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Abstract

In this paper, a novel data-driven approach to monitoring of systems operating un-

der variable operating conditions is described. The method is based on characterizing the

degradation process via a set of operation-specific hidden Markov models (HMMs), whose

hidden states represent the unobservable degradation states of the monitored system while

its observable symbols represent the sensor readings. Using the HMM framework, modeling,

identification and monitoring methods are detailed that allow one to identify a HMM of

degradation for each operation from mixed-operation data and perform operation-specific

monitoring of the system. Using a large data set provided by a major manufacturer, the new

methods are applied to a semiconductor manufacturing process running multiple operations

in a production environment.

1 Introduction

In 1981, maintenance costs in the United States were estimated at 600 billion dollars, a figure

doubled in the subsequent 20 years, with an estimated one-third of these costs wasted through

ineffective maintenance [1]. Such staggering losses illustrate the importance of research in the

maintenance of today’s complex machinery and have motivated the exploration of condition-

based maintenance (CBM), where the machine’s condition information is inferred from the

sensor readings that are considered to be indicative of machine health (vibrations, forces, voltage

signals, etc.). Based on such condition information, cost-effective maintenance actions can be

planned [2].
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One of the main challenges in CBM is the quantitative description of the relationship between

the equipment condition and the sensor readings. In a great majority of the relevant literature,

the condition of the monitored system is related to sensor readings, such as accelerations,

acoustic signals, forces and torques, via various signal processing and feature extraction methods

[1]. Implicit in such work is an assumption that the sensor features themselves are direct

indications of the state of health.

However, in highly complex engineering systems, such as semiconductor manufacturing

equipment, automotive engines or other systems of interacting dynamic subsystems, it is not

possible to firmly relate the machine condition with the available sensor readings. In such cases,

either there are not enough sensor readings to establish a firm (deterministic) connection be-

tween the two, or the number of phenomena that influence the system condition is too large,

making the relation between the sensor readings and the condition of the monitored system

intractable. In such cases, one must acknowledge that the machine condition is an abstract

entity that cannot be directly observed, but instead needs to be inferred from the available

sensor readings. This inference must be made based on a stochastic relation that exists between

the sensor readings the machine condition.

In the last two decades, hidden Markov models (HMMs) have been an important tool for

modeling in CBM. Typically, HMMs are used in condition monitoring applications as non-

stationary time series models of degradation indicators. Monitoring of the machine then consists

of computing the likelihoods of new signals given these signal models. These likelihoods can

then be employed to diagnose historical wear patterns directly [3, 4] or to detect deviations

from the good-as-new tool [5]. Other examples of this classification-like approach can be found

in Li et al. [6] and Purushotham et al.[7]. In contrast to such approaches, other HMM-based

condition monitoring applications interpret the hidden state as an abstraction of the tool wear,

taking the final state as the unacceptable “worn” state. Analysis of the hidden state can then be

used for diagnosis and prediction of tool health [8, 9, 10]. Applications of HMM-based condition

monitoring are most plentiful in rotating machinery [3, 4, 11], but have also found their way into

monitoring of more complex systems, such as gear boxes [12], hydraulic pumps [13], antenna

arrays [14] and even detection of terrorist networks [15].

Despite these successes, significant challenges remain for HMM-based modeling of degrada-

tion processes. One such challenge is accounting for operating regime dependent degradation

dynamics [1]. Machines often operate in different regimes that result from variations in control
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signals or environment. The dynamics with which equipment condition degrades can also vary

with these operating regimes. Often there is a physical reason to expect different degradation

dynamics and examples are plentiful. Varying loads on a bearing, different working materials

for a drilling operation and highway vs. city driving for an automobile are but a few examples.

Utilizing a degradation model that does not account for the effects of different usage patterns

can result in overly-conservative diagnosis, missed detections and poor degradation prediction.

The modeling of such regime-dependent degradation is one of the major challenges in CBM

today [1]

In the HMM framework, operating condition variations are often handled by training an

“average” model using data from various operating regimes of the monitored system, as was

done in Ocak and Loparo [3]. Another approach was proposed by Bunks et al. [12], where

the HMM states are combinations of the condition and the current operating regime. The

authors showed how the vibrational signatures of a helicopter gear box varied under different

torques, but that these changes could be distinguished from a set of faults. This classification

was done using only the output densities and methods for estimating the state dynamics were

not considered.

In this paper, a new scheme is proposed that tackles the problem of describing equipment

condition and modeling of the dependency of degradation dynamics on the operating regimes of

the monitored system. The new method models the degradation process through a collection of

operation-specific hidden Markov models (HMMs), where the equipment conditions are hidden

states. The framework extends HMM-based condition monitoring to machines with variable

operating conditions and details identification methods for operation-specific Markov degra-

dation models from operational data. Such models have been employed recently to conduct

maintenance and product planning, but identification of such models was left open [16, 17, 18].

Furthermore, this paper details the application of the new identification and condition moni-

toring methodologies to a semiconductor manufacturing process running in a real fab. Such an

application represents a significant increase in complexity from typical HMM applications in

rotating machinery.

The remainder of this paper is organized as follows. In Section 2, the HMM-based modeling

framework will be discussed and the identification methodology will be introduced. Section

3 will discuss the monitoring methodologies based on operation-specific HMMs. In Section 4

the operation-specific identification and monitoring methodologies are applied to a semicon-
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ductor manufacturing process using a large production data set. Finally, Section 5 will detail

conclusions of this work and avenues for future research.

2 Hidden Markov Model Based Degradation Modeling

The operation-specific HMM modeling paradigm is illustrated in Fig. 1. Instead of employing a

single large degradation model (as proposed by Bunks et al. [12]), a multiple model framework is

employed, where the degradation of the monitored system is assumed to depend on the particular

operation conducted on it. Each operation that the system conducts emits a set of observations

Time

Operation 1 Operation 2 Operation 1 Operation 3

Maintenance

Observations

Condition
(Hidden)

Observation
Model 1

Observation
Model 2

Observation
Model 1

Observation
Model 3

Dynamic Model 1 Dynamic Model 2 Dynamic Model 1 Dynamic Model 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

HMM 1 HMM 2 HMM 1 HMM 3

Figure 1: Generic modeling of degradation in an operation-dependent framework employed in
this paper. The tool condition is thought of as an unobservable dynamic process and the sensors
are modeled as observable emissions stochastically related to the unobservable process.

that are probabilistically related to the unobservable degradation state. After a number of

operations, a maintenance action may be taken, which moves the system to a fresher state.

