
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JULY 2013 1

Supporting Process Model Validation through
Natural Language Generation

Henrik Leopold, Jan Mendling, and Artem Polyvyanyy

Abstract—The design and development of process-aware information systems is often supported by specifying requirements
as business process models. Although this approach is generally accepted as an effective strategy, it remains a fundamental
challenge to adequately validate these models given the diverging skill set of domain experts and system analysts. As domain
experts often do not feel confident in judging the correctness and completeness of process models that system analysts create, the
validation often has to regress to a discourse using natural language. In order to support such a discourse appropriately, so-called
verbalization techniques have been defined for different types of conceptual models. However, there is currently no sophisticated
technique available that is capable of generating natural-looking text from process models. In this paper, we address this research
gap and propose a technique for generating natural language texts from business process models. A comparison with manually
created process descriptions demonstrates that the generated texts are superior in terms of completeness, structure, and linguistic
complexity. An evaluation with users further demonstrates that the texts are very understandable and effectively allow the reader
to infer the process model semantics. Hence, the generated texts represent a useful input for process model validation.

Index Terms—Business Process Model Validation, Natural Language Text Generation, Verbalization

F

1 INTRODUCTION

THE adequate transformation of business require-
ments into a formal system specification is a cru-

cial step in any business-related software development
project. Indeed, business process models have proven
to be an effective means of specification [1]. However,
to avoid problems in later stages, it is of paramount
importance to extensively validate the created models
already in the beginning of the development project
[2].

One of the general challenges in this context is the
communication gap between the domain expert and
the system analyst [3]. As business professionals often
do not feel confident in understanding and interpreting
process models, the validation of these models fre-
quently has to rely on a discourse in natural language.
For data modeling, verbalization techniques have been
defined to provide for a direct mapping from model
to natural language [4], [5]. This verbalization concept
has been emphasized as an important advantage for
the discourse between system analysts and domain
experts in the context of requirements engineering [6].

In contrast to data modeling, there are no sophis-
ticated verbalization techniques available for process
models. While lists of elements and arcs could be
easily transformed into statements like “Activity A

• H. Leopold is with the WU Vienna, Austria.
E-mail: henrik.leopold@wu.ac.at

• J. Mendling is with the WU Vienna, Austria.
E-mail: jan.mendling@wu.ac.at

• A. Polyvyanyy is with the Queensland University of Technology,
Brisbane, Australia.
E-mail: artem.polyvyanyy@qut.edu.au

is followed by Activity B”, this is hardly the way
a domain expert would describe and think about a
process. The technical challenge here is to create a
textual description that captures the full meaning of
the process, yet also to organize the text in a way
that is intuitive to the reader. The reason why a
proper process model verbalization technique is still
missing might be a result of the difficulty to meet this
challenge. A process model verbalization technique has
to serialize the non-sequential structure of a process
model into sequential, yet execution-order preserving,
text. In addition, it must be capable of analyzing the
short and grammatically varying labels of process
model elements and of annotating them with their
semantic components like action or business object.
Furthermore, the verbalization technique needs to
handle optionality of certain pieces of information.

In this paper, we follow up on a proposal of adapting
the idea of natural language text generation to business
process models [7]. To this end, we define a technique
that automatically transforms process models into
intuitive natural language texts. Our technique can
deal with the short and grammatically varying process
model element labels as well as with complex process
models of arbitrary structure. For demonstrating the
capabilities of the proposed technique, we conduct a
two-step evaluation. First, we utilize a test collection
of model-text pairs from [8] and a set of text metrics
to investigate in how far the generated texts are
comparable to manually created texts. Second, we ask
users to translate the generated texts back into process
models. In this way, we investigate whether humans
can successfully make sense of the generated texts.

The remainder of this paper is structured as follows.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/33492806?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JULY 2013 2

Section 2 summarizes research on model validation
and challenges of text generation from process models.
Section 3 provides formal foundations. Section 4
introduces our technique for generating text from
process models. Section 5 presents the results of the
model-text pair comparison and of the user evaluation.
Section 6 discusses the necessary steps for adapting
the technique to languages other than English. Finally,
Section 7 closes the paper.

2 BACKGROUND

In this section, we first clarify the role of natural
language in process validation to illustrate the need
for text generation from process models. Afterwards,
we investigate the challenges that are associated with
generating text from process models.

2.1 Role of Process Models in Requirements En-
gineering
The setting of specifying requirements using business
process models can be described in terms of a system
modeling life cycle including the four stages of elic-
itation, organization, verification, and validation [9].
First, the system analyst interacts with domain ex-
perts to elicit process-relevant information. Traditional
approaches for the elicitation of requirements include
interviews, focus groups, and protocol analysis [10].
More advanced tools use natural language processing
for identifying concepts in documents to support the
system analyst in an unknown domain [11]. Also tools
for automatically inferring requirements from large
information sources [12] and for automatically deriving
models from natural language documents exist [13].
Second, the system analyst organizes this information
by modeling parts of the process. The organization
of the information in the context of a process model
requires the system analyst to adequately formalize
the elicited requirements. Various business process
modeling languages exist for supporting this task.
Also several quality frameworks and modeling guide-
lines have been defined including the Seven Process
Modeling Guidelines (7PMG) [14], the Guidelines of
Modeling [15], and the Sequal framework [16]. The
modeling itself is supported by many professional
modeling tools like ARIS [17] or Signavio1. Third,
the system analyst conducts a verification step on the
model with the aim to resolve inconsistencies. This
step is largely supported by automated techniques.
Petri-net concepts permit the verification of control
flow properties such as soundness [18], [19], [20]. Also
the correctness of the data flow [21], [22], [23] and the
satisfiability of resource constraints [24], [25], [26] can
be checked. All these first three steps are rather well
covered in related research with viable solutions being
available.

1. www.signavio.com

TABLE 1
Overview of Model Validation Approaches

Approach Author

Prototyping
Transformational Prototyping Lindland & Krogstie [29]
Semantic Prototyping Loucopoulos et al. [30]

Abstraction and Filtering
Specification Abstraction de Caso et al. [31]
Hierarchical Goal Organization Breaux et al. [32]
Scenario-Based RE Sutcliffe et al. [33]
Scenario-Based Validation Heymans & Dubois [34]

Specification Visualization
Visualisation for Validation Lalioti & Loucopoulos [35]
Requirements Animation Mashkoor & Matoussi [36]

Property Checking
Validation against Ontology Kof et al. [37]
Validation against Plans Costal et al. [38]
Validation against Questions Queralt & Teniente [39]
Rule-based Consistency Checking Egyed [40]

Language Generation
NIAM Verheijen & Bekkum [4]
ORM Nijssen & Halpin [5]
UML Verbalization Meziane et al. [41]
Object Model Verbalization Lavoie et al. [42]
Conceptual Model Verbalization Dalianis[43]
Process Model Verbalization Malik & Bajwa [44],

Coşkunçay [45]

The situation differs for the fourth task of validation.
Here, the system analyst shows the model to the
domain expert, explains the content, and tries to get
feedback to check the validity. Such domain experts are
typically familiar with the details of the process, but
have limited understanding of business process mod-
eling techniques [27]. The system analyst, in contrast,
has elaborate methodological skills, but has to rely on
the information provided by the domain expert on how
the business process works in practice. Ignoring this
knowledge gap between domain expert and system
analyst has been identified as a major pitfall of process
modeling [28]. As domain experts often lack confidence
in reading process models, the validation discourse
frequently has to rely on natural language. In general,
various techniques have been defined for supporting
the validation of conceptual models. They can be
subdivided into five groups including prototyping,
abstraction and filtering, specification visualization,
property checking, and natural language generation.
Table 1 gives an overview of existing approaches.

Approaches that validate models through prototyp-
ing use an implementation of the modeled system
in order to collect early feedback from domain ex-
perts. For instance, Lindland and Krogstie as well as
Loucopoulos et al. define methods for systematically
transforming requirement models into prototypes [29],
[30]. Approaches for abstraction and filtering aim at
reducing the information content that is provided to
the user. For example, de Caso et al. [31] define an
approach for automatically obtaining abstractions for
validation purposes. The approach from Breaux et al.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JULY 2013 3

[32] allows for using natural language queries to obtain
a goal specialization hierarchy. An alternative filtering
technique is the generation of scenarios. By generating
a set of scenarios from the considered model, domain
experts can more easily reflect upon the coverage of
their requirements [33]. Building on such scenarios,
there are also approaches that visualize requirements.
This may include the simple visualization of scenarios
in terms of a graphical model [35] or even the anima-
tion of scenarios [36]. An alternative validation strategy
is pursued by approaches that compare models against
a formal property specification. Such formal specifications
may include domain ontologies [37], user questions
[39], predefined property sets [38], and consistency
rules [40]. The last validation strategy is the generation
of natural language from conceptual models in order
to ease the communication between system analysts
and domain experts. The first methods that supported
text generation for conceptual models were Object-
Role Modeling (ORM) and its predecessor the Natural
language Information Analysis Methodology (NIAM)
[4], [5]. A key feature of ORM is a direct mapping
from data models to natural language text called
verbalization. Other authors introduced natural lan-
guage generation for UML class diagrams [41], object
models [42], and conceptual models in general [43].
First attempts for verbalizing process models have
been undertaken in [44], [45]. However, both works
rely on transformation templates and neither properly
address control flow structures such as splits, joins,
and unstructured process parts, nor do they consider
linguistic variations in the process model. As a result,
the generated texts are simple and incomplete. All
in all, only a few approaches for generating natural
language texts from conceptual models are available.
In fact, to the best of our knowledge, there is currently
no technique for supporting the validation of process
models via natural language generation.

However, given a situation where process models
are chosen for representing requirements, verbalization
would be associated with many benefits. Empirical
research has demonstrated that verbalization can
significantly improve the level of domain understand-
ing in the context of requirements engineering [6].
Moreover, verbalization does not require much effort.
If a generation technique is available, a text can be
generated with a single click. So, it is the objective of
this paper to close the research gap on natural language
generation from process models. In the following, we
discuss specific challenges that need to be addressed
to achieve this goal.

2.2 Challenges of Text Generation from Process
Models

There are a number of challenges for the automatic
generation of text from process models. To illustrate
these challenges, we use the exemplary process model

depicted in Figure 1. It shows a business process
from a hotel using the Business Process Model and
Notation (BPMN). The process comprises four roles
and is, hence, subdivided into four lanes. The process
begins with a start event, which is denoted by the
circle in the upper left corner. It continues with the
activity Take down order. The subsequent diamond-
shaped symbol containing a cross is referred to as
xor-gateway and denotes a decision point, i.e., only
one of the outgoing branches can be followed. Hence,
the subsequent steps depend on the status and the
solvency of the customer. If the customer has the status
premium or is considered as solvent, the room-service
manager approves the order without debit. Otherwise,
the guest’s account is debited directly. Note that an xor-
gateway with multiple incoming arcs waits until one of
the incoming branches was completed. The subsequent
gateway containing a plus symbol denotes an and-split,
i.e., all outgoing branches will be executed. Hence, this
gateway indicates that the process is split into two
concurrent streams of action: First, the order ticket
is submitted to the kitchen and a meal is prepared.
Second, beverages are prepared if they were ordered.
Note that the gateway containing a circle is denoting an
inclusive or-decision, i.e., either one or both outgoing
branches can be executed. Once the two concurrent
streams of action have been completed, the order is
delivered to the customer and the process is finished.

In order to develop a proper understanding of the
challenges that are associated with generating text
from process models, we investigated the respective
literature on natural language generation systems. The
challenges can be assigned to one of four different
categories including text planning, sentence planning,
surface realization, and flexibility. Table 2 provides an
overview of the identified challenges (bold font) and
the according approaches addressing them (standard
font).

The text planning phase is associated with three
main challenges. First, we have to adequately infer
the linguistic information from the process model
elements. For instance, the activity Take down order
must be automatically split up into the action take
down and the business object order. Without this
separation, it would be unclear which of the two
words defines the verb. As discussed in [46], this
is complicated by the shortness of process model
labels and the ambiguity of the English language. The
second challenge is the linearization of the process
model to a sequence of sentences. The problem in
this context is that process models rarely consist of a
plain sequence of tasks. Typically, they include non-
sequential behaviour represented by decision points
and concurrent branches. To address this problem,
one can use a Refined Process Structure Tree (RPST).
The concept of an RPST was introduced by Vanhatalo
et al. and Polyvyanyy et al. [47], [48] and facilitates
the linearization of a process model. Nevertheless, as

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JULY 2013 4
HotelServiceWithRigid

Ho
te

l
So

m
m

el
ie

r

Sommelier

Fetch
wine from

cellar

Prepare
alcoholic

beverages

Ki
tc

he
n

Kitchen

Prepare
meal

W
ai

te
r

Waiter

Deliver to
guest 's
room

Ro
om

-S
er

vi
ce

 M
an

ag
er

Room- Service Manager

Take down
order

Submit
order

t icket to
kitchen

Alocoholic beverages
ordered?

Give
order to

sommelier

Premium
customer?

Check
customer
solvency

Ok?

Approve
order

without
debit

Debit
guest 's
account

No

Ye
s

Ye
s

N
o

Yes

No

Henrik Leopold 1 von 1 01.04.2013

Fig. 1. Exemplary BPMN Process

this is not the primary purpose of the tree, we need
to adapt the technique to successfully employ it for
generating text. In this context, it should be noted that
the verbalization of concurrency is not addressed by
existing natural language generation techniques. The
third challenge is to decide how techniques of text
structuring and formatting such as paragraphs and
bullet points should be applied. To adequately address
this problem, a lot of research has been conducted in
the field of natural language generation (see e.g. [49],
[50], [51]). However, these approaches do solely work
on the text and do not include information from related
resources like process models.

The sentence planning phase entails the tasks of
lexicalization and message refinement. The aspect of
lexicalization refers to the mapping from BPMN con-
structs to specific words. Particularly in the context of
natural language generation without natural language
input, the choice of words represents a considerable
challenge [52], [53], [54]. However, for process models
this problem does not occur to the same degree. Due
to the extensive natural language input, the lexical
choice is reduced to the proper integration of the
linguistic information from the process model such
that the process is described in an understandable
manner. The aspect of message refinement refers to
the construction of texts. It includes the aggregation
of messages, the introduction of referring expressions
such as pronouns, and also the insertion of discourse
markers such as afterwards and subsequently. In order
to suitably consolidate sentences, the option of aggre-
gation must first be identified and then it has to be

decided where it can be applied to improve the text
quality. As these problems represent one of the core
tasks of natural language generation, they have been
extensively discussed in literature. For instance, Hovy
investigates the general role of aggregation in language
[55]. Reape and Mellish [56] as well as Dalianis [57]
present a variety of concrete aggregation approaches.
However, these approaches also abstract from the
existence of related resources like process models.
The introduction of referring expressions requires the
automatic recognition of entity types. For instance, the
role kitchen must be referenced with it, while the role
waiter must be referenced with he or she. The decision
on where to apply referring expressions is, for instance,
discussed in [58]. The insertion of discourse markers
should further increase the readability and variability
of the text. Hence, varying markers must be inserted
at suitable positions.

