in matrix form as 

AU j+1 = BUj   +c                   (11) 
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where  A  and  B  are  tri-diagonal  symmetric  matrices  of  order 

(N-1)  with  respectively  diagonal  elements 

2(2 +  6r θ)    and    2[2 -  6r(1  - θ) } 

and  off  diagonal  elements 

1   -  6r θ      and    1  +  6r(1  -   θ)     , 

Us    (s  =   j,j+l)  is  the  column  vector 

T]s
1N.........Us

2U,s
1U[ −

and  the  components  of  the  column vector c  are  known boundary  values. 

Equation  (11 )  can  "be  rewritten  as 

Uj+1   =  A-1 BUj +  A-1c

and  since  A-i B  is  symmetric  for  stability we  require  that 

                               ρ(A-1 B)   ≦ 1   ,
 

where  p(A-1B)   is  the  spectral  radius  of  A-1 B.      The  eigenvalues 

of A  and  B  are  given respectively by 

λi  =   6  +  4 (6r θ   - 1 ) sin2a 

and i=  1,  2  .. ..   N-1 , 

μι=  6  - 4  {6r(1- θ)  + 1  }sin2a 

where  a  =  2N
iπ   and  since  the  matrices  A  and  B  commute,  the 

eigenvalues  of  A-1 B are 

α2sin12rθα22sin3
α2sinθ)12r(1α22sin3

iλ
iμ

iv
−−

−−−==  
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Hence, 

(i)  if  
2

1   ≦  θ ≦  1,   |vi  │ ≦ 1   for  all  r  >  0, 

so  that  the  scheme  (8)  is  unconditionally  stable,   and 

(ii)  if  0  ≦  θ  < 
2

1 ,  │vi .  |  ≦  1   i.e.,  the  scheme  (8)  is 

stable  when 

.
)2θ6(1

1r
−

≤

 

We  note  that   the   stability   conditions   of  the  finite-difference 

scheme  (8)  are  similar  to  those  of  the  well  known  finite-difference 

replacement 

   .}jiU2θ)δ(11j
iU2θδ{2h

1
k
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Thus  scheme  (12),  which  includes  as  special  cases  the  explicit 

( θ=  0),  fully  implicit  (θ  = 1)  and  Crank-Nicolson  (θ = 1/2 ) 

schemes,   (see  e.g. Richtmyer and  Morton (1967),p. 189),  is: 

(i)  for 
2
1   ≦ θ  ≦ 1     unconditionally  stable 

(12) 

and 

(ii)  for   0   <  0   <  
2
1    stable   if   .

)2θ2(1
1r
−

≤

For  0 ≦  θ < 
2
1   the  stability  condition  of  scheme   (12)  is  of 

course  less  restrictive  than  that  of  scheme  (8). 

TRUNCATION    ERROR

If  u  =  u(x,t)  is  an  exact  solution  of  the  equation  in  (1 ) 

then  by  the  definition  of  Richtmyer  and  Morton  (1967),   the 
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truncation error e[u]  of the finite-difference scheme (8) 

is given by 

       6k

j
1i-u1j

1iu)jiu1j
i4(uj
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e[u]
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=  

       .j
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1
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⎬
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⎩
⎨
⎧ −++−  

By Taylor's  series  expansion  about  the  point  (xi,   ,tj)  we  find 

that 

e[u]  =  0(k)  +  0(h2) 

and  since  this  tends  to  zero  as  h,  k →  0  the  scheme  (8)  is 

consistent  with  the  differential  equation  of  (1). 

If   u (x , t)    is    sufficiently   differentialle    the   truncation 

error   can  be   written  as 

          
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎭
⎬
⎫
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∂

∂= 2t2x
u4

3θ3t
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6
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1)θ2
1k(4x

u4
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+  0(k3)  +  0(h4)   . 

The  truncation  error  of  scheme  (12)  is 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧

∂∂

∂−
∂

∂++−
∂

∂= 2t2x
u4

3θ3t
u32

6
k2h

12
1)θk(4x

u4
[u]e

2

1  

+ 0(k3) + 0(h4) 

and  thus,  for both schemes  (8)  and (12)  ,  e[u]  =  0(k)  +  0(h2). 