Such an abstraction of the machine condition lends itself nicely to the HMM framework, with

operation-dependent dynamics and emissions probabilities (i.e. a distinct HMM for degradation

modeling in each operation).

In this paper, it is assumed that one has perfect knowledge of the operation regime at each

instant in time. This is often appropriate for manufacturing applications, where the operation

executed by the machine is known and available during training of the degradation models.

Facilitating the paradigm illustrated in Fig. 1 for applications in which operating regimes are
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not directly observable and have to be inferred from the available sensor readings is outside of

the scope of this paper and will be considered in the future.

While the paradigm of Fig. 1 is conceptually elegant, the problem of estimation of the model

parameters is complicated beyond what current HMM applications consider. The identification

of the HMM must now be done with multiple HMM dynamics, which means that the number of

parameters that must be estimated could be greatly increased. One also has the added constraint

of continuous degradation, meaning that the end state of one operation-specific HMM needs to

be the beginning state of the subsequent operation-specific HMM. This must be accounted for

in the parameter identification procedure when mixed-operation data is used, precluding the

application of well-known single HMM parameter identification methods.

In this section, the identification of operation-specific degradation HMMs will be addressed.

First, we will briefly review the basic mathematical concepts related to the HMMs, after which

new parameter identification algorithms will be discussed.

2.1 Hidden Markov Models

To enable the discussion of the work conducted in this paper, the HMM concept and some well-

known computational solutions related to it are briefly discussed here. Much of the discussion

in this section follows the seminal tutorial paper by Rabiner [19].

A HMM is a doubly-embedded, stochastic process that models the observation sequence as a

consequence of an underlying Markov Chain. The states of the Markov Chain emit observations

that can either be discrete or continuous in nature. For this paper, we limit ourselves to the

discrete observation case. For an N state, M observation HMM, the observation sequence up

to time T will be denoted as OT = (o1, o2, . . . , oT ) with ot ∈ {ν1, ν2, . . . , νM}, and the corre-

sponding state sequence will be denoted as QT = (q1, q2, . . . , qT ) where qt ∈ {s1, s2, . . . , sN},

t = 1, 2, 3, . . . , T . The underlying state sequence is assumed to evolve according to a Markov

process and the transition probabilities are represented in matrix form

A =


a11 . . . a1N
...

. . .
...

aN1 . . . aNN


where aij = P (qt = sj |qt−1 = si). For a HMM, these states are unobservable. Instead,

observations are emitted from each state according to the conditional probability distribution,
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bi(νj) = P (ot = νj |qt = si), which is represented as a matrix as well

B =


b1(ν1) . . . b1(νM )

...
. . .

...

bN (ν1) . . . bN (νM )

 . (1)

Clearly, The elements of A and B satisfy the constraints

N∑
j=1

aij = 1 (2)

M∑
j=1

bi(νj) = 1. (3)

Together with the initial state distribution, π ∈ Rn where πi = P (q1 = si) the HMM is usually

denoted as the triplet

λ = (A,B, π) .

The utilization of HMMs usually incorporates three common tasks:

1. Evaluation is the determination of the probability of an observation sequence given a

HMM, denoted P (O|λ). This problem is common in classification-type tasks, such as fault

diagnosis [3, 4], as well as speech and gesture recognition [20, 21]. An efficient procedure

for solving this problem exists and is based on partial sequence probabilities called the

forward variable

αi(t) = P (o1, o2, . . . , ot, qt = si|λ) (4)

and backward variable

βi(t) = P (ot+1, ot+2, . . . , oT |qt = si, λ) (5)

which can be used to efficiently compute the probability of the sequence OT using a

recursive algorithm.

2. Decoding is the determination of the most likely state sequence given the observation

sequence and a HMM. While there are many possible metrics for the most likely state

sequence, the most common is the probability of the entire sequence, P (QT |OT , λ). The

maximization of this metric results in the well-known Viterbi algorithm which is commonly
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utilized to compute the most likely hidden state sequence [22].

3. Learning is the determination of the HMM parameters that best explain a set of data.

This is commonly done by maximizing the probability of the sequence of observations i.e.

λ = argmax
λ̂

P (O|λ̂).

This is by far the most difficult task, with the risk of many local optima and over-fitting.

The algorithm used most often is the well-known Baum-Welch (BW) re-estimation, a

version of which appears in Rabiner [19]. However, a number of other solutions exist, such

as those based on maximum a posteriori estimation [23] or metaheuristics [24, 25, 26].

The aforementioned problems are well studied and documented in literature [19]. However, in

the framework proposed in this paper, the observation sequence is emitted by a set of HMMs

and the solutions to each of the above problems needs to be modified to account for the presence

of multiple HMM dynamics. These modifications are the subject of the next section.

2.2 Operating Regime-Specific HMMs

Let us first formally describe the framework of operating regime-specific HMMs that were

conceptually described in Fig. 1. The degradation state at time t ∈ {0, 1, 2, . . .} will be denoted

as

qt ∈ {s1, s2, . . . , sN}

with an initial distribution given by

π(0) = [Pr(q0 = s1),Pr(q0 = s2), . . . ,Pr(q0 = sN )] .

Let

r : N → {1, 2, . . . , R}

be a known function that describes the operating regime, r(t), at time t. Also, let ν
(ℓ)
j , j ∈

{1, 2, . . . ,Mℓ} denote the possible observation symbols for operation ℓ ∈ {1, 2, . . . , R}. Thus,

the observation ot satisfies

ot ∈
{
ν
(r(t))
1 , ν

(r(t))
2 , . . . , ν

(r(t))
Mr(t)

}
.
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In many monitoring situations, the set of observation symbols are the same for all operating

regimes, in which case one can use the more compact notation ν
(ℓ)
j = νj .