In the context of the surface realization, the actual
generation of a grammatically correct sentence is per-
formed. This requires the determination of a suitable
word order, the inflection of words, the introduction
of function words (e.g., articles), and tasks such as
punctuation and capitalization. Up until now, many
components for surface realization have been intro-
duced [59], [60], [61], [62], [69]. They are based on
different theoretical concepts such as the Meaning Text
Theory [70], functional grammar [71], or the simple
frame language [72], and, hence, ask for different input
formats.

Besides the core natural language generation tasks,
we consider flexibility to be an important feature. As

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JULY 2013 5

TABLE 2
Challenges for Generating Text from Process Models

Challenges Applicable Concepts

Text Planning
Linguistic Information Extraction

Linguistic Label Analysis Leopold et al. [46]
Model Linearization

Computation of RPST Vanhatalo et al. [47]
Computation and Generalization
of RPST Polyvyanyy et al. [48]

Text Structuring
Multi-paragraph Text Segmentation Heinonen [49]
Efficient Text Planning Meteer [50], [51]

Sentence Planning
Lexicalization

Corpus-based Lexical Choice Bangalore & Owen [52]
Lexical Choice Criteria Stede [53], [54]

Message Refinement
Role of Aggregation in Language Hovy [55]
Role and Definition of Aggregation Reape & Mellish [56]
Redundancy Reducing Aggregation Dalianis [57]
Framework for Pronominalisation Kibble & Power [58]

Surface Realization
Fast and Portable Realizer Lavoie & Rambow [59]
Integrated Surface Realization Busemann [60]
Plug-in Realization Component Michael & Robin [61]
Real-time Realization for Dialogues McRoy et al. [62]

Flexibility
Varying Input
Summaries from Multiple Articles McKeown & Radev [63]
Multiple On-line Sources Radev & McKeown [64]

Output Adaptation
Stylistically Varying Texts Hovy [65]
Multi-lingual Generation Goldberg et al. [66]
Multi-lingual Generation Bateman [67]
Language and Graphics Wahlster et al. [68]

we do not expect the input models to adhere to
certain conventions, we have to deal with considerably
differing characteristics of the input models. The issue
of varying input was also discussed for other natu-
ral language generation systems [63], [64]. Although
the general problem is similar, these works mainly
deal with textual inputs. As natural language only
represents one of many dimensions that is subject to
variation, we also need to address further aspects. For
instance, if a model provides a role description, the
sentence can be presented in active voice (e.g. The room-
service manager takes down the order). If it is unknown
who performs the considered task, the description
must be presented in passive voice (The order is taken
down). As a result, template-based approaches, which
simply fill the gaps of a predefined sentence, are not
appropriate [73]. An example for a flexible generation
technique is defined in [65]. It generates stylistically
varying texts. Other examples include the generation
of multiple languages [66], [67] or the generation of
graphics and text [68]. All these approaches have in
common that they do not work with text templates, but

use linguistic representations to maintain the required
level of flexibility. The typical architecture of such
approaches has been intensively studied by Reiter [74].

Against the background of these challenges, we pro-
pose a technique for generating natural language text
from process models. To properly define this technique,
the next section introduces formal preliminaries.

3 FORMAL PRELIMINARIES

This section discusses the formal preliminaries of our
work. In particular, we provide a formal description
of BPMN process models as they represent the input
for the presented generation technique.

The Business Process Model and Notation is a stan-
dardized modeling language for graphically specifying
business processes [75]. It has been initially developed
by the Business Process Management Initiative (BPMI)
and is now maintained by the Object Management
Group (OMG). BPMN was designed to support both
IT and business users, yet providing the means for
representing complex real-world semantics [76, p. 13].
As of today, it is available in version 2.0. A compre-
hensive (yet incomplete) formalization of BPMN has
been proposed by Dijkman [77]. Due to the extensive
symbol set, a complete formalization of BPMN would
introduce unnecessary complexity. Hence, we adapt
the formalization from [77], and focus on frequently
employed elements. Moreover, we respectively include
the aspects of labeling.

Definition 3.1. (BPMN Process Model). A BPMN
process model PBPMN = (A, E, G, F , R, P , L, ρ,
π, λ, γ, ε, τ) consists of six finite sets A, E, G, R,
P , L, a binary relation F ⊆ (A ∪ E ∪ G) × (A ∪
E ∪ G), a surjective function ρ : (A ∪ E) → R, a
surjective function π : R → P , a partial function
λ : (A ∪ E ∪ G ∪ F ∪ R ∪ F) 7→ L, a function
γ : G → {andS , andJ , orS , orJ , xorDS , xorES , xorJ},
a function ε : E → {plain, timer, message, error}, and
a function τ : E → A such that

- A is a finite non-empty set of activities.
- E is a finite set of events.
- G is a finite set of gateways.
- We write N = A ∪ E ∪G for all nodes of the BPMN

model.
- F is a set of sequence flows. Each sequence flow
f ∈ F represents a directed edge between two nodes.

- R is a finite set of roles.
- P is a finite set of pools.
- We write U = N ∪ R ∪ P ∪ F for all units of the

BPMN model which can carry a label.
- L is a finite set of text labels.
- The surjective function ρ specifies the assignment of

a role r ∈ R to activities and events A ∪ E. Hence,
every activity and every event can be associated with
exactly one role.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JULY 2013 6

- The surjective function π specifies the assignment of
a role r ∈ R to a pool p ∈ P . Hence, a pool represents
a group of roles.

- The partial function λ defines the assignment of a
label l ∈ L to a process model unit u ∈ U .

- The function γ specifies the type of a gateway
g ∈ G as andS , andJ , orS , orJ , xorDS , xor

E
S , xorJ .

The subscript S denotes a gateway that splits the
sequence flow into multiple branches, the subscript
J denotes a Gateways that joins multiple sequence
flows into one, and the superscripts D and E denote
whether a split is based on data (D) or the occurrence
of an event (E).

- The function ε specifies the type of an event e ∈ E
as plain, timer, message, or error. The type of the event
specifies the condition which is associated with it.
While a plain event is not associated with a specific
condition, a timer event is connected with a temporal
condition, a message event is associated with the
receipt of a message, and an error event is associated
with the occurrence of an error.2

- The function τ assigns an event e ∈ E to an
activity (attached event). If such an event occurs, the
execution of the respective activity is interrupted.

To precisely address the required features of a pro-
cess model for formally describing our text generation
technique, we define the set of predecessors and
successors and the set of labeled elements.

Definition 3.2. (Predecessors and Successors of
Nodes). Let N be a set of nodes and F ⊆ N × N
a binary relation over N representing the sequence
flows. For each node n ∈ N , we define the set of
preceding nodes •n with {x ∈ N | (x,n) ∈ F} and the
set of successing nodes n• accordingly with {x ∈ N |
(n,x) ∈ F}.

Definition 3.3. (Labeled Elements). Let U be a set of
units, L a set of text labels, and λ a partial function
assigning units to labels. Accordingly, the set of labeled
units Uλ is given by dom(λ).

Building on these definitions, we define a technique
for generating natural language texts from process
models in the next section.

4 TEXT GENERATION APPROACH

This section defines our approach to natural language
generation from business process models3. Section
4.1 gives an overview of the architecture and its
components. Sections 4.2 through 4.7 introduce each
component in detail.

2. Note that this does not reflect the entire event symbol set of
BPMN. In this paper, we use the most common event types for
illustrating how events can be treated in the context of natural
language generation.

3. The source code can be obtained from
http://www.henrikleopold.com/downloads

4.1 Overview

The architecture of our text generation technique is
building on the traditional pipeline concept from
natural language generation systems [74]. The basic
rationale of the technique is to utilize the existing
information from the model to generate a text. In
order to derive a sequence of sentences, we linearize
the model via the creation of a tree structure. In
particular, the text generation technique comprises six
components (see Figure 2):

1) Linguistic Information Extraction: Extraction of
linguistic components from the process model
element labels.

2) Annotated RPST Generation: Linearization of pro-
cess model through the generation of a tree
structure. In addition, each node is annotated with
the linguistic information from the previous step.

3) Text Structuring: Application of text structuring
techniques, such as the insertion of paragraphs
and bullet points, based on the computed tree
structure.

4) DSynT-Message Generation: Generation of an in-
termediate linguistic message structure for each
node of the tree. This component represents the
core of the generation technique.

5) Message Refinement: Refinement of the generated
messages through aggregation or the introduction
of referring expressions and discourse markers.

6) RealPro-Realizer: Transformation of intermediate
message structures to grammatically correct sen-
tences.

In the following sections, we introduce and explain
each of these components in detail.

4.2 Linguistic Information Extraction

The goal of this component is the adequate inference of
linguistic information from all labeled process model
elements. To this end, we employ the parsing and
annotation techniques defined in [46] to annotate
activities, events, and gateways.

For instance, the activity Take down order is decom-
posed into the action take down and the business object
order. Analogously, events and gateways are analyzed
and enriched with the according component anno-
tation. For example, the gateway Alcoholic Beverages
Ordered? is annotated with the action order and the
business object alcoholic beverages. Note that gateways
represent an important source of information in the
context of text generation. As they define decision
points, they are transformed into conditional sentences
describing alternative behavior in the process. Once the
annotation has been conducted for all labeled process
model elements, the annotation records are handed
over to the next component.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JULY 2013 7

WordNet Stanford
Tagger

BPMN
Process
Model

 Linguistic
Information
Extraction

Annotated
RPST

Generation

Text
Structuring

DSynT-
Message

Generation

Message
Refinement

Text Planning Sentence Planning Realization

RealPro-
Realizer

Natural
Language

Text

Fig. 2. Architecture of our Natural Language Generation System

4.3 Annotated RPST Generation
The RPST Generation component derives a tree rep-
resentation for every pool of the input model. In
particular, we compute a Refined Process Structure
Tree, which is a parse tree containing a hierarchy
of sub graphs derived from the original model [47],
[48]. The RPST is based on the observation that every
workflow graph can be decomposed into a hierarchy
of logically independent sub graphs having a single
entry and single exit. Such sub graphs are referred to
as fragments. In an RPST, any two of these fragments
are either nested or disjoint. The resulting hierarchy
can be shown as a tree where the root is the entire tree
and the leaves are fragments composed of a single arc.

Every RPST fragment belongs to one of four struc-
tured classes: trivial fragments (T), bonds (B), polygons
(P), or rigids (R). Trivial fragments consist of two
nodes connected with a single arc. As an example,
consider the connection between the start event and
the activity Take down order from the example process
in Figure 1. A bond represents a set of fragments
sharing two common nodes. In BPMN process models,
this generally applies to regions between split and
join gateways, including more complex split and join
structures such as loops. As an example, consider the
region of the example process in Figure 1 which is
confined by the or-split and the or-join. This fragment
containing the two activities Fetch wine from cellar and
Prepare alcoholic beverages represents a bond. Polygons
capture sequences of other fragments. Hence, any
sequence in a process model is reflected by a respec-
tive polygon fragment. As an example, consider the
connection between the and-split, the activity Submit
order ticket to kitchen, and the activity Prepare meal from
the example process. The individual connections are
trivial fragments, while the entire path is a polygon.
In case a fragment cannot be classified as trivial, bond,
or polygon, it is categorized as a rigid. As an example
for a rigid, consider the region of the example process
in Figure 1 between the first xor-split (labeled with
Premium customer?) and the xor-join before the and-
split. Due to the combination of multiple decisions and
activities that cannot be represented by trivial, bond,
or polygon fragments, this model region is classified
as a rigid.

Figure 3 illustrates the previously discussed concepts
using an abstracted version of the hotel process and
its corresponding RPST. To adapt the original RPST
generation algorithm to the specific requirements of
text generation, we extend it with three additional fea-
tures: automatic ordering of the fragments, processing
of models with multiple entries and exits, and the
annotation of the nodes with the extracted linguistic
information.

Since the existing RPST algorithms by [47], [48] do
not explicitly define an order of the fragments, we adapt
the RPST computation in a suitable way. For each level
in the RPST, we determine the order by arranging
the fragments according to their appearance in the
process model. Hence, the first level starts with trivial
fragment a1, connecting the start event and vertex V1.
Respectively, trivial fragment a2, rigid fragment R1, etc.
are following. If the order is not defined, as for instance
in case of parallel branches, an objective criterion such
as the path length is employed for determining an
order that is conducive for text generation purposes.
As rigids define behavior that cannot be represented by
sequences of RPST nodes, the ordering is not applied
to rigids.

To generate RPSTs from process models with multiple
entries and exits, we use the algorithm described in [48],
[78]. In particular, we augment process models with
multiple start events with an additional start node and
add an arc from this new node to each of the original
start events. Respectively, a model with multiple end
events is augmented with an additional end node
and an arc from each original end event to the newly
introduced end node. At the end of the structuring
process, we remove the additionally introduced nodes.
As a result, the RPST can also be computed for process
models with multiple start and end events.

In addition to these amendments, we also annotate
the RPST with the linguistic information from the
extraction phase and with additional meta information.
For instance, vertex V1 from trivial fragment a1 is
annotated with the action take down, the business object
order, and the role room-service manager. Bond B1 is
annotated with the action order, the business object
beverages, and the adjective alcoholic. Furthermore, the
bond is tagged as an xor-gateway with Yes/No-arcs

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JULY 2013 8

V1

V7

V9

V8

V10

B1 P2
B2

P4 B3 P6

P5

V5 V6
P3

a1

a12 a13 a14

a15 a16 a17

a18 a19

a20 a21
a22

a24

a23

a25

P1

V2

V4

V3

R1

a11
a3

a4

a5

a6

a7

a8 a9

a10

a2

a26

P1

P2

R1

B2

P3

a1 a2

a12 a13 a14 a15

P4 a23

B3 a16 a17

P5 P6

a18 a19 a20 a21

a22

a24

a11 B1 a25 a26

a3 a4 a5 a8 a6 a7 a9 a10

Fig. 3. Abstract Version of Figure 1 and its RPST

of the type skip. The latter aspect is derived from the
fact that one branch is directly flowing into the join
gateway and hence provides an option to skip the
activities on the alternative branch.

4.4 Text Structuring

The question of how to optimally structure natural
texts using paragraphs has been widely discussed in
prior research. Many methods employ a similarity
metric such as the semantic relatedness between words
to compute the lexical cohesion between the sentences
of a text [79], [80], [81]. Based on the resulting similarity
distribution, a text can be heuristically subdivided into
multiple paragraphs. More sophisticated approaches
try to use the similarity distribution for identifying the
optimal fragment boundaries [49]. However, while the
cohesion in standard natural language texts must be
completely derived from its semantics, a text generated
from a process model can be also structured by
building on the features of the model.

Against this background, we introduce two ap-
proaches for obtaining a manageable and well readable
text. First, we use bullet points to properly commu-
nicate the branches of splits. As a result, the text
is partitioned into semantically related paragraphs.
Moreover, parallel as well as alternative branches are
clearly explicated in the text. In case of nested splits,
the bullet points are indented respectively. That enables
the reader to easily keep track of nested structures. In
addition to bullet points, we partition the text using
multiple paragraphs. A particular problem in this
context is that there is no consensus concerning the
optimal number of sentences or words per paragraph.
Nevertheless, experiments demonstrated that para-
graphs containing more than 100 words are already
less understandable than paragraphs with fewer words
[82]. Building on this insight, we include an editable
parameter for defining the size of a paragraph and
predefine this parameter with a value of 75 words.
Once this threshold is reached, we use a change of the
performing role or an intermediate event as indicator
for semantic cohesion and respectively introduce a
new paragraph.