For  the  special  ease   θ = 
2

1   this  reduces  to  0(k2)  +  0(h2). 



9 

It is interesting to observe  that when θ  = 
2

1  the 

addition of equations  (8)  and  (12)   leads to the 

finite-difference scheme 

12k

j
1i-U1j

1iU)jiU1j
i(U10j

1i-U1j
1iU −+

−+−++−+
−  

 )jiU2δ1j
iU2(δ22h

1 ++=       (13)

 

whose  truncation error is  0(k2)   +  0(h4).     Scheme   (13),  which 
is   unconditionally   stable,    does   in   fact  represent  the  six-point 
implicit scheme of maximum accuracy considered by Douglas  (1956). 

NUMERICAL  RESULTS

The cubic  spline  method,  defined by equation  (2),   is 
applied to the following two problems: 

(i)    Problem  (l)  with, 

a(t)   = b(t)   =  0  , f(x)  =  sinπx, 
and 

(ii)     Problem  ( l )   with, 

   (14) 

2x,   0  ≦  x  ≦ 
2
1 , 

a(t)   =  b(t)   =  0   , f(x) = 
   2(l-x),     

2
1   ≦  x  ≦  1. 

(15) 

Results,   computed  with  θ = 
2

1 ,   for  problems   (14)  and  (I5) are 

given  in  Tables  1   and  2  respectively.   In  both  tables  the 

values  computed  at  mesh  points  from  the   resulting   finite- 

difference  scheme  (9) ,    are  given  together with  values 

calculated  from  the  analytic   solution  and  values   computed  by 

the  application  of  the  Crank-Nicolson  scheme,    At  non-mash 
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points  the  values  computed, from  the  resulting  spline  function 

(3),  are  given  together with values  calculated  from  the  analytic 

solution.    In all  computations  h =  0.1  and  k =0.01 30  that 

r=1   and,  at  each  time  level,  the  mesh  points  correspond  to 

x  = 0.1(0.1)1.0.   The  points  corresponding  to  x  =  0.05(0.1)0.95 

are  the  intermediate points where  results  are  computed by  cubic 

spline  interpolation.    Since both problems  (l4)  and  (15)  are 

symmetric  with respect to  x =  0. 5  results  are  exhibited  only 

for  0  <  x ≤   0.5.     In both tables  the  significance  of the  recorded 

values  at  each  time  level  is  : 

(i)    Upper  entry:  Value computed by  the  cubic  spline  method, 

θ =   1/2,     .12(0.1)
0.01r ==

 (ii) Middle entry :   Value  computed  from  the   analytic  solution. 

(iii)  Lower  entry :   Value computed by the Crank-Nicolson method, 

.12(0.1)
0.01r ==  

It  is  important  to  observe  that  whereas  in problem (14) the 

initial  function  f(x)  is  C2[0,1]  and  the  values M o
i  are determined 

by setting 

M  =   f"(xo
i i)  = -π2sinпxi

in  problem  (15)  f '(x)  has  a  discontinuity at x = 0.5   and  so the 

values Mo
i  are computed from the tri-diagonal  system  (10). 



 x 
   t     

0.05 
0.10 

0.15 
0.20 

0.25 
0.30 

0.35 
0.40 

0.45 
 

0.50 

0.05 
0.09509 
0.09550 

 

0.18781 
0.18865 
0.18934 

0.27594 
0,27716 

 

0.35724 
0.35884 
0.36016 

0.42982
0.43169 

 

0.49169 
0.49390 
0.49571 

0.54160
0.54396 

 

0.57802
0.58062
0.58274

0.60037 
0.60298 

 

0.60777 
0.61050 
0.6l073 

0.10 
0.05777 
0.05330 

 

0.11415 
0.11517 
0.11602 

0.16765 
0.16921 

 

0.21712 
0.21907 
0.22068 

0.26111
0.26354 

 

0.29884 
0.30153 
0.30374 

0.32902
0.33209 

 

0.35130
0.35447
0.35707

0.36 72 
0.368 2 

 