The regime-dependent HMM set will be defined as the structure

Λ = (π(0), A1, B1, A2, B2, . . . , AR, BR)

such that at any given time, t, the probability distribution of the states satisfies

π(t) = [Pr(qt = s1),Pr(qt = s2), . . . ,Pr(qt = sN )]

= π(0) ·

[
t−1∏
i=0

Ar(i)

]
. (6)

The probabilistic behavior of observable symbols ν
(ℓ)
j corresponding to operation ℓ ∈ {1, 2, . . . , R}

is described by the relevant emission probabilities

bi

(
ν
(ℓ)
j , ℓ

)
= Pr

(
ot = νℓj |qt = si

)
. (7)

which yields the emission matrix

Bℓ =


b1

(
ν
(ℓ)
1 , ℓ

)
. . . b1

(
ν
(ℓ)
M , ℓ

)
...

. . .
...

bN

(
ν
(ℓ)
1 , ℓ

)
. . . bN

(
ν
(ℓ)
M , ℓ

)
 . (8)

From Equation (6), which defines the dynamics of the probability distribution of hidden states,

it is evident that within periods of constant operating regimes, the state sequence exhibits

the Markov property. Furthermore, continuity of degradation is enforced since the probability

distribution of the hidden states at the end of operation ℓ = r(t−1) is the initial distribution of

hidden states for the subsequent operation, ℓ = r(t). Equation (7) defines the operating regime-

specific emission matrices that describe how the unobservable states are probabilistically related

to the observations.

2.2.1 Evaluation and Decoding for Multiple HMM Sequences

For the case where OT is emitted by multiple HMMs, the forward procedure typically used to

compute P (OT |λ) needs to be slightly modified. Given a common state space for all of the
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models and assumed knowledge of r(t), the forward variable is initialized as

αj(1) = πj(0) · bj(o1, r(1)) (9)

and recursively computed as

αj(t+ 1) =

(
N∑
i=1

a
(r(t))
ij

)
· bj(ot+1, r(t+ 1)) (10)

which is similar to the corresponding single HMM computation in [19], with the additional index

r(t) ∈ {1, 2, . . . , R}. Thus, P (O|Λ) =
∑n

j=1 αj(T ), as in the single HMM case.

The computation of the backward probability, β, and Viterbi variables are modified in

a similar manner, by simply replacing each term aij and bj(ot) with a
(r(t))
ij and bj(ot, r(t)),

respectively.

2.2.2 Modified Re-estimation Procedure for Multiple HMM Parameter Identifi-

cation

For the learning problem, the usual re-estimation formulae can be modified to account for the

multiple sub-HMMs in the training sequence as

â
(ℓ)
ij =

K∑
k=1

1

Pk

Tk∑
t=1

δℓ(t)α
k
i (t)a

(ℓ)
ij bj(o

k
t+1, ℓ)β

k
j (t+ 1)

K∑
k=1

1

Pk

Tk∑
t=1

δℓ(t)α
k
i (t)β

k
i (t)

(11)

where

δℓ(t) =

 1 if r(t) = ℓ

0 otherwise

ℓ ∈ {1, 2, . . . , R} is the sub-HMM index, K is the total number of training sequences, while Tk

and Pk = P (O(k)
T |Λ) are the end time and probability of the training sequence k, respectively.

Clearly, this estimation simplifies to the standard re-estimation equation when R = 1.

The equation for updating of the output probabilities, Bℓ, can be modified in a similar
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manner

b̂j(νm, ℓ) =

K∑
k=1

1

Pk

Tk∑
t=1

δℓ,m(t)αk
j (t)β

k
j (t)

K∑
k=1

1

Pk

Tk∑
t=1

δℓ(t)α
k
j (t)β

k
j (t)

(12)

where

δℓ,m(t) =

 1 if r(t) = ℓ and okt = νm

0 otherwise

Equations (10), (11) and (12) will be referred to as the modified Baum-Welch procedure in this

paper.

Using the above re-estimation formulae, the parameters of the HMM can be estimated

iteratively from an initial parameter set. However, the initial parameter selection can have a

large influence on the resulting model, since the Baum-Welch re-estimation can only find a local

optimum [19, 24, 25]. Methods for initializing the parameters of regime dependent HMMs will

be discussed in the subsequent section.

2.3 An Identification Procedure for Regime Specific HMMs Based on a Ge-

netic Algorithm

Most of the applications of HMMs so far have been of the classification-type, such as those

in speech recognition tasks, where they were first widely applied. In classification-type tasks,

training of a model that is close to the actual likelihood of the observation sequence is the

primary objective. In such cases, some a priori knowledge combined with a series of random

initializations is sufficient to produce an acceptable model.

However, this closeness in likelihood terms has been found to be relatively insensitive to

the state transition probabilities, aij [27], indicating that small changes in the log probability

can be the result of large changes in the estimation of aij . This, in turn, implies that getting

trapped in local minima can result in poor estimation of aij .

As was discussed in Section 1, it is anticipated that the resulting model could be utilized

in a maintenance decision making framework. Thus, it is desirable to closely pursue the model

parameters (particularly the state transition parameters) through avoiding local optima. Fur-

thermore, this local optima avoidance can lead to a more likely model, enhancing condition

monitoring by providing a model that is a more accurate representation of the real process.

While there is no guarantee of a global optimum, the use of a metaheuristic is a possible
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avenue for avoiding poor local optima. A variety of metaheuristic optimization methods have

been applied to HMM identification, including Genetic Algorithms (GAs) [24, 28], Tabu Search

(TS) [29] or a hybrid of metaheuristics and the Baum-Welch Algorithm [30, 25, 31, 32, 33].

However, these previous applications were identifying the model parameters from single HMM

training sequences, or were focused on speech recognition applications, where no active model

information was available and the primary objective was classification.

Hence, to the authors’ knowledge, there is no tool available for local optima avoidance

in the presence of operation-specific HMMs of the type proposed here. In light of this, a

novel metaheuristic procedure was developed for the data-driven identification of parameters of

regime-specific HMMs described in Section 2.2.

In the following, GA-based identification method will be detailed. A GA evolves populations

of candidate solutions by combining and modifying portions of so-called “chromosomes” repre-

senting candidate solutions in the previous generation of solutions. Solutions that are better at

optimizing the objective function are assigned higher fitness and are more likely to be selected

for crossover, which mimics the natural selection process seen in nature. Further details on the

basics of GAs can be found in [34, 35].