4.5 DSynT-Message Generation

This section introduces the message generation compo-
nent. It transforms the annotated RPST into a list of in-
termediate messages. Therefore, it recursively traverses
the annotated RPST and derives an intermediate mes-
sage structure for each RPST node. In the beginning
of this section, we introduce the Deep-Syntactic Tree as
format of the generated messages. Then, we provide
a detailed explanation of the transformation of the
process model elements. Finally, we discuss how the
sub steps are integrated into the overall transformation
technique.

4.5.1 Deep-Syntactic Trees

Each message derived from the annotated RPST is
stored in a so-called deep-syntactic tree (DSynT). A
deep-syntactic tree is a dependency representation that
was introduced in the context of the Meaning Text The-
ory [70], [83]. It is used to represent the most significant
aspects of the syntactic structure of a sentence. The
advantage of such trees is the rich yet manageable
representation. Furthermore, there exist several off-the-
shelf surface realizers which directly transform deep-
syntactic trees into grammatically correct sentences
(see e.g. [59], [60], [61], [62]). Hence, we decided to
design an algorithm that maps the given RPST into a
list of DSynT-based messages.

In a deep-syntactic tree, each node carries a se-
mantically full lexeme, meaning that words such as
conjunctions or auxiliary verbs are excluded. Moreover,
each lexeme in a deep-syntactic tree is enriched with
grammatical meta information, so-called grammemes.
Grammemes, for instance, include the voice and tense
of verbs or the number and definiteness of nouns. The
egdes of the DSynT define the relationship between
two nodes. The set of possible relations is rather small.
For the purpose of text generation from process models,
we employ two actantial4 relations (denoted with I
and II). The first relation specifies the subject and the
second relation determines the object of the referenced
verb. In addition, we make use of an attributive

4. An actant is a linguistic term for denoting a noun phrase that
is functioning as the agent of the main verb.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JULY 2013 9

take down!
class: verb!

room-service  
manager!

class: proper_noun!
article: def!

order!
class: common_noun!

article: def!

I! II!

Take down
order …

R
oo

m
-s

er
vi

ce

m
an

ag
er

…

“The room-service manager takes
down the order.”

(a) Simple DSynT

room-service  
manager"

class: proper_noun!
article: def!

to"

I!
II!

order"
class: common_noun!

article: def!

ATTR!

II!

order"
class: verb!
voice: pass!

starting_point: +!

ATTR!

beverages"
class: proper_noun!

article: def!

I!

ATTR!

alcoholic"
class: adjective!

ATTR!

if!

give"
class: verb!

sommelier"
class: common_noun!

article: def!

Give
order to

sommelier

Alcoholic beverages
ordered?

No

Yes

…

…

“If alcoholic beverages are ordered, the room-service manager
gives the order to the sommelier.”

R
oo

m
-s

er
vi

ce

m
an

ag
er

…

(b) DSynT Resulting in Conditional Sentence

Fig. 4. Two Examples for Deep-Syntactic Trees and their Transformation

relation (ATTR) and a relation for conjoining elements
(COORD).

Figure 4 illustrates the DSynT concept by showing
two example trees, the respective process model frag-
ments as well as the natural language text they are
associated with. As stated, Figure 4(a) represents the
sentence The room-service manager takes down the order
and Figure 4(b) captures the conditional sentence If
alcoholic beverages are ordered, the room-service manager
gives the order to the sommelier. The two examples
illustrate that the root of a deep-syntactic tree is always
formed by the main verb of the sentence and the
actantial relations are used to specify subject and object.
The ATTR relation is applied in two ways. First, to
append adjectives to nouns, and second, to append
a conditional sentence to the main sentence. The
grammemes of the depicted trees essentially include
the word class and the definiteness of articles. In addition,
the lexeme order carries the grammeme starting point
specifying the position of the conditional clause. As a
result, the deep-syntactic trees contain all information
that is required for constructing proper sentences.

4.5.2 Traversing the Annotated RPST
Starting point for the transformation of the anno-
tated RPST into a set of intermediate messages is
the traversing of the tree. Based on the type of the
considered RPST node, the respective algorithm for the
transformation is triggered. Algorithm 1 formalizes
this procedure at the highest abstraction level. The
algorithm requires an RPST node as input and returns
an ordered list of DSynT messages. Note that the input

Algorithm 1: transformRPSTNode(RPSTNode n)
1: List msgs = new List();
2: Global List passedMsgs = new List();
3: for all RPSTNode child ∈ n.getChildren() do
4: if child.getNodeType() = TRIVIAL then
5: if child.getEntry().getElemType() = ACTIVITY then
6: msgs.add(transformActivity(child.getEntry()));
7: else if child.getEntry().getElemType() = EVENT then
8: msgs.add(transformEvent(child.getEntry()));
9: end if

10: else if child.getNodeType() = BOND then
11: msgs.add(transformBond(child));
12: else if child.getNodeType() = RIGID then
13: msgs.add(transformRigid(child));
14: else if child.getNodeType() = POLYGON then
15: msgs.add(transformRPSTNode(child));
16: end if
17: end for
18: return msgs;

node may represent the root or any other node of the
RPST.

In the beginning, a list for the DSynT messages
and a global list for passed massages is created (line
1-2). The latter list serves as a stack for messages that
need to be incorporated into the text at a later point of
time. It is particularly important for the transformation
of bonds. In the following loop, each child node
of the current RPST node is analyzed (lines 3-17).
If the child is a trivial node, it is further checked
whether it is representing an activity or an event.
As an RPST node always consists of a connection
of two vertices, each representing a process model
element, this is done by deriving the data from the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JULY 2013 10

entry element of the RPST node. Since the exit element
is accordingly included as an entry element in the
subsequent RPST node, this procedure avoids that a
single process element is considered twice. If the node
entry represents an activity, the respective function for
transforming activities is triggered (line 6). Otherwise,
if the node entry is an event, the event transformation
function is executed (line 8). The return value of these
functions is a set of DSynT messages which have been
created for conveying the semantics of the respective
process model element. For the RPST node types bond
and rigid, the algorithm proceeds analogously. If the
considered child node represents a bond or a rigid,
the respective transformation function is called (lines
11 and 13). Polygon nodes are treated differently. As
they represent a sequence of RPST nodes, the algo-
rithm transformRPSTNode is recursively triggered for
a polygon (line 15). As a result, the comprised nodes
are transformed in the underlying iterations. Note that
bonds and rigids also contain further RPST nodes. The
called transformation functions make equally use of
transformRPSTNode to convert the subsumed elements
into DSynT messages. Finally, after all nodes have
been transformed into intermediate messages, the list
of messages is returned (line 18).

In the following subsections, we discuss the specific
steps for the transformation of trivial fragments, bonds,
and rigids.

4.5.3 Transformation of Trivial RPST Nodes

As trivial fragments are always leaves of the RPST,
they either represent activities or events. Thus, every
activity and every event is transformed into a single
sentence. This is accomplished by properly represent-
ing the activity or event as a deep-syntactic tree. Due
to the annotation, all required information is readily
available. In total, four pieces of information must be
properly organized in a DSynT: action, business object,
additional information, and the role.

Algorithm 2 illustrates the required steps for activi-
ties. It requires an RPST node pointing to an activity
as input and returns a deep-syntactic tree representing
the resulting sentence.

The algorithm starts with deriving the activity from
the RPST node (line 1). As previously discussed, an
RPST node always consists of a connection of two
vertices, each representing a process model element.
In order to avoid that an element is considered twice,
we always extract the entry vertex from the given RPST
node. After the activity object has been obtained, a
new DSynT and a DSynT node for the action is created
(lines 2-3). The class of the action node is specified with
verb, and the lemma is determined with the annotated
infinitive of the action (lines 4-5). Subsequently, the
node is added to the deep-syntactic tree representation
(line 6). As the action node represents the root of the
tree, the relation attribute is not further specified.

Algorithm 2: transformActivity(RPSTNode n)
1: Activity a = n.getEntry();
2: DSynT dsynt = new DSynT();
3: DSynTNode actionNode = new DSynTNode();
4: actionNode.setClass(’verb’);
5: actionNode.setLemma(a.getAnnotation().getAction());
6: dsynt.addNode(actionNode);
7: if a.getAnnotation().getObject().isEmpty() = false then
8: DSynTNode boNode = new DSynTNode();
9: boNode.setClass(’noun’);

10: boNode.setLemma(a.getAnnotation().getObject());
11: boNode.setRelationType(’II’);
12: actionNode.addNode(boNode);
13: end if
14: if a.getAnnotation().getAdd().isEmpty() = false then
15: DSynTNode prepNode = new DSynTNode();
16: prepNode.setClass(’preposition’);
17: String preposition = a.getAnnotation().getAddPrep();
18: prepNode.setLemma(preposition);
19: prepNode.setRelationType(’ATTR’);
20: DSynTNode addNode = new DSynTNode();
21: addNode.setClass(’noun’);
22: String addition = a.getAnnotation().getAdd();
23: prepNode.setLemma(addition);
24: addNode.setRelationType(’II’);
25: prepNode.addNode(addNode);
26: actionNode.addNode(prepNode);
27: end if
28: if a.getAnnotation().getRole().isEmpty() = false then
29: DSynTNode roleNode = new DSynTNode();
30: roleNode.setClass(’noun’);
31: roleNode.setLemma(a.getAnnotation().getRole());
32: roleNode.setRelationType(’I’);
33: verbNode.addNode(roleNode);
34: else
35: actionNode.setVoice(’passive’);
36: end if
37: if passedMsgs.getSize() > 0 then
38: dsynt = mergeSentences(dsynt, passedFragments);
39: end if
40: return dsynt;

If the considered activity contains a business object,
a respective node is created. Therefore, the class of
the node is determined with noun and the relation is
specified with type II. Then, the business object node is
appended to the action node as a child (lines 8-12). As
a result, the business object plays the grammatical role
of an object. Considering the represented sentence,
this means that the business object is positioned
after the verb. For the incorporation of the additional
fragment, the insertion of two nodes is required. The
first captures the preposition introducing the addition.
The second node contains the additional fragment itself.
In case the considered activity includes an addition,
a node of the class preposition with the relation type
ATTR is created (lines 14-19). Then, a node for the
addition belonging to the class noun and the relation
type II is introduced. The incorporation of the nodes
into the DSynT is realized by appending the addition
node to the preposition node and the preposition node
to the action node (lines 25-26). Afterwards, the role
insertion is handled.

If a role description is available, a respective node
is created (line 29). As the role plays the grammatical
role of a subject, the relation is specified with type

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JULY 2013 11

I (line 32). In case no role description is available,
the voice attribute of the verb is set to passive (line
35). As a result, a missing role description causes a
passive sentence, i.e., the activity Prepare Meal would
be transformed into The meal is prepared.

In case there are passed messages from prior trans-
formation steps, such as conditions from splits and
joins, these messages are incorporated into the activity
(lines 37-39). Finally, the created DSynT object dsynt is
returned (line 40). Due to complexity, the presented
algorithm only discusses the main steps. Exceptional
cases and further modifications such as the number of
nouns or the specification of articles are not covered.
Based on the circumstances, the generation algorithm
automatically decides about these features. The details
are implemented in a rule system.

Since the transformation steps for events are very
similar to the activity transformation, we do not pro-
vide a formal description of the event transformation
function transformEvent. The key difference is that
events are enriched with additional meta information.
For example, we provide an XML DSynT template
for intermediate timer events that communicate that
a certain time condition must be met before the
process can continue. In a similar way, message, error,
and other event types are transformed into natural
language text. For attached events, we implemented
a special treatment. As they typically lead to an
alternative path in the model, they often result in
a rigid. In order to communicate attached events in
the most intuitive fashion, we create an extra RPST for
each attached event and the respective alternative path.
By linking this RPST to the source activity, attached
events are transformed into text without using the
transformation algorithm for rigids.

4.5.4 Transformation of Bonds
We previously defined a bond as a set of RPST
fragments sharing two common nodes. In addition, we
pointed out that this applies to block-structured splits
and joins. In order to adequately transform bonds into
natural language, it is necessary to investigate which
particular bond types we may encounter in process
models.

Table 3 gives an overview of the main bond types in
BPMN process models and how they are transformed
into text. It illustrates that there are five main process
model structures that are captured by bonds. Each of
them is conveying semantics that need to be addressed
slightly differently in terms of natural language gener-
ation. Bonds containing an xor-split (types 1-3) may
capture three different scenarios. First, an xor-split
can be used for indicating a choice between different
activities. Second, it can be employed for providing
the possibility to skip one or more activities. Such a
construction is characterized by an empty arc from
the xor-split to the xor-join. Third, an xor-split might
be used to implement a loop. A loop construction

is characterized by an arc that is flowing back into
the xor-split. Besides the three xor-based structures,
bonds may also consist of an and-split and an and-
join (type 4), or of an or-split and an or-join (type
5). They consequently represent the opportunity to
express concurrent behavior or a choice between one
or more options. It is quite intuitive that each of
these bond types requires a slightly different textual
representation.

The essential idea for transforming bonds into text
is to complement the sentences that are generated
for activities with additional explanations. Such an
explanation sentence may either stand separately or
may be incorporated into an activity sentence. Table 3
provides an overview of the basic sentence templates
for each bond type. The table distinguishes between
labeled and unlabeled gateways and the scope of the
sentence. The choice about one of the options depends
on three parameters:

• The Existence of a Gateway Label: If a gateway
carries a label (which is generally only the case
for xor and or-splits), we use this label to create a
sentence that explains the condition of the split. If
a considered gateway is unlabeled, we use a set
of predefined sentences to explain the semantics.
Note that the predefined sentences are stored as
DSynTs in external XML files. Hence, the set can
be easily complemented or adapted to the specific
needs of the user.

• The Gateway Type: As an and-split must be com-
municated differently than an xor-split, we use
differing sentences for each of the previously
introduced bond types. If a gateway is labeled, the
gateway annotation is accordingly incorporated.
Nevertheless, the way a given label is employed
is still depending on the bond type. As a result,
the generated text for a skip construction varies
from the text generated for a general xor-split.