  0.36938 
0.3727  

  0.37545 

0.15 
0.03513 
0.03559 

 

0.06937 
0.07031 
0.07109 

0.10196 
0.10330 

 

0.13196 
0.13374 
0.13522 

0.15881
0.16089 

 

0.18162 
0.18408 
0.18611 

0.20011
0.20274 

 

0.21351
0.21640

  0.21879

0.22183 
0.22474 

 

0.22450 
  0.22754 
  0.23057 

0.20 
0.02133 
0.02173 

 

0.04216 
0.04293 
0.04356 

0.06190 
0.06306 

 

0.08020 
0.08165 
0.08285 

0.09641
0.09823 

 

0.11038 
0.11238 
0.11404 

0.12148
0.12377 

 

0.12976
0.13211
0.13406

0.13466 
0.13720 
  

 

 0.13644 
  0.13891 
  0.14096 

0.25 
0.01299 
0.01327 

 

0.02563 
0.02621 
0.02669 

0.03769 
0.03850 

 

0.04874 
0.04985 
0.05077 

0.05871
0.05997 

 

0.06709 
0.06861 
0.06987 

0.07397
0.07556 

 

0.07887
0.08065
0.08214

0.08200 
0.08376 

 

0.08293 
0.08480 
0.08637 

0.30 
0.00787 
0.00810 

 

0.01557 
0.01600 
0.01635 

0.02283 
0.02350 

 

0.02962 
0.03043 
0.03111 

0.03557
0.03661 

 

0.04077 
0.04189 
0.04281 

0.04482
0.04613 

 

0.04793
0.04924
0.05033

0.04968 
0.05114 

 

0.05040 
0.05177 
0.05292 

0.35 
0.00481 
0.00494 

 

0.00947 
0.00977 
0.01002 

0.01395 
0.01435 

 

0.01800 
0.01858 
0.01906 

0.02173
0.02235 

 

0.02478 
0.02557 
0.02623 

0.02738
0.02816 

 

0.02913
0.03006
0.03084

0.03035 
0.03122 

 

0.03063 
0.03161 
0.03243 

0.40 
0.00290 
0.00302 

 

0.00575 
0.00596 
0.00614 

0.00841 
0.00876 

 

0.01094 
0.01134 
0.01168 

0.01309 
0.01364 

 

0.01506 
0.01561 
0.01607 

0.01650
0.01719 

 

0.01771
0.01835
0.01890

0.01829 
0.01906 

 

0.01862 
0.01930 
0.01987 

0.45 
0.00179 
0.00184 

 

0.00350 
0.00364 
0.00376 

0.00518 
0.00535 

 

0.00665 
0.00692 
0.00716 

0.00807
0.00833 

 

0.00915 
0.00953 
0.00985 

0.01017
0.01050 

 

0.01076
0.01120
0.01158

0.01127 
0.01164 

 

0.01131 
0.01178 
0.01217 
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      x 
 t 

0.05 
0.10 

0.15        0.20 
 

0.25 
0.30 

0.35 
0.40 

0.45 
0.50 

 

0.05 
0,07709 
0.07693 

 

0.15297 
0.15206 
0.15376 

0.22592 
0.22361 

 

0.29229 
0.28986 
0.29322 

0.34926 
0.34916 

 

0.39935 
0.40001 
0.40470 

0.44420 
0.44108 

 

0.47660 
0.47125 
0.47705 

0.49040 
0.48970 

 

0.49270 
0.49591 
0.50159

0.10 
0.04738 
0.04725 

 

0.09341 
0.09335 
0.09481 

0.13687 
0.13714 

 

0.17717 
0.17756 
0.18034 

0.21363 
0.21361 

 

0.24465 
0.24440 
0.24823 

0.26883 
0.26918 

 

0.28656 
0.28733 
0.29183 

0.2998 
0.2084 

 

0.30249 
0.30212 
0.30685 

0.15 
0.02867 
0.02885 

 

0.05667 
0.05699 
0.05810 

0.08332 
0.08373 

 

0.10789 
0.10841 
0.11051 

0.12971 
0.13042 

 

0.14836 
0.14921 
0.15210 

0.16349 
0.16433 

 