For training of regime-specific HMMs, each candidate solution is represented by the cor-

responding initial state probability distribution and the set of state transition and emission

matrices. Let Λ
(k)
1 ,Λ

(k)
2 , . . . ,Λ

(k)
P denote the kth generation of P candidate solutions. The

fitness of any candidate solution is taken to be the likelihood of the sequence, P (OT |Λ
(k)
p ).

The initial population of state transition matrices was created to give equal probability of

all allowable transitions. For the emissions matrices, a manual segmentation of the training

set was utilized to generate the initial population of emissions matrices. The segmentation was

performed as follows: Assuming that all N states are present in an observation sequence of

length T , the observation time series is divided into 1
N T length segments. Assuming qt = si

is constant for each segment, the observation probabilities for a given state can be estimated

simply as their relative frequency in each segment. Random perturbations of these initial

emission probabilities were then used to ensure a sufficiently diverse initial population.

From the current generation, k, the P/2 Λ
(k)
p candidate solutions with the highest fitness

values were passed to the k + 1 generation directly. In addition, the selected members were

used as parents for creation of the remaining P
2 members of the next generation via crossover.

The crossover operation was conducted as follows. Let Λ
(k)
p1 and Λ

(k)
p2 be two parents selected
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for crossover. The crossover operation is then

πnew(0) = απ(k)
p1 (0) + (1− α)π(k)

p2 (0) (13)

Anew,ℓ = αA
(k)
p1,ℓ

+ (1− α)A
(k)
p2,ℓ

(14)

Bnew,ℓ = αB
(k)
p1,ℓ

+ (1− α)B
(k)
p2,ℓ

(15)

with

α =
log
[
P
(
O|Λp2

)]
log
[
P
(
O|Λp1

)]
+ log

[
P
(
O|Λp2

)] , (16)

which is similar to the crossover operation in [24]. This chromosome crossover emphasizes the

genetic material of the parent with the higher fitness function (parent HMM with the higher

corresponding likelihood of the observation sequence). In addition, this crossover mechanism

ensures that the new πnew(0), Anew,ℓ and Bnew,ℓ satisfy the stochastic constraints.

After crossover, mutation was set to occur with a probability, pmutate. When mutation

occurs, the mutation operation was performed as follows

1. Randomly select a regime, ℓ, for which the parameters will be mutated.

2. Let a
(ℓ)
ij be the ith row and the jth column of the state transition matrix corresponding to

regime ℓ. Randomly generate a row index, i and two column indices j1 and j2 from the

non-zero elements in row i. Set a
(ℓ)
ij1

to a
(ℓ)
ij2

and a
(ℓ)
ij2

to a
(ℓ)
ij1

.

3. Repeat (2) for the emissions matrix.

4. Let πj(0) be the jth element of the initial state probability vector. Randomly generate

two indices j5 and j6. Set πj5(0) to πj6(0) and πj6(0) to πj5(0).

This training procedure is summarized in Fig. 2.3, with the parameter choices enclosed in

the dashed boxes. The computational cost of the algorithm can be understood in terms of the

number of BW iterations required, which dominate the computational intensity. For the GA,

the number of BW iterations is NBP + P
2 (k − 1)NB, where k is the number of generations at

training termination. This will likely be significantly higher than BW training alone (though

hopefully achieving a more likely parameter set). We will return to this issue when we present

an example of the parameter identification algorithm in Section 4.1.
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Finally, a note should be made on the selection of the parameters. In this work, no effort

was made to optimize the selection of these parameters, though there is a significant body of

literature devoted to the selection of GA parameters to enhance exploration capabilities and

accelerate the convergence (see [36, 37] for example). Instead of optimizing the input parameters,

we will investigate the sensitivity of the identification to the population size and number of BW

iterations in Section 4.1.

3 Machine Monitoring using Multiple Hidden Markov Models

Once the degradation model is identified, a number of methods can be utilized to monitor

the condition of the machine, including utilization of the probabilities of the newly arrived

observation sequences or utilization of the probabilities of the most degraded state of the HMM

(computed using the Viterbi procedure).

In literature, the most frequently utilized procedures for HMM-based monitoring employ the

likelihoods of observation sequences. In the classification-type approaches, a variety of HMMs

are trained on normal and faulty data and a test observation sequence is assigned to the class

whose HMM has the highest likelihood of emitting that sequence.

In the case that one has identified only a HMM of normal machine operation, λnormal,

one can compute P (O|λnormal) of subsequent observation sequences to provide a measure of

“closeness” to normal behavior. If the system follows the nominal HMM dynamics identified

from the training data, the log likelihood of the test observation sequence will linearly decrease

with the length of the sequence [38]. Brown et al. [38] use this property and report a HMM-

based monitoring strategy that accounts for different sequence lengths by monitoring differential

changes in the probabilities of the observations sequences. Effectively, this can be done by

looking at the slope of the log-likelihood trace of the observation sequences and interpreting

deviations from the nominal line as changes in the condition of the monitored machine. However,

in [38] the authors realize monitoring using only one HMM (one operating regime), whereas our

goal is monitoring in the presence of multiple HMMs (multiple operating regimes). In this case,

the slope of the log-likelihood line will depend on the underlying HMM (operating regime) and

each HMM slope must be examined independently.

To formulate a monitoring strategy, we will use knowledge of the current operation and

normalization of the operating regime dependent slope to facilitate monitoring in the presence
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2
Λ
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(k)
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p
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• Calculate πnew(0), Anew,ℓ and Bnew,ℓ with Eqs. (13)-(15).
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p+i,ℓ with Bnew,ℓ and π(k)(0) with πnew(0).

Mutate?

1. Randomly generate regime index,ℓ, to be mutated.
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indices j1 and j2

3. Set a
(ℓ)
ij1

to a
(ℓ)
ij2

and a
(ℓ)
ij2
to a

(ℓ)
ij1
.

4. Repeat (2) and (3) for the emissions matrix.

5. Randomly generate two indices j5 and j6.

6. Set πj5
(0) to πj6

(0) and πj6
(0) to πj5

(0).

i > P
2
?

k > kmax ?