• The Number of Outgoing Arcs: As our goal is
to communicate the semantics of the model as
naturally as possible, we also consider the number
of outgoing arcs. Rather simple splits consisting
of two arcs do not necessarily require additional
meta sentences in the text. For example, an xor-
split with two outgoing arcs is transformed into
the sentence If <cond.> then <1. branch>, otherwise
<2. branch>. Hence, we differentiate between
splits with exactly two outgoing arcs and splits
with more than two outgoing arcs. In the former
case, we use an integrated sentence template that
incorporates the activities. In the latter case, we
employ an isolated sentence such as If <cond.>
then one of the following branches is executed to
explain the model semantics. Nevertheless, if
the considered gateway does not carry a label,
we abstract from the number of outgoing arcs
and employ an isolated sentence to convey the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JULY 2013 12

Algorithm 3: transformBond(RPSTNode n)
1: List msgs = new List();
2: Gateway g = n.getEntry();
3: DSynT splitSen = new DSynT();
4: DSynT joinSen = new DSynT();
5: if | g• |> 2 then
6: if g ∈ Gλ then
7: splitSen = deriveFromGatewayLabel(g, ’separate’);
8: else
9: splitSen = loadSplitSentence(g.getType(), ’separate’);

10: end if
11: joinSen = loadJoinSentence(g.getType(), ’integrated’);
12: if passedMsgs.getSize() > 0 then
13: splitMsg = mergeSentences(splitMsg,

passedFragments);
14: end if
15: msgs.add(splitSen);
16: for all RPSTNode child ∈ n.getChildren() do
17: msgs.add(transformRPSTNode(child));
18: end for
19: passedMsgs.add(joinSen);
20: else if | g• |= 2 then
21: if g ∈ Gλ then
22: splitSen = deriveFromGatewayLabel(g, ’integrated’);
23: else
24: splitSen = loadSplitSentence(g.getType(), ’separate’);
25: end if
26: joinSen = loadJoinSentence(g.getType(), ’integrated’);
27: passedMsgs.add(splitSen);
28: msgs.add(transformRPSTNode(n.getChildren().get(1)));
29: passedMsgs.add(joinSen);
30: msgs.add(transformRPSTNode(n.getChildren().get(2)));
31: end if
32: return msgs;

behavior of the model.
To illustrate this procedure, consider the bonds B2

and B3 from the example process in Figure 1. Bond
B2 contains an xor-gateway with two outgoing arcs
and the label Alcoholic Beverages Ordered. Accordingly,
we use the annotation of the gateway to derive the
sentence fragment If alcoholic beverages are ordered. This
clause is then passed to the first activity of the yes-arc,
where the condition and the main clause are combined.
As a result, we obtain a DSynT representing the
sentence If alcoholic beverages are ordered, the room-service
manager gives the order to the sommelier. The respective
DSynT is depicted in Figure 4(b). Similarly, we can
accomplish the transformation of the join-gateway. The
join-condition clause is analogously passed to the first
activity after the bond (Deliver to Guest’s Room) and
incorporated into the sentence. As opposed to bond
B2, the gateway in bond B3 does not carry a label.
Hence, we use the predefined sentence one or both
of the following branches are executed to describe the
or-split although it only has two outgoing arcs. This
procedure is used to handle bonds of different size and
type. Within the bond, the recursive transformation
from Algorithm 1 is executed accordingly.

Algorithm 3 formalizes this procedure. In the begin-
ning, a new list for the generated messages is created,
and the gateway object is extracted from the RPST node
(lines 1-2). Then, two new DSynTs for the split and the
join sentences are created. If the considered gateway

has more than two outgoing arcs, it is handled by the
lines 6-19. In case the gateway is labeled, the sentence
explaining the split is extracted from the gateway (line
7). Otherwise, it is loaded from the external XML files
(line 9). In either case, a separate sentence is constructed
as the bond consists of more than two branches. As
the split sentence was created as a separate sentence,
it can be directly added to the message list. If there
exist passed messages that need to be incorporated, the
split sentence is first merged with the passed messages
(lines 12-14). A scenario where such a situation occurs
is the direct succession of a join gateway by a split
gateway. Technically, the combination of two or more
messages is trivial. Each DSynT of a passed message
is added to the main DSynT using the ATTR or
COORD relation. In the following loop, the RPST main
transformation algorithm is executed for each child
fragment of the bond (lines 16-18). Afterwards, the join
sentence is added to the global set of passedFragments
(line 19). Hence, the sentence is incorporated into
the next activity of the process model. The handling
of gateways with exactly two outgoing branches is
implemented by the lines 20-31. The key difference is
that a labeled gateway is transformed into an integrated
split sentence (line 22), and that the join sentence is
passed to the first activity of the second branch (line
29). Finally, the message list is returned (line 32).

4.5.5 Transformation of Rigids
As discussed earlier, a rigid is a region of a process
model that captures arbitrarily structured behavior
and hence cannot be characterized by the means of
nested bonds, polygons, or trivial fragments. Thus, the
previously defined transformation techniques are not
sufficient for textualizing the behavior of rigids. In
order to properly communicate the behavior of rigids,
we explain the different execution options to the reader.
More specifically, we discuss one particular execution
sequence through the rigid from start to end and
then explain the possible deviations from this path. To
automatically derive such an execution sequence and
its deviations, we transform the rigid into a Petri Net.
From this Petri Net we then compute a set of concurrent
runs covering all activities of the original rigid [84], [85].
Figure 5 shows an abstract version of the rigid from
Figure 1 and the corresponding Petri Net. The BPMN
to Petri Net transformation can be accomplished using
standard transformation algorithms [86], [87], [88]. As
we use element identifiers to link transitions and places
to the respective BPMN elements, we do not lose any
semantics of the BPMN model. After the execution
sequences have been computed, we can still associate
the places and transitions of the Petri Net with the
respective BPMN elements.

Building on the definitions from [84], [85], we
designed an algorithm to automatically construct con-
current runs from the derived Petri Net. The rationale
behind this approach is to start with the root of the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JULY 2013 13

TABLE 3
Sentence Templates for Transforming Bonds

Bond Type Appearance g ∈ Gλ Scope Sentence Template

Choice

Bond Types

(5) Parallel Execut ion(4) One or Mult iple Options

(1) One out of Mult iple Options (2) Option to Skip (3) Option to Repeat

Henrik Leopold 1 von 1 16.04.2013

yes
split If <cond.> then one of the following branches is executed.
join Once one of the alternative branches was executed ...
integ. If <cond.> then <1. branch>, otherwise <2. branch>

no
split One of the following branches is executed.
join Once one of the alternative branches was executed ...
integ. -

Skip

Bond Types

(5) Parallel Execut ion(4) One or Mult iple Options

(1) One out of Mult iple Options (2) Option to Skip (3) Option to Repeat

Henrik Leopold 1 von 1 16.04.2013

yes
split If <cond.> then ...
join In any case ...
integ. -

no
split If required ...
join In any case ...
integ. -

Loop

Bond Types

(5) Parallel Execut ion(4) One or Mult iple Options

(1) One out of Mult iple Options (2) Option to Skip (3) Option to Repeat

Henrik Leopold 1 von 1 16.04.2013

yes
split -
join As long as <cond.> the <role> repeats the latter steps and

continues with ... Once <cond.> ...
integ. -

no
split -
join If required <role> repeats the latter steps and continues with....

Once the loop is finished ...
integ. -

Parallelism

Bond Types

(5) Parallel Execut ion(4) One or Mult iple Options

(1) One out of Mult iple Options (2) Option to Skip (3) Option to Repeat

Henrik Leopold 1 von 1 16.04.2013

yes
split The process is split into <no.> parallel branches.
join Once all <no.> branches were executed ...
integ. -

no
split The process is split into <no.> parallel branches.
join Once all <no.> branches were executed ...
integ. -

Inclusive
Choice

Bond Types

(5) Parallel Execut ion(4) One or Mult iple Options

(1) One out of Mult iple Options (2) Option to Skip (3) Option to Repeat

Henrik Leopold 1 von 1 16.04.2013

yes
split If <cond.> then one or more of the following branches is executed
join Once all desired branches were executed ...
integ. -

no
split One or more of the following branches is executed
join Once all desired branches were executed ...
integ. -

V2

V4

V3

(a) Rigid

V2

V4

V3

p1

p2 p3

p4

p5

p6

(b) Petri Net Representation

Fig. 5. Rigid from Fig. 1 and the Corresponding Petri Net Representation

spanning tree and to first determine the longest path.
This path is determined as the main run. The unvisited
branches accordingly represent the deviations and are
extracted analogously.

Figure 6 shows the result of the run computation.
It illustrates that the considered rigid can be covered
using three runs. The first run captures the case that
the customer has no premium status and is hence
debited directly. The second run represents the case of a
premium customer. In that case, the order is approved
without debit. The third run clarifies that the solvency
check may also lead to a positive decision. In this case,
the execution continues with place p5. These runs

demonstrate that the pursued strategy is well-suited
for properly describing the possible behavior of a rigid.
While the first run shows one possible path through
the rigid, the remaining runs describe the possible
deviations. In particular, the second run describes an
alternative after the beginning of the rigid, and the
third run represents an alternative after the execution
of activity v2.

Using the concept of the concurrent run generation,
the verbalization of a rigid can be accomplished with
the previously introduced transformation techniques.
As every run represents a Petri Net process model,
the introduced algorithms can be applied in a straight-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JULY 2013 14

V4
p1 p5 p6

(2)

V2
p1 p2 p3

(1)

p4

V3
p6

p3 p5

(3)

Fig. 6. Runs Computed from the Petri Net Representa-
tion

Algorithm 4: transformRigid(RPSTNode rigid)
1: List msgs = new List();
2: DSynT rigidIntroSentence = loadRigidIntroSentence();
3: DSynT rigidDeviationSentence = loadRigidDevSentence();
4: PetriNet p = transformToPetriNet(rigid);
5: List runs = generateConcurrentRuns(p);
6: PetriNet mainRun = runs.get(1);
7: msgs.add(rigidIntroSentence);
8: msgs.add(transformRPSTNode(mainRun.getAnnoRPST()));
9: msgs.add(rigidDeviationSentence);

10: runs.remove(1);
11: for all PetriNet run ∈ runs do
12: msgs.add(transformRPSTNode(run.getAnnoRPST()));
13: end for
14: return msgs;

forward manner. Algorithm 4 formalizes the required
steps. It requires an RPST node representing a rigid
as input and returns a list of deep-syntactic trees
representing the resulting text.

Algorithm 4 starts by defining a list and two meta
sentences for describing the behavior of the rigid (lines
1-3). The rigidIntroSentence is used for communicating
that a rigid captures several execution sequences and
how the following text describes its behavior. The
rigidDeviationSentence is inserted for introducing the
list of possible deviations. After defining the required
variables, a Petri Net is derived from the given rigid
(line 4). Then, a list of concurrent runs is computed
from the Petri Net. In order to present the main run
separately, the first run is extracted and transformed
into text (lines 6-8). As Petri Nets can be easily mapped
to BPMN process models, the textualization of Petri
Nets can be accomplished without further adaptations
of the text generation algorithm. After transforming
the main run, the remaining runs are paraphrased
accordingly (lines 11-13). Once all runs have been
transformed, the list of messages is returned (line 14).
Note that Algorithm 4, for the purpose of maintaining
a well-readable presentation, does not cover the case of
rigid runs. If a run represents a rigid itself, we employ
the concept of behavioral profiles [89] for pair-wise
explaining the order of tasks. Given two activities A
and B that are part of a rigid run, behavioral profiles
enable us to infer whether A and B are exclusive
to each other, whether A and B must be executed
in parallel, or whether there is a particular order
between A and B. Depending on the result, we explain
the relationship between the task pair to the reader.

Although the technical implementation of this step is
trivial, it ensures that our approach can handle rigids
of arbitrary complexity.

4.6 Message Refinement
Within the message refinement component, we take
care of message aggregation, referring expression
generation, and discourse marker insertion. At this
stage, the entire RPST has been transformed to a list of
DSynT-based sentences. The resulting list of messages
serves as input for the refinement component.

The need for message aggregation usually arises
when the considered process contains long sequences.
In such cases, we make use of three aggregation
techniques:

• Role Aggregation: If two successive activities are
performed by the same role, the messages are
merged to a single sentence. Instead of generating
the two sentences The waiter serves the customer
and The waiter issues the invoice, we merge the
sentences to The waiter serves the customer and issues
the invoice.

• Business Object Aggregation: Neighbouring activi-
ties sharing a common business object are aggre-
gated in a similar fashion. For example, the two
sentences The bill is created and The bill is sent are
aggregated to The bill is created and sent.

• Action Aggregation: Analogously to activities shar-
ing a common business object, we use identical
actions two merge sentences. For instance, the sen-
tences The manager is informed and the The customer
is informed are consolidated to The manager and the
customer are informed.

Note that aggregation may also include more than
two activities. The minimum and maximum number
of aggregations can be flexibly configured. The overall
goal is to generate text that is as natural as possible.

If there are still adjacent messages with the same role
after the aggregation, the role description in the second
message is replaced with a referring expression. We use
WordNet for replacing a role with a suitable personal
pronoun. More specifically, we infer all hypernyms of
the word associated with the considered role. As a
result, we obtain a set of more abstract words which
semantically include the role description. If we, for
instance, look up the role waiter, we can identify
the hypernym person indicating that this role should
be replaced with he or she. By contrast, the set of
hypernyms of kitchen only contains words like artifact
or physical entity and no link to a human being. Hence,
the role kitchen is referenced with it.

For the discourse marker introduction, we identify
messages appearing in a strict sequence. Using an
extendible set of connectors such as then, afterwards,
and subsequently, we randomly insert a suitable word.
In this way, we obtain a well readable text with
sufficient variety. As the technical implementation of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JULY 2013 15

the discourse marker introduction is trivial, we do not
provide a detailed algorithm.

4.7 Surface Realization
As already pointed out in Section 2.2, the complexity
of the surface realization task led to the development
of publicly available realizers such as TG/2 [60] or
RealPro [59]. Considering aspects as the manageability
of the intermediate structure, license costs, generation
speed, and Java compatibility, we decided to utilize the
DSynT-based realizer RealPro from CoGenTex. RealPro
requires a deep-syntactic tree as input and returns a
grammatically correct sentence.

Building on the RealPro realizer, the technical imple-
mentation of the realization task is trivial. In a loop,
each DSynT is passed to the realizer. The resulting
natural language text is then added to the final output
text. After all DSyntT-based messages have been
transformed, the final text is presented to the user.

5 EVALUATION

To demonstrate the capability of the proposed tech-
nique for generating natural language texts from pro-
cess models, we conduct a two-step evaluation. First,
in Section 5.1, we apply our technique to real-world
process models and investigate how the generated texts
compare to textual descriptions created by humans.
Second, in Section 5.2, we study in how far humans
are capable of making sense of the generated texts. To
this end, we ask humans to transform the generated
texts back into process models.

5.1 Technical Evaluation
The overall goal of the technical evaluation is to
compare the generated texts with textual descriptions
created by humans. Our hypothesis is that both
generated and manually created texts result in text
metrics being in a comparable range. Section 5.1.1
presents the general setup of the technical evaluation
and the employed metrics. Section 5.1.2 introduces the
test collection we utilize. Section 5.1.3 investigates the
technique from a runtime performance perspective.
Section 5.1.4 presents the results from the text genera-
tion and comparison. Section 5.1.5 provides a detailed
discussion of the comparison.

5.1.1 Setup
In the context of the technical evaluation, we consider
two dimensions for comparing generated and manu-
ally created texts: text structure and text content.