0.17458 
0.17541 
0.17881 

0.18121 
0.18216 

 

0.18338 
    0.184   
    0.13 

0.20 
0.01745 
0.01761 

 

0.03446 
0.03479 
0.03560 

0.05062 
0.05112 

 

0.06554 
0.06618 
0.06771 

0.07885 
0.07962 

 

0.09023 
0.09109 
0.09320 

0.09935 
0.10032 

 

0.10604 
0.10709 
0.10956 

0.11014 
0.11121 

 

0.11152 
0.11260 
0.11520 

0.25 
0.01060 
0.01075 

 

0.02094 
0.02124 
0.02181 

0.03077 
0.03121 

 

0.03984 
0.04040 
0.04149 

0.04792 
0.04861 

 

0.05483 
0.05561 
0.05711 

0.06038 
0.06125 

 

0.06446 
0.06538 
0.06713 

0.06694 
0.06789 

 

0.06777  
0.06874  
0.07059 

0.30 
0.00644 
0.00656 

 

0.01273 
0.01297 
0.01337 

0.01870 
0.01905 

 

0.02421 
0.02467 
0.02542 

0.02912 
0.02967 

 

0.03332 
0.03395 
0.03499 

0.03670 
0.03739 

 

0.03917 
0.03991 
0.04113 

0.04068 
0.04145 

 

0.04119 
0.04297 
0.04325 

0.35 
0.00392 
0.00401 

 

0.00774 
0.00792 
0.00819 

0.01136 
0.01163 

 

0.01471 
0.01506 
0.01558 

0.01770 
0.01812 

 

0.02025 
0.02073 
0.02144 

0.02230 
0.02283 

 

0.02381 
0.02437 
0.02520 

0.02472 
0.02530 

 

0.02503 
0.02562 
0.02650 

0.40 
0.00238 
0.00245 

 

0.00470 
0.00483 
0.00502 

0.00691 
0.00710 

 

0.00894 
0.00919 
0.00954 

0.01076 
0.01106 

 

0.01231 
0.01265 
0.01314 

0.01356 
0.01394 

 

0.01447 
0,01488 
0.01544 

0.02503 
0.01545 

 

0.01521 
0.01564 
0.01624 

0.45 
0.00145 
0.00149 

 

0.00286 
0.00295 
0.00307 

0.00420 
0.00434 

 

0.00544 
0.00561 
0.00585 

0.00654 
0.00675 

 

0.00748 
0.00773 
0.00805 

0.00824 
0.00851 

 

0.00879 
0.00908 
0.00946 

0.00913 
0.00943 

 

0.00925 
0.00955 
0.00995 

T
A

B
L

E
    2. 
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DISCUSSION

As  expected  the results  obtained  at  mesh  points  indicate  that 

when θ  = 
2

1   the  accuracy  of  scheme  (9)  is  comparable  to  that  of  the 

Crank-Nioolson  scheme.     Examination  of  the  results  in  Tables  1   and  2 

shows  that  the  Crank-Nicolson  scheme  gives  the  more  accurate   solution 

for problem  (14)  and  scheme  (9)  the  more  accurate  solution  for   problem 

(15).    We  note  however,  that   for  the  latter   problem  the  effect  of   the 

discontinuity  in  f '(x)   is  initially   more   damaging   to  the   results 

of  scheme  (9)  and,  although  this  effect  dies  away  quite-  rapidly,  for 

the  first  few  time  steps  (j  <  4)  the   Crank-Nicolson results  are  more 

accurate.   From the above we conclude that  when θ =  
2

1   the  scheme  (9), 

considered  as  a  finite-difference  scheme   for  determining   the   solution 

at  mesh points,  is  not  in general  superior  to  the  Crank-Nicolson  scheme. 

The  important  advantage  of  the  method described  in this  report,  over 

other  existing  methods,  is  that  at  each  time  level  it  produces  a  spline 

function  from which  the  solution can be  determined with  ease  at  any 

intermediate  point  in  the  space  direction  as  accurately  as  the  solution 

at  the  mesh  points.    Furthermore,  equations  (4)  or  (5)  give  approximations 

to x
u

∂
∂

 
at  the  mesh points. 