Output Λ
(k)
p with the highest P (OT |Λ

(k)
p )

Maximum number of generations, kmax

Mutation probability, pmutate

k = 1

i = 1

Noi = i+ 1

Yes

No k = k + 1

Yes

No

Yes

Figure 2: Flowchart for GA training from an observation sequence emitted by multiple HMMs.
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of multiple operations. Normalization will be performed as follows. Let Ti denote the most

recent termination time of a particular operation such that r(t) = ℓ ∀t ∈
[
Ti−1, Ti

]
. The mean

slope of the log-likelihoods for that operation in the period
[
Ti−1, Ti

]
can be computed as

s
(ℓ)
Ti

=
1

Ti − Ti−1

Ti∑
t=Ti−1

(
log
[
P (Ot+1|Λℓ)

]
− log [P (Ot|Λℓ)]

)
(17)

and the normalized slope during that period of time can be defined as

kTi
,

s
(ℓ)
Ti

− µℓ

σℓ
(18)

where µℓ and σℓ are the mean and standard deviation of the slope for operation ℓ observed

within the training data set1. Nominally, these normalized slopes should be centered around

zero, with unit variance and their deviation from such behavior would signal an anomaly.

4 Results

In this section, the newly proposed methodology for the identification of the parameters of

multiple HMMs will be applied to a synthetic problem and compared with BW training alone.

In addition, the new HMM identification and monitoring algorithms will be applied to a data

set emitted by a Plasma-Enhanced Chemical Vapor Deposition (PECVD) tool operating in a

major semiconductor manufacturing facility.

4.1 A Case Study of the GA-based HMM Parameter Estimation Procedures

Using Synthetic Observation Sequences

The new procedure for identifying operating regime-specific HMMs was tested on a synthetically

generated set of 5000 sequences, each consisting of 10 individual observations. The synthetic

model consisted of two, four state, left-right HMMs with state transition matrices

A(1) =



0.8 0.2 0 0

0 0.7 0.3 0

0 0 0.81 0.19

0 0 0 1


A(2) =



0.90 0.10 0 0

0 0.76 0.24 0

0 0 0.51 0.49

0 0 0 1


.

1The training dataset is assumed to be representative of normal system behavior
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Each of the 5000 sequences was generated from the initial state distribution π(0) = [1, 0, 0, 0],

which was assumed known (thus it was not estimated using the identification procedures). The

number of observation symbols in the discrete observation alphabet, ot ∈ {ν1, ν2, . . . , νM}, was

varied from M = 5 to M = 30 to explore the effects of increasing the number of identified

parameters. Obviously, a larger number of observation symbols requires identification of a

larger number of emission probabilities. The emission probabilities for the synthetic models can

be seen in the appendix.

In the following, the GA procedure is compared with results obtained using the BW re-

estimation alone. Both the baseline BW procedure and the GA were initialized using the manual

segmentation procedure described in Section 2.3, which is one of many possible initialization

methods found in HMM literature [19, 39]. In the case of the GA, random perturbations from

this initialization were used to generate the initial population of candidate solutions.

In this paper, no effort is made to optimize the input parameters of the GA method. Instead,

two experiments were be conducted to explore the robustness of the optimization results to the

user-selected parameters. In Experiment 1, the effect of the population size, P is explored by

setting NB = 1 and varying P from 10 to 50. In Experiment 2, the effect of changing NB is

explored by fixing the population at P = 30 and varying NB from 1 to 5. In both experiments,

pmutate = 0.2 and kmax = 1000. For this example, an additional stopping criterion was used.

When the log likelihoods of the best model did not change for 20 generations, training was

terminated. Thus, kmax was not achieved since this condition was satisfied with less than 200

iterations in all instances.

Several metrics were used to evaluate the quality of identified model. One way of comparing

the solution quality is through the log likelihood of the training sequence for the identified

model. The final log-likelihoods were compared using the metric

∆ log[P (OT |Λ̂)] = log[P (OT |Λ̂)]− log[P (OT |Λ)] (19)

where Λ is the actual (synthetic) model and Λ̂ is estimated model identified using one of the

new procedures. Clearly, if the identified model has exactly the same probability, one should

see ∆ log[P (OT |Λ̂)] = 0. Due to the presence of randomness in the GA training procedure, it

was repeated 10 times, after which the median, maximum and minimum of ∆ log[P (OT |Λ̂)] are

reported.
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The quality of the parameters of the operation-specific HMMs was also evaluated by exam-

ining the norm of the difference between the corresponding actual (synthetic) and estimated

matrices

∆A =

R∑
r=1

∥Ar,actual − Âr∥ (20)

∆B =
R∑

r=1

∥Br,actual − B̂r∥. (21)

which provides a measure of the total estimation error over all R sub-HMMs. If the identification

were perfect, both metrics would be identically zero.

The results for Experiment 1 can be seen in Figs. 3,4 and 5. Each show the median,

maximum and minimum of the metrics from Eqs. (19), (20) and (21). The red line indicates

the median of the 10 trials and the black “whiskers” indicate the extreme points. In all cases,

the identified models with the value closer to zero are superior models. It can be clearly seen

from Fig. 3 that the GA method achieves log likelihoods that are consistently closer to the

actual model likelihood than the Baum-Welch only baseline. In Fig. 4 one can see that the

GA consistently outperforms the baseline in identifying the state transition matrix. Finally,

Fig. 5 shows that the estimates of the emission matrix are similar for both the GA and the

baseline. Thus, the GA achieves more likely models, largely through superior estimation of the

state transition matrix. Furthermore, the results are achieved over a range of settings of the

parameter P .

The results for Experiment 2 are given in Figs. 6,7 and 8. It can be clearly seen from

Fig. 6 that the GA method achieves log likelihoods that are consistently closer to the actual

model likelihood than the Baum-Welch only baseline. From these three figures it is once again

visible that the GA achieves more likely models, largely through superior estimation of the state

transition matrix and that the results can be achieved for a range of settings of the parameter

NB.

An indication of the computational burden of each of the algorithms can be examined by

looking at the number of BW iterations required. Both the GA and baseline training procedures

were implemented in MATLAB on a Windows PC. The baseline algorithm required between 20

and 40 BW iterations while the GA method required between 300 and 2500 BW iterations. In

terms of time elapsed, this translated to less than 10 minutes for the baseline while the TS and
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Figure 3: The difference in log-likelihood between the identified models and the actual model for
different settings of the GA population size (Experiment 1). If the identification were perfect,
the points would form a horizontal line at zero.
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GA methods each required between 20 minutes and 13 hours. Obviously this time is dependent

on the size of the model (number of observations, in this case) and the GA population size.