The text structure dimension is concerned with syn-
tactic characteristics of the texts indicating their com-
plexity. Since syntactic complexity imposes a higher
cognitive load on the reader, it is often considered as
an important factor decreasing the understandability
of texts [90], [91]. Nevertheless, up until now there is

no consensus regarding metrics that are best suited
for assessing the syntactic complexity [92]. The first
approaches that tried to automatically assess the
quality and complexity of texts date back to the sixties
to the works of Page [93], [94]. He employed simple
text features such as word count or word length
to evaluate text quality. Today, more sophisticated
techniques are available, taking into account that
humans typically have a more holistic view on a text
[95], [96], [97]. For the purpose of this evaluation,
we adapt the sentence complexity metrics proposed
by Lu [92]. They include different characteristics for
evaluating the syntactic complexity of sentences, and
are, hence, well-suited for comparing the complexity
of texts. In order to also cover the relationship between
text and model structure, we further consider a metric
capturing the number of sentences per process model
node. Altogether, we employ the following metrics:

• Average Number of Sentences (S): Average number
of sentences per text.

• Words per Sentence Ratio (W/S): Average number
of words per sentence.

• Clauses per Sentence Ratio (C/S): Average number
of clauses per sentence.

• T-Units per Sentence Ratio (T/S): Average number of
t-units per sentence. A t-unit is a main clause that
contains an attached or embedded subordinate
clause or any non-clausal structure [98].

• Complex T-Units per Sentence Ratio (CT/S): Average
number of complex t-units per sentence. A t-unit is
categorized as complex if it contains a dependent
clause [99].

• Average Sentences per Node Ratio (S/N): Average
number of sentences used for describing a node
of the process model.

The text content dimension refers to the extent the
text reflects the semantics of the model. In general,
we identified that the sentences of the generated and
the manually created texts can be subdivided into
three types: sentences describing the model content,
i.e., the nodes of the model, sentences solely discussing
the control flow, and sentences providing additional
context information that is not captured by the model.
Hence, we operationalize the text content dimension
using the following metrics:

• Activity Coverage (AC): Share of activities that are
discussed in the text.

• Event Coverage (EC): Share of events that are
discussed in the text.

• Gateway Coverage (GC): Share of gateways that are
discussed in the text.

• Sequence Flow Coverage (FC): Share of sequence
flows that are discussed in the text.

• Content Sentences (CS): Share of sentences explain-
ing the model content, i.e., the semantics of the
model nodes.

• Meta Sentences (MS): Share of sentences that only

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JULY 2013 16

discuss the control flow of the model.
• Information Sentences (IS): Share of sentences that

provide additional context information that is not
captured by the model.

5.1.2 Test Collection Demographics
For the evaluation, we employ the BPMN process
model collection from [8]. The comprised models vary
with regard to several dimensions such as model
source, size, complexity, and the employed element set.
Hence, it is well-suited for achieving a high external
validity of the results. After removing one model from
the set since it did not fulfil the required soundness
criteria, we yielded a test set of 46 process models.
As each model is also complemented with a manually
created natural language text, the collection contains
all the necessary material for comparing generated
and manually created texts. Table 4 summarizes the
main characteristics of the test collection aggregated
by the comprised sources. In total, the test collection
consists of models from ten different sources:

1) Humboldt University of Berlin (HUB): The models
from the HU Berlin represent BPMN exercises
which are used in BPMN tutorials. The models
and the texts were translated from German to
English.

2) Technical University of Berlin (TUB): The models
from the TU Berlin were created in the context
of a research project and are discussed in [100],
[101].

3) Queensland University of Technology (QUT): Similar
to the models from the HU Berlin, the models
from the QUT represent BPMN exercises with
according solutions.

4) Eindhoven University of Technology (TUE): The
BPMN model from the TU Eindhoven was also
created in the context of a research project. The
details are discussed in [102].

5) Vendor Tutorials (VT): The vendor tutorial models
stem from the websites or online help documen-
tations of the BPM tool vendors Active VOS and
BizAgi.

6) inubit AG (IAG): The models from the inubit
AG represent modeling tutorials that are used
in the context of client and employee trainings.
All included texts and models were translated
from German to English.

7) BPM Practitioners (BPMP): This model represents
an exercise that was provided by a BPM consul-
tant. It is used in BPMN modeling tutorials.

8) BPMN Practice Handbook (PHB): These models
represent exercises from the BPMN Practice Hand-
book [103]. Both models and texts were translated
from German to English.

9) BPMN M&R Guide (MRG): Similar to the models
from the BPMN Practice Handbook, these models
represent exercises from the BPMN M&R Guide
[104].

10) FNA - Metrology Processes (FNA): This sample in-
cludes models from the Federal Network Agency
of Germany. The models were initially provided
as UML Sequence diagrams. Hence, they were
transformed into BPMN as documented in [8]. In
addition, texts and models were translated from
German to English.

The data from Table 4 illustrates that the models
from the different sources vary in many regards. While
the models stemming from exercises and tutorials are
rather small, some models from the research projects
contain more than 50 nodes. Particularly, the number
of gateways and arcs emphasizes that the majority
of the models are not simple sequences of tasks,
but frequently contain splits and joins. Furthermore,
the number of pools and lanes highlight that the
models also include different degrees of interaction.
The models from the TU Eindhoven and the inubit AG
include, on average, four or more lanes. The models
from the TU Berlin and the FNA frequently make use
of multiple pools. Concerning the number of BPMN
symbols, we observe differences between 4 and 12
distinct BPMN symbols per model from a single source.
In total, the models cover 22 different BPMN symbols
including various event and gateway types, attached
events, and subprocesses. Against this background, we
consider the test sample to be suitable for illustrating
the capability of the technique to successfully generate
natural language texts.

5.1.3 Performance Results
The main application scenario for the presented text
generation technique is to provide domain experts
with a complementary text. Hence, the generation is
not necessarily time critical. However, if the generation
is included in a modeling tool, for instance to provide
an alternative view on the model, the computation
must be adequately fast. We tested the text generation
on a MacBook Pro with a 2.26 GHz Intel Core Duo
processor and 4 GB RAM, running on Mac OS X 10.6.8
and Java Virtual Machine 1.5. To exclude distortions
due to one-off setup times, we ran the generation twice
and considered the second run only.

Table 5 summarizes the average, minimum, and
maximum execution times of the text generation
technique. The numbers show that an average gen-
eration run consumes 5.66 seconds. Large deviations
from this value can be only observed for extremely
large or extremely small models. Thus, the longest
generation run was measured for the largest model of
the collection containing over 50 nodes and 4 pools.
Considering the details, it becomes apparent that
especially the number of pools increases the generation
time. This can be explained by the fact that a model
with multiple pools is split up into several individual
models and that the generation is triggered for each
pool separately. Nevertheless, the models from the TU
Berlin illustrate that also large models are converted

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JULY 2013 17

TABLE 4
Overview of Test Data Set Characteristics by Source

ID Source Type M N A E G F P L NS

1 HUB Academic 4 20.8 9.0 5.3 6.5 22.8 1.3 2.5 10
2 TUB Academic 2 54.5 22.5 21.5 10.5 55.5 3.5 3.5 11
3 QUT Academic 8 10.6 6.1 2.5 2.0 10.5 1.0 1.6 8
4 TUE Academic 1 30.0 18.0 4.0 8.0 33.0 1.0 5.0 7
5 VT Industry 3 10.0 5.3 3.3 1.3 9.7 1.0 2.3 8
6 IAG Industry 4 17.8 9.0 5.0 3.8 18.3 1.3 4.0 9
7 BPMP Industry 1 8.0 4.0 3.0 1.0 8.0 1.0 2.0 4
8 PHB Text Book 3 10.3 5.0 3.3 2.0 10.0 1.0 1.7 6
9 MRG Text Book 6 18.3 7.0 8.2 3.2 18.2 1.3 1.8 12
10 FNA Public Sector 14 20.1 8.0 9.0 3.1 18.9 2.3 2.3 8

Total 46 18.2 8.1 6.7 3.5 18.1 1.6 2.3 22

Legend: M = Total Number of Models per Source, N = Nodes per Model, A = Activities per Model, E =
Events per Model, G = Gateways per Model, F = Sequence Flows per Model, P = Pools per Model, L =
Lanes per Model, NS = Total Number of Different BPMN Symbols per Source

TABLE 5
Average Generation Time for each Model by Source

ID Source Avg (s) Min (s) Max (s)

1 HUB 4.91 4.02 5.94
2 TUB 9.45 8.38 10.53
3 QUT 5.01 3.85 8.41
4 TUE 4.77 4.77 4.77
5 VT 5.07 3.78 6.32
6 IAG 4.99 4.07 6.93
7 BPMP 4.19 4.19 4.19
8 PHB 4.97 3.88 6.91
9 MRG 5.33 4.87 6.26
10 FNA 6.47 3.84 8.02

Total 5.66 3.78 10.53

into text between 8 and 10 seconds. As the generation
technique is not required to instantly present a result to
the user, we consider this as reasonable performance.

5.1.4 Text Generation Results

From the evaluation experiment, we learned that
the presented technique is capable of generating
grammatically correct texts which appropriately
describe the respective process models. As an
example, consider the following text, which was
generated by our technique and represents the process
model from Figure 1. It illustrates the handling of
labeled and unlabled gateways, nested structures, and
rigids.

The process begins when the Room-Service Manager takes
down an order. Subsequently, the process contains a region
which allows for different execution paths. One option from
start to end is the following:

– The Room-Service Manager checks the customer sol-
vency. If it is not ok, the Room-Service Manager debits
the guest’s account.

However, the region also allows for a number deviations:

– In case of a premium customer the Room-Service
Manager approves the order without debit.

– After checking the customer solvency, the Room-Service
Manager may also approve the order without debit.

Then, the process is split into 2 parallel branches:
– If it is necessary, the Room-Service Manager gives

the order to the sommelier. In case alcoholic beverages
were ordered, one or both of the following activities are
executed:

– The Sommelier prepares the alcoholic beverages.
– The Sommelier fetches the wine from the cellar.

– The Room-Service Manager submits the order ticket
to the kitchen. Then, the Kitchen prepares the meal.

Once both branches were executed, the Waiter delivers to
the guest’s room. Afterwards, the process is finished.

Table 6 summarizes the overall evaluation results
for the structural dimension. A general observation
is that the generated sentences are shorter than the
manually created sentences. While the sentences from
the original texts contain an average of 15.5 words,
the generated sentences only include an average of 8.3
words. However, the shortness does not imply that
the generated texts use less words to communicate the
content. In fact, the shortness in terms of word count
is compensated by a higher number of sentences. Still,
the complexity metrics of clauses per sentence ratio
(C/S), t-units per sentence ratio (T/S), and complex
t-units per sentence ration (CT/S) indicate that the
generated sentences are less complex with regard to the
syntactic dimension. Particularly the number of clauses
per complex t-units is, on average, much smaller for
the generated sentences.

Considering the individual values from the em-
ployed sources reveals that these general observations
do not equally apply to all collections. As the original
texts were created by humans, they are subject to a
certain degree of variation. For instance, the original
text for the TUE model contains 40 sentences while

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JULY 2013 18

TABLE 6
Comparison of the Structural Dimension of Original and Generated Texts

Original Texts Generated Texts
ID Source S W/S C/S T/S CT/S S/N S W/S C/S T/S CT/S S/N

1 HUB 10.3 15.6 1.5 1.0 0.5 0.5 17.5 8.5 1.3 1.0 0.3 0.8
2 TUB 34.0 20.0 1.8 1.0 0.6 0.6 42.2 8.9 1.2 0.9 0.1 1.0
3 QUT 7.1 16.2 1.5 1.1 0.5 0.6 11.0 7.5 1.2 1.0 0.2 0.8
4 TUE 40.0 16.7 1.3 0.9 0.4 1.3 24.0 8.9 1.3 1.0 0.3 0.8
5 VT 7.0 16.6 2.0 0.8 0.7 0.7 9.0 8.7 1.1 1.0 0.1 0.9
6 IAG 11.5 16.3 1.5 1.2 0.6 0.7 15.5 8.5 1.4 1.0 0.3 0.9
7 BPMP 7.0 8.1 1.1 1.0 0.1 0.9 8.0 10.0 1.3 0.9 0.2 1.0
8 PHB 4.7 15.1 1.6 1.6 0.4 0.5 8.0 8.4 1.4 1.0 0.4 0.8
9 MRG 7.0 19.3 1.8 1.0 0.5 0.4 18.3 9.7 1.4 1.0 0.3 1.0
10 FNA 6.4 12.8 1.2 0.9 0.3 0.3 19.2 7.7 1.1 0.9 0.1 1.0

Total 9.0 15.5 1.5 1.0 0.5 0.5 16.8 8.3 1.2 0.9 0.2 0.9

Legend: S = Sentence, W/S = Words per Sentence, C/S = Clauses per Sentence, T/S = T-Units per
Sentence, CT/S = Complex T-Units per Sentence, S/N = Sentence per Node

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

Sentences

Nodes

(a) Original Texts

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

Sentences

Nodes

(b) Generated Texts

Fig. 7. Node-Sentence Comparison of Original and Generated Texts

the generated text only consists of 24. We also ob-
serve significant deviations for the complexity of the
manually created texts. As an example, consider the
complex t-units per sentence ratio for the BPMP model
(0.1) and the Vendor Tutorial models (0.7). Likewise,
the sentence to node ratio illustrates great differences.
Among the set of original texts, we observe differences
between 0.3 and 1.3 sentences per node. Among the
generated texts, we face a rather stable value of 0.9.
Figure 7 further illustrates the relationship between
the number of process model nodes and the number
of sentences. For the original texts, it shows a rather
weak linear relationship with some obvious exceptions.
By contrast, it shows a clear linear relationship for the
set of generated texts. This emphasizes that the results
of the text generation are much more stable than the
results produced by humans.

Table 7 shows the results for the content dimension.
The data illustrates that the generated texts cover all
aspects, i.e. activities, events, gateways, and sequence
flows that are included in the models. Considering the
design of the generation algorithm, this is actually a
predictable result. As we traverse the RPST and convert
the model node by node, it is technically not possible
to miss an aspect of the model. Although the coverage
values of the manually created texts are also very close
to 100%, in total three activities and twelve events are

not discussed in the investigated texts. While these
cases do not significantly affect the ability of the reader
to understand the models, it reflects the general risk
that humans may miss activities when describing a
model. A further observation in this context is that the
manually created texts occasionally use other words
to describe activities. For example, instead of using
the word message as provided in the model activity, an
original text used the word notification. While this can
have the positive effect of introducing more variety,
it may also confuse model readers as they need to
identify the correspondence between sentence and
activity.

Considering the type distribution of the sentences,
we observe more substantial differences. First, the
generated texts do not contain information sentences
providing additional context information. By contrast,
the manually created texts include an average of
8% information sentences. Typical examples for such
information sentence are A small company manufactures
customized bicycles or The Evanstonian is an upscale
independent hotel. They help to understand the context
of the model, but are not necessary for understanding
the model semantics. Similar to the activity coverage,
this is not surprising. Since the generation algorithm
solely builds on the information from the model,
all generated sentences are either content or meta

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JULY 2013 19

sentences. The second difference with regard to the
sentence types is the share of meta sentences. While
the generated texts often explicitly discuss control flow
aspects such as splits, joins, and rigids, the manually
created sentences do not discuss these aspects in
isolation. They rather use short fragments like in
parallel or conditional sentences to explain the control
flow on a higher abstraction level. Although explicit
discussions of such control flow aspects may reduce
the impression of generated texts being natural, it may
help readers to fully understand the model semantics.