The  method  may  of  course be  used  with  values  of  θ  other  than 
2

1   . 

However,  when θ < 
2

1   very  small  time  steps  are  required  for  stability 

and  the  method  is  thus  quite  impractical.    The  case  θ = 1  is  that  for 

which  the  least  computational  effort  is  required  for  determining  the 

spline  function at  each time  level.    For  this  value  of  θ    scheme   (9)  is 

unconditionally  stable  and  its  accuracy  is  comparable  to  that  of  the 

fully  implicit  scheme. 



APPLICATION TO  OTHER PARABOLIC  PROBLEMS 

The  cubic  spline  method  may be  used  for  the  solution  of  more 

general parabolic  problems.     Its  application  to  two  such  problems  is 

briefly  outlined below. 

(i)    If  the  boundary conditions  in problem  (1)  are 

x
u

∂
∂  

 
+    ao  U  = bo(t), x  =  0,  t ≧    0, 

and 

x
u

∂
∂  

 
+     a1  u =  bt (t), x  =  1,  t  ≧     0, 

then  the  differential  equation  is  approximated  by  equation  (2),  and 

the  boundary  conditions  at  the  points  (x0,tj)  and  (xN, tj   )  respectively 

by 

Sj(xo)  +  aoU   = bj
o 0(tj) (16) 

and 

Sj(xN)  +  a1 U   - bj
i i  (tj)   . (17) 

The  approximation  (2)  of  the  heat  conduction  equation  leads  as 

before  to  the  finite-difference  replacement  (9)  at  internal  mesh 

points  and  (16)  and  (17)  when used  in  conjunction with  equations 

(4),  (5)  and  (2)  give  the  relations 

(2  +  6rθ  -  6rhθao)     +     (1   -  6rθ) ijU +
o

1j
1U +   = 

 = {2 - 6r(1-θ)  + 6rhao(1-θ)}  +   {1   + 6r(l - θ)}  - 6rhc  jUo
j
1U j

o

(18) 

and 

(1   - 6rθ)     (2 + 6rθ +   6rhθa1j
1NU +

− 1) ij
NU +    [1 +   6r(1 - θ ) }  j

1NU −

+    {2-   6r(l-θ)-6rha1(1-θ)] j
NU  +   6rhc  (19) j

1

14. 



15. 

where 

cj
i  =  θbi (tj+1)+   (1 - θ )bi(tj),    i  =  0,1. 

Thus,   the  equations  (18)  and  (19),  which  hold  on  the  boundary 

lines  x  =  0  and  x  =  1  respectively,  together  with  equations  (9) 

produce  a  tri-diagonal  system  of  (N+  1)   equations  which  is 
 

solved for  the  unknowns U0
j+1  , U1

J+1   ............... UN j+1

(ii)    We  consider  a parabolic    equation  of  the  form 

φφφφ bxa2x

2
t +

∂
∂+

∂

∂=
∂
∂            (20)

where  a  and b  are  constants,  and  assume  boundary  and  initial 

conditions  similar  to  those  of  problem  (1). 

The  substitution 

u
ax

θ 2
1

=φ  

transforms  (20)   {see  Todd  (1956)}  into  the  equation 

u)2a
4
1- (b2x

u2
t
u +

∂

∂=
∂
∂

and  this  is  approximated  at  the  point  (x t, t j) 

by

              .j
iU)2

'a
4
1- (bj

iMθ)(11j
iMθ

k

j
iU1j

iU
+−++=

++

            (21) 

Equation  (21)  may be  written as 

,j
iMθ)(11j

iMθ
k

j
ik)Ub'1(1j

iU
−++=

+−+

 

where b' =  b  - ¼ a2,  and with  θ = 
2

1  for  example  it  leads   to  one 



finite-difference equation 
 

16. 

.j
1iU3r}k)b'{(1

j
iU3r}k)b'2{2(1j

1iU}3rk)b'{(1

1j
1iU3r)(11j

iU3r)2(21j
1i3r)U(1

−+++

−++−++=

+
−−+++++

−−
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