However, it is clear that the new identification methods provide superior solutions for a variety

of parameter settings, at the cost of additional computational time.

4.2 Operating Regime-Specific Degradation Modeling and Monitoring of a

Semiconductor Manufacturing Process

Plasma-Enhanced Chemical Vapor Deposition (PECVD) tools are used for depositing thin films

onto silicon wafer substrates, which is one of the crucial steps in manufacturing. Inside a PECVD

tool chamber, reactive gases pass over silicon wafers and react on their surfaces to form a thin

layer. The gases are excited through radio frequency (RF) electrical power that creates plasma

which allows the reaction to take place at lower temperatures. A single PECVD tool can run

numerous operations. For instance, a variety of film thicknesses are often deposited using the

same tool.

The operation of the PECVD tool in a typical semiconductor manufacturing facility consists

of a number of consecutive depositions of films of different thicknesses. After a certain total

amount of film deposition, an in situ clean is performed, where a set of reactive cleaning

chemicals flow into the chamber to remove the deposition products from the chamber surfaces.

Each deposition thickness is expected to degrade the tool differently, thus benefiting from the

operation-specific modeling proposed in this paper.

In this section, the degradation modeling and monitoring methods developed in the paper

will be applied to a PECVD tool operating in a major 300mm semiconductor manufacturing

facility. The tool will be briefly described as will the selection of sensor features that will be used

as the “observations” in the method proposed in this paper. Subsequently, the identification

of the parameters of the HMM will be discussed along with some discussion of the resulting

model. Finally, the operation-specific HMMs will be utilized in the monitoring scheme proposed

in Section 3 for a period of real production that was not used for training the model. Along the

way, the alarms that result from the monitoring method will be compared to the maintenance

logs and quality measurements (metrology).
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4.2.1 Data Collection and Feature Selection

A PECVD tool is composed of a reaction chamber, RF plasma generation system, gas delivery

system, wafer load locks, and a robotic arm to carry wafers to and from the tool. The RF

matching network that generates plasma by sending high-frequency energy through two match-

ing capacitors (load and tune capacitors) which control the power delivered to the chamber.

By varying their capacitances, the capacitors try to match the impedance of the circuit to the

impedance of the chamber and thus deliver maximum RF power to the deposition gases. The

RF energy excites the flowing gas into the plasma state necessary for lower temperature depo-

sitions. The gas delivery system consists of mass flow controllers for each gas used in various

depositions and the film thickness is controlled by modifying the deposition time. A control

valve controls the chamber pressure and evacuates deposition gases from the chamber. Tem-

perature controlled top and lower chamber plates enclose the chamber and the walls are heated

to minimize on- wall deposition and speed up the reaction during the in situ cleaning process.

From the various systems of the PECVD tool, a variety of standard sensors are available

that record the capacitor positions, RF power, pressures, temperatures, gas flows, etc. These

sensor signals were collected over a period of more than 6 months (due to the proprietary nature

of the data, we cannot be more specific). The signals were collected at a 10Hz sampling rate

and the total number of wafers in the data set was over 110,000.

A set of dynamic features, such as signal rise times, overshoots, settling times and amplitudes

of various events during the deposition process were extracted from the sensor signals. A subset

of these features were selected using a linear discriminant analysis (LDA) procedure [40] that

yielded features that were statistically altered the most by the in situ cleans2. The argument

for feature selection based on the in situ clean sensitivity was that such sensitive features would

have a stronger connection with the hidden degradation state of the tool [41]. A stronger

connection between the observables and hidden states can ease the process of identifying the

operation-specific degradation models. The space of features selected by through LDA was then

discretized by a self-organizing map (SOM) [42] to generate a discrete set of observable symbols

(please note that a host of other discretization techniques could have been used to discretize

the feature space).

In the conceptual illustration of Fig. 1, the “observations” will be a set of sensor features,

the “operations” refer to deposition thicknesses and the “maintenance operations” correspond

2For further detail on the tool operation, feature extraction and feature selection, we refer the reader to [41]
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to the in situ cleans.

During the period of signal collection, the tool was depositing films on standard 300mm

silicon wafers of the same chemistry, but of significantly different thicknesses. The four most

common deposition thicknesses were included in the modeling (the thickest recipe was approx-

imately 20 times thicker than the thinnest recipe).

4.2.2 Identification of Operation-Specific HMMs

Using the GA method, the HMMs for the four thicknesses were identified from the data emitted

during tool operation that was deemed acceptable by the tool operators. This data corresponded

to several weeks of tool operation during which no unacceptable behavior or metrology excursion

events were observed. The parameters for training were P = 60, NB = 2, pmutate = 0.2 and

kmax = 100. These parameters were selected on an ad-hoc basis since the GA method was

experimentally found to be relatively robust to GA parameter selection (see Section 4.1). The

GA training procedure was repeated 10 times and the trained model with the highest log-

likelihood was selected as the basis for monitoring. Given these parameters and the training

set, training each of the 10 HMMs required about 9,000 BW iterations. This required about 2

hours of runtime for the MATLAB running on a Windows PC.

It is informative to examine the identified model. As the first point of examination, the log-

likelihoods of the observation sequences evolution throughout the tool operation were observed.

A plot of a portion of the log-likelihoods can be seen in Fig. 9. As expected, the log-likelihoods

have relatively consistent decreasing linear trends3, with clear operating regime-specific slopes,

lending evidence to the benefits of operation-specific modeling.

The dynamics of the evolution of the hidden states and its dependence on the operating

regime offer another point of examination. Figure 10 shows the probability of the most de-

graded state, P (st = sN |λr), for each operation-specific HMM, under the assumption of a single

operating regime. The final state probability P (st = sN |λr) increases more quickly for thicker

films, which is consistent with intuition, since the deposition of thicker films requires the flow

of the deposition gases over a longer period of time leading to more pronounced degradation of

the tool. Both of these observations provide evidence that the degradation process between in

situ cleans is modeled well using the framework proposed in this paper.

3Examining other traces between in situ cleans reveals similar behavior
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Figure 9: Log-likelihood trace for the PECVD tool. In this sequence, operations 2 and 3 are run
on the tool and the different log likelihood slopes corresponding to the two different operations
are visible.