5.1.5 Discussion of Results
The evaluation shows several similarities between the
generated and the manually created texts. However,
there are three types of differences: the stability of the
structural text characteristics, the semantic coverage,
and the cost for creation and adaptation.

The evaluation demonstrated that the generated
texts are very stable with respect to structural char-
acteristics. In particular, we learned that the generated
sentences are comparably short and simple. Neverthe-
less, as this is the direct result of the parametrization
of the algorithm, the complexity of the output can be
adapted to the specific requirements of the users. If
the readers perceive the generated sentences as too
short, the configuration of the aggregation component
can be adjusted accordingly. In case the readers face
understandability problems due to long sentences, the
aggregation can be turned off. Analogously, the seg-
mentation of the text using bullet points or paragraphs
can be adapted. In general, it is important to note
that the structural characteristics of the generated text
are configurable and, hence, not subject to notable
variations. In comparison to manually created texts,
this represents an important advantage. As illustrated
by the varying complexity among the texts of the
test sample, the complexity of manually created texts
is hard to predict. To guarantee for a stable level of
complexity among manually created texts, it would
be necessary to sufficiently train the text writers.

With respect to the semantic coverage, the evaluation
illustrates that the generated texts reliably cover all
activities of the model. As the purpose of textual
descriptions is to increase the model understanding,
this is an important feature. The evaluation showed
that the manual creation of texts might be associated
with a coverage below 100%. This may either originate
from unintentionally leaving out an activity due to the
complexity of the model or from the conscious decision
of a model writer to skip a certain step. Abstracting
from the particular reason, we may conclude that
the manual creation of a text is always subject to
incompleteness in terms of semantic coverage. Due
to the design of the algorithm, the generated texts
do not suffer from this problem. Besides the activity
coverage, we also learned that the generated sentences
are semantically much closer to the model. This applies

to content sentences as well as to meta sentences
describing the control flow. As the presented technique
builds on the information from the model, additional
context information is only provided by manually
created texts. Nevertheless, as context sentences are
much more general than sentences describing the
model, they are also not subject to frequent changes.
Hence, we consider the possibility of including humans
for complementing context sentences as a reasonable
approach. A manually complemented sentence could
easily be recognized by the technique and accordingly
included in the text in a future generation run.

Concerning the costs of creating or adapting textual
descriptions, it is apparent that the automatic genera-
tion is not associated with additional costs. Generated
texts can be created with a single click. In contrast, a
manual creation of a textual description is, depending
on the size of the model, associated with considerable
effort. The definition of requirements often involves
the creation and validation of various process models.
In a more general setting, large corporations maintain
collections with up to thousands of process models [28],
the manual creation does not appear to be a reasonable
solution. It is also important to note that process
models are typically subject to changes. Hence, the
describing texts must be adapted accordingly. While
the generated texts can be updated by repeating the
generation run, the manual adaptation might be a
cumbersome task. Especially, if the changes in the
model are not well documented, the user must first
identify the delta between model and text in order to
subsequently update the text.

In conclusion, we can state that the introduced
technique generates texts that are, in many regards,
close to those created by humans. The generated
texts are, however, more stable than the manually
created ones. Important characteristics such as sentence
complexity, text size, and also the full coverage of all
process model nodes in the text are a direct result
of the algorithm design and not subject to variation.
While the manual creation of texts might be associated
with considerable effort, the automatic generation
is accomplished with a single click in a reasonable
time. In view of these facts, the presented technique
appears to be well suited for supporting process model
validation with generated natural language texts.

5.2 User Evaluation
The goal of the user evaluation is to demonstrate that
humans can successfully make sense of the generated
texts. Section 5.2.1 introduces the general setup of the
evaluation experiment. Then, Section 5.2.2 introduces
the test data set and the participants of the experiment.
Finally, Section 5.2.3 presents the results.

5.2.1 Setup
To demonstrate that the generated texts can be properly
understood by humans, we employ an instrument from

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JULY 2013 20

TABLE 7
Comparison of the Content Dimension of Original and Generated Texts

Original Texts Generated Texts
ID Source AC EC GC FC CS MS IS AC EC GC FC CS MS IS

1 HUB 97% 81 % 100% 100% 81% 4% 15% 100% 100% 100% 100% 84% 16% 0%
2 TUB 100% 91% 100% 100% 99% 0% 1% 100% 100% 100% 100% 87% 13% 0%
3 QUT 100% 100% 100% 100% 96% 0% 4% 100% 100% 100% 100% 95% 5% 0%
4 TUE 94% 100% 100% 100% 55% 3% 43% 100% 100% 100% 100% 92% 8% 0%
5 VT 100% 100% 100% 100% 94% 0% 6% 100% 100% 100% 100% 88% 12% 0%
6 IAG 100% 100% 100% 100% 91% 0% 14% 100% 100% 100% 100% 90% 10% 0%
7 BPMP 100% 100% 100% 100% 100% 0% 0% 100% 100% 100% 100% 88% 13% 0%
8 PHB 100% 100% 100% 100% 89% 0% 11% 100% 100% 100% 100% 100% 0% 0%
9 MRG 98% 91% 100% 100% 94% 1% 5% 100% 100% 100% 100% 85% 15% 0%
10 FNA 100% 100% 100% 100% 100% 0% 0% 100% 100% 100% 100% 77% 23% 0%

Total 99% 96% 100% 100% 91% 1% 8% 100% 100% 100% 100% 85% 15% 0%

Legend: AC = Activity Coverage, EC = Event Coverage, GC = Gateway Coverage, FC = Sequence Flow Coverage, CS = Content
Sentences, MS = Meta Sentences, IS = Information Sentences

social science which is referred to as back translation
[105], [106]. Back translation is typically used in the
context of cross-cultural research when, for instance,
questionnaires need to be distributed in multiple
languages. To make sure that the original and the
translated version are semantically equivalent, the
translated version is blindly converted back into the
original language. Amongst others, this procedure
enables to identify information loss and to detect
unclear concepts. Since the introduced text generation
technique can be considered as a translation from a
process model to a natural language text, we adopt the
instrument of back translation to our context. Assum-
ing that the text generation produces an equivalent
and well understandable natural language text, the
back translation by humans should yield the original
process model.

5.2.2 Test Data and Participants
For the back translation experiment, we selected 12
process models from the test collection introduced in
Section 5.1.2. We subdivided the models into four sets,
each consisting of three models. Table 8 summarizes
the main characteristics of the four model sets and the
comprised models. It shows that we selected models
with challenging characteristics and structures, i.e.,
large models, models containing rigids or subprocesses,
and models with a variety of different symbols. In this
way, we aim at maximizing the external validity of
the evaluation experiment.

As participants, we recruited 11 graduate and PhD
students from the Humboldt University Berlin, Techni-
cal University of Berlin, Hasso-Plattner-Institute, and
WU Vienna. Main criterion for participation was a
solid knowledge of BPMN. Nevertheless, to increase
the heterogeneity of the group, we also made sure
that the recruited students differed with respect to
the final grade they received for their bachelor or
master studies. For the experiment, we randomly

TABLE 8
Characteristics of the Back Translation Model Sets

Set MID A E G R SP F P L NS

1
1 26 23 10 0 0 59 4 4 10
2 8 4 7 1 0 22 1 1 5
3 9 2 8 0 0 22 1 3 5

2
4 19 20 11 0 1 52 3 3 9
5 10 9 9 1 0 31 1 5 8
6 8 11 4 0 1 22 2 2 9

3
7 17 6 4 0 0 26 1 6 6
8 8 10 7 0 2 25 1 1 8
9 12 2 9 0 0 28 1 4 6

4
10 18 4 8 0 0 33 1 5 6
11 7 9 1 0 0 16 1 1 7
12 6 10 3 0 2 17 1 2 10

Legend: MID = Model ID, A = Activities, E = Events, G
= Gateways, R = Rigids, SP = Subprocesses, F = Sequence
Flows, P = Pools, L = Lanes, NS = Number of different
Symbols

assigned each participant to one of the four model
sets and asked the participants to transform the three
comprised texts into BPMN process models using the
Signavio editor. The participants did not receive further
instructions about the texts. They were only asked
to stick to the original order of the texts and to not
include additional aspects that were not mentioned by
the texts. The participants were allowed to spend as
much time on the translation task as they needed. We,
however, made sure that they did not use any external
knowledge sources for solving the task.

5.2.3 Back Translation Results

As a result from the user evaluation, we received 33
back translated BPMN process models. By manually
comparing these models with their corresponding
originals, we classified each process model aspect
described by the text as properly translated or as

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JULY 2013 21

0	 5	 10	 15	 20	

Missing	
Element	

Wrong	
Element	

Wrong	
Syntax	

Wrong	
Seman7cs	

Number	 of	
Errors	

Error	 Class	

Fig. 8. Error Classes from Back Translation

erroneously translated. Table 9 gives an overview of
the results by showing the share of aspects that have
been properly translated.

In general, the results illustrate that the participants
understood and interpreted the generated texts very
well. From the 33 back translated process models,
in total 22 models perfectly matched their original.
Even the lowest obtained score of 83% still indicates
that the text was well understood and that only
details were erroneously translated. The fact that 3
out of 4 participants also understood the verbal rigid
description highlights that the generated texts can also
successfully describe complex process model behavior.
However, a detailed consideration of the results also
shows that a number of mistakes were made and that
especially missing and wrong elements are the main
reason for a non-perfect translation.

To get a better understanding of the back trans-
lation mistakes, consider the bar chart in Figure
8. It summarizes the different error classes of the
back translation experiment and their frequency. The
frequency of the error classes shows that the majority
of the back translation mistakes stems from missing
elements. Particularly in big models (e.g., see results
for models 1 and 4 in Table 9), the participants left out
activities and events. Although we cannot claim that all
these cases were unintended, the general results from
these participants strongly indicate that these mistakes
did not result from a misunderstanding, but rather
happened through an oversight. A similar observation
can be made for errors that resulted from wrong symbols
and syntax errors. Cases of wrong symbol use can
be traced back to the confusion of the send and the
receive message event and to the confusion of different
gateway types. Syntax errors mainly occurred when
sequence flows were missing. Again, both error types
are more likely to be a result of a lack of skill with
respect to BPMN than of a serious misunderstanding
of the text. Nevertheless, we also observed mistakes
that doubtlessly resulted from misinterpretations of
the text. Such semantic errors were mainly caused by
the rigid in process model 2. While this represents
a weakness of the generated text, it also has to be

noted that the participants were only provided with the
text in isolation. The actual intention of the generated
text is to represent a complementary artifact. Hence,
we expect that the combination of model and text is
reducing the ambiguity of the textual description such
that the description is also helpful for understanding
complex model semantics. Against the background that
participant 1 and 2 understood the rigid description
correctly, we are confident that this is actually the case.

Altogether, we can say that the back translation
experiment indicated that the generated texts are
understandable and successfully allow the reader to
comprehend the semantics of the original process mod-
els. An analysis of the error sources revealed that also
oversight and a lack of BPMN knowledge may have
contributed to the share of erroneously transformed
aspects and that only a small number of errors can be
doubtlessly traced back to misinterpretations.

While these results are very promising, we also
have to point out that there are a number of aspects
potentially reducing the validity of the back translation
experiment. The external validity is affected by two
main factors. First, the group of participants was
relatively small and only consisted of students. Hence,
we cannot claim that our findings are representative.
However, the consistently high performance among
all 33 models makes us confident that the findings of
our study are not a coincidence. Other studies have
also found that students represent good proxies for
young industry professionals [107]. Still, the benefit of
the generated texts for industry users still needs to be
investigated in future experiments. The second factor
affecting the external validity is the familiarity of the
participants with the domain of process modeling. Due
to their process modeling knowledge, the participants
already had some idea of what to expect from a text
describing a business process and were used to terms
such as ”parallel branch” or ”region”. Nevertheless, it
has to be noted that the actual use case of the generated
texts is less complex. Users would not be required to
use a generated text for creating a process model but
for developing an understanding of an existing model.
In case novices struggle with understanding terms
from the process modeling domain, the presented
technique offers the possibility to adapt these terms
without editing the source code. From the perspec-
tive of construct validity, it must be noted that the
experiment did not demonstrate that generated texts
help to improve the understanding of process models.
We showed that participants could successfully make
sense of the generated texts and were able to create a
corresponding process model. While we believe that
these two aspects are highly correlated, further studies
are needed to prove this effect. For the conclusion
validity, we want to highlight that our results do not
allow to conclude about the statistical power. However,
our results credibly show that the generated texts did
not contain systematic weaknesses that prevented the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JULY 2013 22

TABLE 9
Share of Correctly Back-Translated Process Model Elements

Set PID MID A E G R SP F P L Total

1

1
1 96% 91% 100% n.a. n.a. 100% 100% 100% 98%
2 100% 100% 100% 100% n.a. 100% 100% 100% 100%
3 100% 100% 100% n.a. n.a. 100% 100% 100% 100%

2
1 100% 91% 80% n.a. n.a. 100% 100% 100% 97%
2 100% 100% 100% 100% n.a. 100% 100% 100% 100%
3 100% 100% 100% n.a. n.a. 100% 100% 100% 100%

3
1 96% 91% 100% n.a. n.a. 100% 100% 100% 98%
2 100% 100% 86% 0% n.a. 91% 100% 100% 91%
3 100% 100% 100% n.a. n.a. 100% 100% 100% 100%

2

4
4 100% 100% 100% n.a. 100% 100% 100% 100% 100%
5 100% 100% 100% 100% n.a. 100% 100% 100% 100%
6 100% 100% 100% n.a. 100% 100% 100% 100% 100%

5
4 95% 95% 100% n.a. 100% 92% 100% 100% 94%
5 90% 89% 78% 100% n.a. 100% 100% 100% 95%
6 88% 109% 75% n.a. 100% 100% 100% 100% 98%

3

6
7 100% 100% 100% n.a. n.a. 100% 100% 100% 100%
8 100% 100% 100% n.a. 100% 100% 100% 100% 100%
9 100% 100% 100% n.a. n.a. 100% 100% 100% 100%

7
7 100% 100% 100% n.a. 100% 100% 100% 100% 100%
8 100% 100% 100% n.a. n.a. 100% 100% 100% 100%
9 100% 100% 100% n.a. n.a. 100% 100% 100% 100%

8
7 100% 80% 100% n.a. 100% 100% 100% 100% 96%
8 100% 100% 100% n.a. n.a. 100% 100% 100% 100%
9 100% 100% 100% n.a. n.a. 100% 100% 100% 100%

4

9
10 100% 75% 75% n.a. n.a. 100% 0% 0% 87%
11 100% 100% 100% n.a. n.a. 100% 100% 100% 100%
12 67% 80% 100% n.a. 50% 88% 100% 100% 83%

10
10 100% 100% 100% n.a. n.a. 100% 100% 100% 100%
11 100% 100% 100% n.a. n.a. 100% 100% 100% 100%
12 100% 100% 100% n.a. 100% 100% 100% 100% 100%

11
10 100% 100% 100% n.a. n.a. 100% 100% 100% 100%
11 100% 100% 100% n.a. n.a. 100% 100% 100% 100%
12 100% 100% 100% n.a. 50% 100% 100% 100% 98%

Legend: MID = Model ID, PID = Participant ID, A = Activities, E = Events, G = Gateways, R =
Rigids, SP = Subprocesses, F = Sequence Flows, P = Pools, L = Lanes, n.a. = not applicable

participants from successfully transforming them into
the corresponding process models.

6 ADAPTATION TO OTHER LANGUAGES
Although the general approach to text generation
technique is not language-specific, the adaptation to
languages other than English requires the replacement
of three resources: the parsing and annotation compo-
nent, the predefined DSynT templates, and the surface
realizer.

As the generation technique builds on the linguistic
information from the input process model, the replace-
ment of the parsing and annotation component is an
essential task. Without the proper inference of action,
business object, and addition, it is not possible to
generate a text using the proposed technique. However,
as the annotation technique from [46] can be effectively
adapted to other languages, this component can be
respectively exchanged.

In addition to the parsing and annotation compo-
nent, it is required to replace the predefined DSynT-
templates. As these templates significantly contribute
to the verbalization of events, bonds, and rigids, a
proper adaptation is an important prerequisite. As
an example, consider the fragment The process begins
when, which is used to communicate a start event. In
a German implementation of the generation technique
we use the fragment Der Prozess beginnt wenn and in
a Portuguese implementation we use the fragment
O processo começa quando. In total, we defined about
50 different fragments. However, the templates can
be translated with reasonable effort as they represent
short and rather simple text fragments. In addition, it
should be kept in mind that this represents a one time
effort.

As a last step, the surface realization component of
the generation approach needs to be replaced with a
component that is capable of realizing sentences of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JULY 2013 23

the target language. Hence, one option is to replace
the English realization component with an off-the-
shelf realizer of the target language. Although such
tools have been developed for various languages
including German [108], French [109], and Portuguese
[110], their availability is often restricted. The second
solution is to replace the English realizer with a self
developed solution. In general, the development of a
full-fledged realizer represents a tremendous effort that
requires profound linguistic knowledge. By contrast,
the development of a realizer for generating texts
from process models is significantly less complex. The
reason is given by the limited complexity of the gener-
ated sentences. As an example, consider the sentence
The Room-Service Manager checks the customer solvency,
which was generated from the activity Check customer
solvency and its associated role Room-Service Manager.
The generation of this sentence essentially requires the
conjugation of the verb, and the insertion of definite
articles for the role and the business object. Hence,
a realizer for the purpose of generating texts from
process models can be developed with manageable
effort.

In conclusion, it must be stated that the adaptation
of the text generation technique requires additional
implementation effort. However, if the discussed com-
ponents are available, the technique can be adapted
to many different languages. Considering the overall
benefits of the text generation, the associated effort for
the adaptation can be considered as reasonable. Once
the text generation technique is available, text can be
generated and updated with a single click.

7 CONCLUSION

In this paper, we addressed the problem of supporting
business process model validation through the gener-
ation of natural language texts from BPMN process
models. Building on a literature review on natural lan-
guage generation, we identified several challenges that
are associated with generating natural language from
process models. In order to adequately address these
aspects, we introduced a pipeline architecture with
six components. We used the parsing and annotation
technique from [46] and the Refined Process Structure
Tree [47], [48] to transform BPMN process models
into textual descriptions. The technical evaluation of
the technique using a set of 46 process models from
different sources demonstrated the applicability of
the presented technique for successfully generating
texts from process models. The comparison of the
generated and the manually created texts showed that
the generated texts convey the model semantics in
a more compact and also syntactically less complex
manner. Due to the design of the technique, the
generated texts are closer to the model and describe
the model content and control flow explicitly. The user
evaluation demonstrated that the generated texts are

very informative and can successfully be interpreted
by humans. Altogether, the evaluation demonstrated
that the presented technique is capable of generating
appropriate and understandable texts that fully explain
the model semantics. The fact that the generation is
accomplished within a few seconds and without any
manual effort, further emphasizes the usefulness of
the technique.

Based on our findings, we conclude that the text
generation technique presented in this paper has
the potential to facilitate the validation discourse
between domain experts and process analysts. First,
the generated texts support domain experts in under-
standing the details of process models even if they are
not familiar with process modeling. Second, the text
generation may also train domain experts in reading
and interpreting process models. As long as text and
model are presented together, readers can see and
learn about the connection between model and text.
Thus, their overall familiarity with process models can
be expected to increase in the long term.

In future work, we aim at investigating to what
extent industry participants can benefit from the gen-
erated texts. To this end, we plan to conduct a study in
the context of an industrial requirements engineering
project to empirically investigate the effect of the
generation technique on process model validation.
Furthermore, we plan to incorporate the technique into
a modeling tool. This will provide us with additional
opportunities to study the impact of the proposed
generation technique.

REFERENCES

[1] E. Cardoso, J. Almeida, and G. Guizzardi, “Requirements
engineering based on business process models: A case study,”
in Enterprise Distributed Object Computing Conference Workshops,
2009. EDOCW 2009. 13th, 2009, pp. 320–327.

[2] D. Damian and J. Chisan, “An empirical study of the complex
relationships between requirements engineering processes and
other processes that lead to payoffs in productivity, quality,
and risk management,” Software Engineering, IEEE Transactions
on, vol. 32, no. 7, pp. 433–453, 2006.

[3] S. Chakraborty, S. Sarker, and S. Sarker, “An exploration into
the process of requirements elicitation: A grounded approach,”
J. AIS, vol. 11, no. 4, 2010.

[4] G. Verheijen and J. V. Bekkum, “NIAM, an information anal-
ysis method,” in Proceedings of the Conference on Comparative
Review of Information System Methodologies. North-Holland,
1982.

[5] G. Nijssen and T. Halpin, Conceptual schema and relational
database design: a fact oriented approach. Prentice Hall, 1989.

[6] A. Gemino, “Empirical comparisons of animation and nar-
ration in requirements validation,” Requirements Engineering,
vol. 9, no. 3, pp. 153–168, 2004.

[7] H. Leopold, J. Mendling, and A. Polyvyanyy, “Generating
natural language texts from business process models,” in
Proceedings of the 24th International Conference on Advanced
Information Systems Engineering, 2012.

[8] F. Friedrich, “Automated generation of business process mod-
els from natural language input,” Master’s thesis, Humboldt
Universität zu Berlin, 2010.

[9] P. Frederiks and T. van der Weide, “Information modeling:
The process and the required competencies of its participants,”
Data & Knowledge Engineering, vol. 58, no. 1, pp. 4–20, 2006.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JULY 2013 24

[10] A. Davis, O. Dieste, A. Hickey, N. Juristo, and A. Moreno,
“Effectiveness of requirements elicitation techniques: Empirical
results derived from a systematic review,” in Requirements
Engineering, 14th IEEE International Conference, 2006, pp. 179–
188.

[11] L. Goldin and D. M. Berry, “Abstfinder, a prototype natural
language text abstraction finder for use in requirements
elicitation,” Automated Software Engineering, vol. 4, no. 4, pp.
375–412, 1997.

[12] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, “Automated
classification of non-functional requirements,” Requirements
Engineering, vol. 12, no. 2, pp. 103–120, 2007.

[13] D. Popescu, S. Rugaber, N. Medvidovic, and D. Berry,
“Reducing ambiguities in requirements specifications via
automatically created object-oriented models,” in Innovations
for Requirement Analysis. From Stakeholders’ Needs to Formal
Designs, ser. Lecture Notes in Computer Science, B. Paech and
C. Martell, Eds. Springer Berlin Heidelberg, 2008, vol. 5320,
pp. 103–124.

[14] J. Mendling, H. A. Reijers, and W. M. P. van der Aalst,
“Seven Process Modeling Guidelines (7PMG),” Information
and Software Technology, vol. 52, no. 2, pp. 127–136, 2010.

[15] R. Schuette and T. Rotthowe, “The guidelines of modeling -
an approach to enhance the quality in information models,”
in Proceedings of the 17th International Conference on Conceptual
Modeling. London, UK: Springer-Verlag, 1998, pp. 240–254.

[16] J. Krogstie, O. I. Lindland, and G. Sindre, “Defining quality
aspects for conceptual models,” in Proceedings of the interna-
tional working conference on Information system concepts: Towards
a consolidation of views. Chapman & Hall, Ltd., 1995, pp.
216–231.

[17] R. Davis and E. Brabänder, ARIS Design Platform: Getting
Started with BPM, 1st ed. Springer, 2007.

[18] W. M. P. van der Aalst, Business Process Management, ser. LNCS.
Springer, 2000, vol. 1806, ch. Workflow Verification: Finding
Control-Flow Errors Using Petri-Net-Based Techniques, pp.
161–183.

[19] D. Fahland, C. Favre, J. Koehler, N. Lohmann, H. Völzer,
and K. Wolf, “Analysis on Demand: Instantaneous Soundness
Checking of Industrial Business Process Models,” Data &
Knowledge Engineering, vol. 70, no. 5, pp. 448–466, 2011.

[20] J. Mendling, Metrics for Process Models: Empirical Foundations
of Verification, Error Prediction, and Guidelines for Correctness,
ser. LNBIP. Springer, 2008, vol. 6.

[21] S. Sun, J. Zhao, J. Nunamaker, and O. Liu Sheng, “Formulating
the Data-Flow Perspective for Business Process Management,”
Information Systems Research, vol. 17, no. 4, pp. 374–391, 2006.

[22] I. Weber, J. Hoffmann, and J. Mendling, “Beyond Soundness:
on the Verification of Semantic Business Process Models,”
Distributed and Parallel Databases, vol. 27, no. 3, pp. 271–343,
2010.

[23] N. Sidorova, C. Stahl, and N. Trcka, “Soundness Verification
for Conceptual Workflow Nets with Data: Early Detection of
Errors with the Most Precision Possible,” Information Systems,
vol. 36, no. 7, pp. 1026–1043, 2011.

[24] E. Bertino, E. Ferrari, and V. Atluri, “The Specification
and Enforcement of Authorization Constraints in Workflow
Management Systems,” ACM Transactions on Information and
System Security, vol. 2, no. 1, pp. 65–104, February 1999.

[25] J. Crampton and H. Khambhammettu, “Delegation and
Satisfiability in Workflow Systems,” in SACMAT 2008. New
York, NY, USA: ACM, 2008, pp. 31–40.

[26] M. Strembeck and J. Mendling, “Modeling Process-related
RBAC Models with Extended UML Activity Models,” Infor-
mation and Software Technology, vol. 53, no. 5, pp. 456–483,
2011.

[27] M. Dumas, M. Rosa, J. Mendling, and H. Reijers, Fundamentals
of Business Process Management. Springer, 2013.

[28] M. Rosemann, “Potential Pitfalls of Process Modeling: Part
A,” Business Process Management Journal, vol. 12, no. 2, pp.
249–254, 2006.

[29] O. Lindland and J. Krogstie, “Validating conceptual models
by transformational prototyping,” in Advanced Information
Systems Engineering, ser. Lecture Notes in Computer Science,
C. Rolland, F. Bodart, and C. Cauvet, Eds. Springer Berlin
Heidelberg, 1993, vol. 685, pp. 165–183.

[30] P. Loucopoulos, B. Theodoulidis, and D. Pantazis., “Business
rules modelling: Conceptual modelling and object oriented
specifications,” in Proceedings of the IFIP TC8/WG8.1 Working
Conference, 1991, pp. 323–342.

[31] G. De Caso, V. Braberman, D. Garbervetsky, and S. Uchitel,
“Automated abstractions for contract validation,” Software
Engineering, IEEE Transactions on, vol. 38, no. 1, pp. 141–162,
2012.

[32] T. D. Breaux, A. I. Antón, and J. Doyle, “Semantic parameter-
ization: A process for modeling domain descriptions,” ACM
Trans. Softw. Eng. Methodol., vol. 18, no. 2, pp. 5:1–5:27, 2008.

[33] A. Sutcliffe, N. A. M. Maiden, S. Minocha, and D. Manuel,
“Supporting scenario-based requirements engineering,” Soft-
ware Engineering, IEEE Transactions on, vol. 24, no. 12, pp.
1072–1088, 1998.

[34] P. Heymans and E. Dubois, “Scenario-based techniques for
supporting the elaboration and the validation of formal
requirements,” Requirements Engineering, vol. 3, no. 3-4, pp.
202–218, 1998.

[35] V. Lalioti and P. Loucopoulos, “Visualisation for validation,”
in Advanced Information Systems Engineering, ser. Lecture Notes
in Computer Science, C. Rolland, F. Bodart, and C. Cauvet,
Eds. Springer Berlin Heidelberg, 1993, vol. 685, pp. 143–164.

[36] A. Mashkoor and A. Matoussi, “Towards validation of require-
ments models,” in Abstract State Machines, Alloy, B and Z, ser.
Lecture Notes in Computer Science, M. Frappier, U. Glässer,
S. Khurshid, R. Laleau, and S. Reeves, Eds. Springer Berlin
Heidelberg, 2010, vol. 5977, pp. 404–404.

[37] L. Kof, R. Gacitua, M. Rouncefield, and P. Sawyer, “Ontology
and model alignment as a means for requirements validation,”
in Semantic Computing (ICSC), 2010 IEEE Fourth International
Conference on, 2010, pp. 46–51.

[38] D. Costal, E. Teniente, T. Urpı́, and C. Farré, “Handling concep-
tual model validation by planning,” in Advanced Information
Systems Engineering, ser. Lecture Notes in Computer Science,
P. Constantopoulos, J. Mylopoulos, and Y. Vassiliou, Eds.
Springer Berlin Heidelberg, 1996, vol. 1080, pp. 255–271.

[39] A. Queralt and E. Teniente, “Verification and validation of
uml conceptual schemas with ocl constraints,” ACM Trans.
Softw. Eng. Methodol., vol. 21, no. 2, pp. 13:1–13:41, 2012.

[40] A. Egyed, “Automatically detecting and tracking inconsisten-
cies in software design models,” Software Engineering, IEEE
Transactions on, vol. 37, no. 2, pp. 188–204, 2011.

[41] F. Meziane, N. Athanasakis, and S. Ananiadou, “Generating
natural language specifications from uml class diagrams,”
Requirements Engineering, vol. 13, pp. 1–18, 2008.

[42] B. Lavoie, O. Rambow, and E. Reiter, “The modelexplainer,” in
Proceedings of the 8th international workshop on natural language
generation, 1996, pp. 9–12.

[43] H. Dalianis, “A method for validating a conceptual model
by natural language discourse generation,” in Proceedings of
the 4th international conference on Advanced Information Systems
Engineering, 1992, pp. 425–444.

[44] S. Malik and I. S. Bajwa, “Back to origin: Transformation of
business process models to business rules,” in Business Process
Management Workshops. Springer, 2013, pp. 611–622.

[45] A. Coşkunçay, “An approach for generating natural lanaguage
specifications by utilizing business process models,” Master’s
thesis, The Middle East Technical University, 2010.

[46] H. Leopold, S. Smirnov, and J. Mendling, “On the refactoring
of activity labels in business process models,” Information
Systems, vol. 37, no. 5, pp. 443–459, 2012.