4.2.3 Monitoring of the PECVD Tool

The subsequent production time period was monitored using Exponentially Weighted Moving

Average (EWMA) control charts of the normalized log-likelihood slopes that are defined by Eq.

(18), with the EWMA memory factor set to 0.2 and were correlated to the to the maintenance

logs and metrology data that was recorded over the monitoring time frame. The EWMA chart

of the normalized log-likelihood slopes with the 4σ control limits can be seen in Fig. 11. Only

the lower control limit is shown, since the upper limit is never exceeded. The dashed line labeled

“Training” indicates the end of the data used to identify the nominal degradation model. Six

events that occurred during the monitoring period can be seen in Fig. 11. In the following,

each event will be discussed in conjunction with the available maintenance and metrology data.

Event 1: The first event is a cluster of out-of-control points before the first long-term main-

tenance event. During this period, there are no maintenance log entries and the metrology is

within limits. After discussion with those familiar with the PECVD tool, it is believed that the

out-of-control points are related to particle formations, whose presence was confirmed some days

later. Essentially, it is believed that deposition compounds accumulate on the chamber wall and

periodically flake off, causing a sudden change in the electrical impedance of the chamber. This

new impedance results in changes in the capacitors used in the RF power system matching net-

work. Linear discriminant analysis revealed that, indeed, the RF network parameters changed
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Figure 10: P (st = sN |λr) assuming a single-operation is run. Note that the thicker films
approach sN (the most degraded state) more quickly.

the most during this period of time. Gradually, through more depositions, the gap formed by

the flaking event is filled, which causes the chamber impedance and, consequently, the match-

ing network capacitors to return to their pre-flake value. Such a scenario is supported by the

analysis of particle monitoring wafers (PMONs), used for monitoring particle contamination in

the chamber. In the PMON logs, it is evident the PMON wafers that were passed through the

tool near that time had several times more defects than PMONs corresponding to time intervals

that appear in control in Fig 11.

Event 2: The out-of-control points in the box labeled “particle failures” in Fig. 11 correspond

well with several weeks of tool downtime caused by defects seen on PMONs. The presence of

particles in the chamber was later confirmed via laser scattering based particle monitoring.

There is a noticeable shift downward in the EWMA chart immediately after the maintenance

event and numerous particle failures appear in the maintenance logs during that time.

Event 3: An out-of-control point appears soon after Event 2. While there is no maintenance

log entry for this time, the PMON close to this time has approximately 1.5 times the maximum

particle count seen during the time intervals that appear to be in control. Nonetheless, these

counts were still within the tolerance limits and did not stop production.

Event 4: A refractive index failure is reported in the maintenance logs on a film thickness

that was not included in the monitoring procedure. Process control adjustments dealt with it
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Figure 11: EWMA control chart of kT with time period labels. Each period will be discussed
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successfully and consequently there was no prolonged downtime of the tool.

Event 5: A cluster of out-of-control points appears just prior to the second preventive main-

tenance with no maintenance log entry. Once again, the PMON near this time shows counts

that are elevated, but within tolerance.

Event 6: After another preventive maintenance event, the maintenance logs note a number

of particle failures and “plasma formations.” There is a clear downward trend in the EWMA

chart which begins very close to the time when the particle failures on PMON wafers occur in

the logs. A clear out-of-control cluster of points is evident during much of the period when the

plasma formations are noted in the logs. Furthermore, PMONs near this time have order-of-

magnitude elevated counts as well. After consultation with two experts, the so-called plasma

formations were found to be the result of improper evaporation of the deposition product (in

this case, Tetraethyl Orthosilicate, commonly referred to as “TEOS”). This improper evapora-

tion resulted in liquid phase TEOS at the showerhead which caused a phenomenon known as

Coulomb Crystals [43].
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5 Conclusion

This paper presented a novel, context-dependent degradation modeling and monitoring method-

ology based on the concept of Hidden Markov Models (HMMs). The methodology utilizes in-

formation about known operational conditions to train a series of operation-specific HMMs,

defined on the same set of hidden states representing degradation states of the monitored sys-

tem. The HMMs of the degradation model were identified via a newly proposed procedure

that uses a metaheuristic evolution of the initializations of a Baum-Welch algorithm, which

was modified to enable parameter identification of interconnected, operating regime specific,

degradation HMMs.

Using the aforementioned degradation model, a context-dependent monitoring methodology

was presented based on the slopes of the log-probability traces of observations emitted by the

monitored system. The monitoring method was demonstrated on a semiconductor manufactur-

ing tool, operating in a production environment over a period of several months. Out-of-control

events in the HMMmonitoring were shown to be consistent with the maintenance and metrology

events.

Several potential areas of future work exist. Extension of the newly introduced method for

identifying degradation models to account for continuous observation densities could yield more

accurate models by avoiding the discretization errors. Another potential improvement would be

a description of the confidence in the identified HMM parameters. Understanding uncertainties

in the observation and state transition probabilities yielded by the training algorithm are of

high importance to the subsequent maintenance decision-making based on the diagnostic and

predictive information obtained from such models.
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Appendix A: Emission Matrices for Synthetic Problem

For M = 5:

B
(1)

=


0.832 0.068 0.027 0.072 0.001

0.263 0.340 0.128 0.214 0.056

0.116 0.032 0.234 0.228 0.389

0.081 0.154 0.241 0.109 0.415

 B
(2)

=


0.343 0.061 0.064 0.489 0.043

0.040 0.003 0.157 0.785 0.014

0.015 0.008 0.421 0.052 0.504

0.008 0.233 0.394 0.265 0.100



For M = 10:

B
(1)

=


0.584 0.046 0.021 0.043 0.002 0.045 0.082 0.022 0.149 0.006

0.064 0.125 0.037 0.101 0.013 0.513 0.081 0.035 0.019 0.011

0.071 0.011 0.085 0.033 0.118 0.272 0.053 0.250 0.033 0.073

0.030 0.075 0.112 0.074 0.233 0.039 0.032 0.223 0.014 0.168



B
(2)