[47] J. Vanhatalo, H. Völzer, and J. Koehler, “The refined process
structure tree,” Data & Knowledge Engineering, vol. 68, no. 9,
pp. 793 – 818, 2009.

[48] A. Polyvyanyy, J. Vanhatalo, and H. Völzer, “Simplified com-
putation and generalization of the refined process structure
tree,” in Web Services and Formal Methods, ser. LNCS. Springer,
2011, vol. 6551, pp. 25–41.

[49] O. Heinonen, “Optimal multi-paragraph text segmentation
by dynamic programming,” in Proceedings of the 36th Annual
Meeting of the Association for Computational Linguistics and 17th
International Conference on Computational Linguistics - Volume
2, ser. ACL ’98. Stroudsburg, PA, USA: Association for
Computational Linguistics, 1998, pp. 1484–1486.

[50] M. W. Meteer, Expressibility and the Problem of Efficient Text
Planning. New York, NY, USA: St. Martin’s Press, Inc., 1992.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JULY 2013 25

[51] M. Meteer, “Bridging the generation gap between text plan-
ning and linguistic realization,” Computational Intelligence,
vol. 7, no. 4, pp. 296–304, 1991.

[52] S. Bangalore and O. Rambow, “Corpus-based lexical choice in
natural language generation,” in Proceedings of the 38th Annual
Meeting on Association for Computational Linguistics, ser. ACL
’00. Stroudsburg, PA, USA: Association for Computational
Linguistics, 2000, pp. 464–471.

[53] M. Stede, “Lexical choice criteria in language generation,” in
Proceedings of the 6th conference on European chapter of the Associ-
ation for Computational Linguistics, ser. EACL ’93. Stroudsburg,
PA, USA: Association for Computational Linguistics, 1993, pp.
454–459.

[54] ——, “Lexicalization in natural language generation: A sur-
vey,” Artificial Intelligence Review, vol. 8, pp. 309–336, 1994.

[55] E. H. Hovy, “Aggregation in natural language generation,” in
Proceedings of the 4th European Workshop on Natural Language
Generation, 1993, pp. 28–30.

[56] M. Reape and C. Mellish, “Just what is aggregation anyway?”
2010.

[57] H. Dalianis, “Aggregation in natural language generation,”
Computational Intelligence, vol. 15, no. 4, pp. 384–414, 1999.

[58] R. Kibble and R. Power, “An integrated framework for
text planning and pronominalisation,” in Natural language
generation. ACL, 2000, pp. 77–84.

[59] B. Lavoie and O. Rambow, “A fast and portable realizer for
text generation systems,” in Applied natural language processing.
ACL, 1997, pp. 265–268.

[60] S. Busemann, “Best-first surface realization,” 1996.
[61] M. Elhadad and J. Robin, “Surge: a comprehensive plug-in

syntactic realization component for text generation,” Tech.
Rep., 1998.

[62] S. W. Mcroy, S. Channarukul, and S. S. Ali, “Text realization
for dialog,” in Proceedings of the International Conference on
Intelligent Technologies, 2000.

[63] K. McKeown and D. R. Radev, “Generating summaries of
multiple news articles,” in Proceedings of the 18th annual
international ACM SIGIR conference on Research and development
in information retrieval, ser. SIGIR ’95. New York, NY, USA:
ACM, 1995, pp. 74–82.

[64] D. R. Radev and K. R. McKeown, “Generating natural
language summaries from multiple on-line sources,” Com-
putational Linguistics, vol. 24, no. 3, pp. 470–500, 1998.

[65] E. H. Hovy, “Pragmatics and natural language generation,”
Artificial Intelligence, vol. 43, pp. 153–197, May 1990.

[66] E. Goldberg, N. Driedger, and R. Kittredge, “Using natural-
language processing to produce weather forecasts,” IEEE
Expert, vol. 9, no. 2, pp. 45–53, 1994.

[67] J. A. Bateman, “Enabling technology for multilingual natural
language generation: the kpml development environment,”
Natural Language Engineering, vol. 3, no. 1, pp. 15–55, 1997.

[68] W. Wahlster, E. Andre, W. Finkler, H.-J. Profitlich, and T. Rist,
“Plan-based integration of natural language and graphics
generation,” Artificial Intelligence, vol. 63, pp. 387 – 427, 1993.

[69] M. Meteer, “Portable natural language generation using
spokesman,” in Proceedings of the 3rd conference on Applied
natural language processing, ser. ANLC ’92. Stroudsburg, PA,
USA: Association for Computational Linguistics, 1992, pp.
237–238.

[70] I. Mel’cuk and A. Polguère, “A formal lexicon in the meaning-
text theory (or how to do lexica with words),” Computational
Linguistics, vol. 13, no. 3-4, pp. 261–275, 1987.

[71] M. Kay., “Functional grammar,” in Proceedings of the 5th Annual
Meeting of the Berkeley Linguistic Society, 1979.

[72] G. Abrett, M. Burstein, and S. Deutsch, “Tarl: Tactical action
representation language, an environment for building goal
directed knowledge based simulations,” BBN, Tech. Rep. 7062,
1989.

[73] E. Reiter, “Nlg vs. templates,” in Proceedings of the 5th European
Workshop on Natural Language Generation, 1995, pp. 95–106.

[74] E. Reiter and R. Dale, “Building applied natural language
generation systems,” Natural Language Engineering, vol. 3, pp.
57–87, 1997.

[75] Object Management Group, Business Process Model and Notation
(BPMN), 2011.

[76] T. Allweyer, BPMN 2.0 - Business Process Model and Notation,
2nd ed. Norderstedt: Books on De-mand GMBH, 2009.

[77] R. M. Dijkman, M. Dumas, and C. Ouyang, “Formal semantics
and analysis of bpmn process models using petri nets,”
Queensland University of Technology, Tech. Rep., 2007.

[78] A. Polyvyanyy, L. Garcı́a-Bañuelos, and M. Dumas, “Struc-
turing acyclic process models,” Information Systems, vol. 37,
no. 6, pp. 518 – 538, 2012.

[79] M. A. Hearst, “Multi-paragraph segmentation of expository
text,” in Proceedings of the 32nd annual meeting on Association
for Computational Linguistics, ser. ACL ’94. Stroudsburg, PA,
USA: Association for Computational Linguistics, 1994, pp.
9–16.

[80] ——, “Texttiling: segmenting text into multi-paragraph
subtopic passages,” Computational Linguistics, vol. 23, no. 1,
pp. 33–64, 1997.

[81] J. Morris and G. Hirst, “Lexical cohesion computed by
thesaural relations as an indicator of the structure of text,”
Computational Linguistics, vol. 17, no. 1, pp. 21–48, 1991.

[82] G. E. Hynes and J. B. Bexley, “Understandability of banks’
annual reports,” in Proceedings of the 69th Association for
Business Communication Annual Convention, 2003.

[83] S. Kahane, “What is a natural language and how to describe
it? meaning-text approaches in contrast with generative
approaches,” in Proceedings of the 2nd International Conference
on Computational Linguistics and Intelligent Text Processing.
Springer Verlag, 2001, pp. 1–17.

[84] U. Goltz and W. Reisig, “The non-sequential behaviour of
petri nets,” Information and Control, vol. 57, no. 2-3, pp. 125 –
147, 1983.

[85] I. Lomazova, “On occurrence net semantics for petri nets with
contacts,” in Fundamentals of Computation Theory, ser. LNCS,
B. Chlebus and L. Czaja, Eds. Springer Berlin Heidelberg,
1997, vol. 1279, pp. 317–328.

[86] G. Decker, R. M. Dijkman, M. Dumas, and L. Garcı́a-Bañuelos,
“Transforming bpmn diagrams into yawl nets,” in Proceedings
of the 6th International Conference on Business Process Manage-
ment, ser. BPM ’08. Berlin, Heidelberg: Springer-Verlag, 2008,
pp. 386–389.

[87] R. M. Dijkman, M. Dumas, and C. Ouyang, “Semantics and
analysis of business process models in bpmn,” Information and
Software Technology, vol. 50, no. 12, pp. 1281–1294, 2008.

[88] N. Lohmann, E. Verbeek, and R. Dijkman, “Petri net transfor-
mations for business processes – a survey,” in Transactions on
Petri Nets and Other Models of Concurrency II, ser. Lecture Notes
in Computer Science, K. Jensen and W. Aalst, Eds. Springer
Berlin Heidelberg, 2009, vol. 5460, pp. 46–63.

[89] M. Weidlich, A. Polyvyanyy, N. Desai, and J. Mendling,
“Process compliance measurement based on behavioural
profiles,” in Proceedings of the 22nd international conference on
Advanced information systems engineering, ser. CAiSE’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 499–514. [Online].
Available: http://dl.acm.org/citation.cfm?id=1883784.1883833

[90] M. A. Just and P. A. Carpenter, “A capacity theory of
comprehension: individual differences in working memory.”
Psychological review, vol. 99, no. 1, pp. 122–149, Jan. 1992.

[91] K. Rayner and A. Pollatsek, The Psychology of Reading, ser.
Prentice-Hall international editions. Prentice-Hall, 1989.

[92] X. Lu, “Automatic analysis of syntactic complexity in second
language writing,” International Journal of Corpus Linguistics,
vol. 15, no. 4, pp. 474–496, 2010.

[93] E. Page, “The imminence of grading essays by computer,” The
Phi Delta Kappan, vol. 47, no. 5, pp. 238–243, 1966.

[94] E. B. Page, “Statistical and linguistic strategies in the com-
puter grading of essays,” in Proceedings of the conference on
Computational linguistics, ser. COLING ’67. Stroudsburg, PA,
USA: Association for Computational Linguistics, 1967, pp.
1–13.

[95] J. Burstein, “The e-rater scoring engine: Automated essay
scoring with natural language processing,” in Automated essay
scoring: A cross-disciplinary perspective, M. D. Shermis and
J. Burstein, Eds. Lawrence Erlbaum Associates, 2003, pp.
113–122.

[96] T. Landauer, D. Laham, and P. Foltz, “Automated scoring and
annotation of essays with the intelligent essay assessortm,” in
Automated Essay Scoring: A Cross-Disciplinary Perspective, M. D.
Shermis and J. Burstein, Eds. Lawrence Erlbaum, 2003.

[97] Y. Attali, J. Burstein, Y. Attali, J. Burstein, M. Russell, D. T.
Hoffmann, Y. Attali, and J. Burstein, “The automated essay

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JULY 2013 26

scoring with e-rater v.2,” Journal of Technology, Learning, and
Assessment, 2006.

[98] K. W. Hunt, “Do sentences in the second language grow like
those in the first?” TESOL Quarterly, vol. 4, pp. 195–202, 1970.

[99] C. P. Casanave, “Language development in students’ journals,”
Journal of Second Language Writing, vol. 3, no. 3, pp. 179 – 201,
1994.

[100] O. Holschke, “Impact of granularity on adjustment behavior
in adaptive reuse of business process models,” in Proceedings
of the 8th international conference on Business process management,
ser. BPM’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp.
112–127.

[101] ——, “Granularität als kognitiver Faktor in der adaptiven
Wiederverwendung von Geschäftsprozessmodellen,” Ph.D.
dissertation, Technische Universität Berlin, 2010.

[102] H. A. Reijers, S. Limam, and W. M. P. van der Aalst, “Product-
based workflow design,” Journal of Management Information
Systems, vol. 20, no. 1, pp. 229–262, 2003.

[103] J. Freund and B. Rücker, Praxishandbuch BPMN 2.0, 3rd ed.
Carl Hanser Verlag GmbH & CO. KG, 2012.

[104] S. White and D. Miers, BPMN Modeling and Reference Guide:
Understanding and Using BPMN. Future Strategies Incorpo-
rated, 2008.

[105] R. W. Brislin, Field methods in cross-cultural research. Sage, 1986,
ch. The Wording and Translation of Research Instruments.

[106] D. W. Chapman and J. F. Carter, “Translation procedures
for the cross cultural use of measurement instruments,”
Educational Evaluation and Policy Analysis, vol. 1, no. 3, pp.
71–76, 1979.

[107] E. Arisholm and D. I. Sjoberg, “Evaluating the effect of a
delegated versus centralized control style on the maintain-
ability of object-oriented software,” Software Engineering, IEEE
Transactions on, vol. 30, no. 8, pp. 521–534, 2004.

[108] S. Corston-Oliver, M. Gamon, E. Ringger, and R. Moore, “An
overview of amalgam: A machine-learned generation module,”
in Proceedings of the International Natural Language Generation
Conference, 2002, pp. 33–40.

[109] M. Smets, M. Gamon, S. Corston-Oliver, and E. Ringger, “The
adaptation of a machine-learned sentence realization system
to french,” in Proceedings of the 10th conference on European
chapter of the Association for Computational Linguistics, ser. EACL
’03. Stroudsburg, PA, USA: Association for Computational
Linguistics, 2003, pp. 323–330.

[110] E. M. de Novais, T. D. Tadeu, and I. Paraboni, “Text generation
for brazilian portuguese: the surface realization task,” in
Proceedings of the Workshop on Computational Approaches to
Languages of the Americas, ser. YIWCALA ’10. Stroudsburg,
PA, USA: Association for Computational Linguistics, 2010, pp.
125–131.

Henrik Leopold Dr. Henrik Leopold is an
assistant professor with the Institute for Infor-
mation Business at WU Vienna, Austria. He
received a PhD degree (Dr. rer. pol.) as well
as a master degree in information systems
from the Humboldt University Berlin and a
bachelor degree in information systems from
the Berlin School of Economics. Before his
graduation he worked for several departments
of the pharmaceutical division of Bayer in
Germany and the USA. In July 2013, he

completed his doctoral thesis on Natural Language in Business
Process Models. His current research interests include business
process management and modelling, natural language processing,
and process architectures. The results of his research have been pub-
lished, among others, in Decision Support Systems and Information
Systems.

Jan Mendling Dr. Jan Mendling is a Full
Professor with the Institute for Information
Business at WU Vienna, Austria. His research
areas include Business Process Manage-
ment, Conceptual Modelling and Enterprise
Systems. He has published more than 200
research papers and articles, among others
in ACM Transactions on Software Engineering
and Methodology, IEEE Transaction on Soft-
ware Engineering, Information Systems, and
Decision Support Systems. He is member of

the editorial board of four international journals, organizer of several
academic events on process management, and member of the IEEE
Task Force on Process Mining.

Artem Polyvyanyy Dr. Artem Polyvyanyy is
a research fellow at the Business Process
Management Discipline, Information Systems
School, Science & Engineering Faculty, of the
Queensland University of Technology, Bris-
bane, Australia. He has strong background
in Computer Science, Software Engineering,
and Business Process Management from the
National University of Kyiv-Mohyla Academy,
Kyiv, Ukraine, and the Hasso Plattner Insti-
tute, Potsdam, Germany. In March 2012, he

received a Ph.D. degree (Dr. rer. nat.) in the scientific discipline of
Practical Computer Science from the University of Potsdam, Germany.
His research and teaching interests include Distributed and Parallel
Systems, Automata Theory, Formal Analysis, Information Systems,
Software Engineering, and Workflow Management. He has published
more than 30 scientific works on these topics in academic book
chapters, journal articles, and conference papers.