=


0.150 0.049 0.020 0.262 0.033 0.099 0.030 0.003 0.119 0.234

0.025 0.010 0.088 0.405 0.015 0.002 0.050 0.111 0.005 0.288

0.009 0.000 0.276 0.043 0.341 0.012 0.008 0.254 0.006 0.051

0.016 0.140 0.219 0.152 0.063 0.014 0.014 0.169 0.021 0.191



For M = 10:

B
(1)

=


0.284 0.014 0.000 0.015 0.000 0.020 0.041 0.000 0.201 0.002

0.008 0.026 0.000 0.014 0.000 0.153 0.018 0.011 0.164 0.002

0.021 0.000 0.051 0.015 0.061 0.169 0.001 0.149 0.140 0.016

0.008 0.033 0.063 0.029 0.142 0.015 0.004 0.138 0.088 0.096

0.005 0.006 0.000 0.094 0.319

0.013 0.079 0.000 0.227 0.284

0.050 0.001 0.039 0.000 0.287

0.069 0.029 0.013 0.068 0.206



B
(2)

=


0.047 0.008 0.000 0.082 0.000 0.099 0.011 0.000 0.154 0.083

0.016 0.000 0.060 0.315 0.000 0.007 0.029 0.089 0.074 0.230

0.000 0.000 0.252 0.030 0.311 0.016 0.000 0.231 0.017 0.037

0.000 0.064 0.117 0.081 0.032 0.079 0.005 0.090 0.041 0.097

0.024 0.280 0.016 0.162 0.035

0.001 0.012 0.052 0.000 0.116

0.022 0.000 0.011 0.000 0.073

0.005 0.270 0.000 0.021 0.096



For M = 20:
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B
(1)

=


0.227 0.011 0.000 0.012 0.000 0.016 0.033 0.000 0.056 0.002

0.011 0.034 0.000 0.018 0.000 0.197 0.024 0.014 0.000 0.003

0.018 0.000 0.043 0.013 0.052 0.144 0.001 0.127 0.000 0.014

0.005 0.020 0.039 0.018 0.088 0.009 0.003 0.086 0.000 0.060

0.004 0.005 0.030 0.075 0.229 0.254 0.021 0.004 0.000 0.023

0.017 0.102 0.018 0.293 0.149 0.073 0.027 0.020 0.000 0.000

0.042 0.001 0.192 0.000 0.000 0.000 0.000 0.184 0.030 0.137

0.043 0.018 0.184 0.042 0.011 0.013 0.043 0.083 0.062 0.174



B
(2)

=


0.041 0.007 0.000 0.072 0.000 0.020 0.009 0.000 0.150 0.073

0.015 0.000 0.054 0.279 0.000 0.000 0.025 0.079 0.046 0.204

0.000 0.000 0.217 0.026 0.268 0.003 0.000 0.199 0.078 0.032

0.000 0.049 0.091 0.063 0.025 0.000 0.004 0.070 0.044 0.075

0.021 0.246 0.014 0.142 0.040 0.045 0.047 0.014 0.000 0.058

0.000 0.011 0.046 0.000 0.048 0.034 0.000 0.000 0.046 0.114

0.019 0.000 0.010 0.000 0.030 0.002 0.000 0.039 0.020 0.057

0.004 0.209 0.000 0.016 0.028 0.005 0.270 0.008 0.000 0.038



For M = 25:

B
(1)

=


0.197 0.012 0.009 0.013 0.008 0.022 0.036 0.004 0.048 0.008

0.019 0.020 0.006 0.013 0.008 0.105 0.017 0.010 0.006 0.002

0.010 0.002 0.018 0.015 0.026 0.054 0.013 0.056 0.006 0.018

0.008 0.018 0.035 0.014 0.064 0.008 0.008 0.061 0.002 0.042

0.007 0.005 0.002 0.065 0.205 0.221 0.026 0.006 0.008 0.027

0.018 0.062 0.014 0.156 0.084 0.040 0.026 0.014 0.014 0.002

0.026 0.013 0.019 0.006 0.001 0.010 0.002 0.077 0.017 0.058

0.038 0.015 0.007 0.037 0.008 0.016 0.039 0.065 0.044 0.119

0.008 0.011 0.018 0.003 0.031

0.112 0.168 0.010 0.060 0.014

0.365 0.028 0.049 0.102 0.010

0.018 0.012 0.118 0.014 0.189



B
(2)

=


0.042 0.012 0.007 0.059 0.001 0.024 0.015 0.001 0.031 0.063

0.026 0.001 0.063 0.280 0.001 0.011 0.027 0.078 0.005 0.207

0.006 0.008 0.227 0.032 0.285 0.011 0.007 0.210 0.006 0.034

0.005 0.053 0.093 0.063 0.026 0.001 0.013 0.073 0.001 0.078

0.022 0.202 0.013 0.121 0.007 0.014 0.040 0.018 0.002 0.006

0.007 0.021 0.053 0.004 0.003 0.004 0.004 0.002 0.054 0.003

0.028 0.000 0.011 0.006 0.003 0.005 0.006 0.043 0.023 0.008

0.012 0.200 0.005 0.020 0.004 0.004 0.255 0.015 0.005 0.000

0.008 0.020 0.002 0.260 0.008

0.011 0.004 0.002 0.110 0.019

0.002 0.004 0.015 0.012 0.008

0.002 0.007 0.009 0.049 0.004



For M = 30:
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B
(1)

=


0.195 0.009 0.007 0.013 0.006 0.021 0.032 0.003 0.049 0.002

0.012 0.017 0.001 0.010 0.008 0.069 0.011 0.009 0.005 0.004

0.006 0.000 0.015 0.004 0.013 0.038 0.001 0.035 0.007 0.006

0.008 0.013 0.026 0.011 0.052 0.007 0.005 0.053 0.001 0.044

0.011 0.006 0.008 0.069 0.197 0.218 0.019 0.005 0.001 0.022

0.009 0.041 0.000 0.095 0.052 0.024 0.014 0.013 0.001 0.003

0.017 0.007 0.015 0.004 0.006 0.000 0.007 0.053 0.011 0.040

0.031 0.014 0.008 0.028 0.015 0.015 0.030 0.053 0.039 0.110

0.010 0.006 0.017 0.009 0.028 0.005 0.009 0.007 0.015 0.001

0.069 0.105 0.004 0.038 0.004 0.011 0.086 0.003 0.255 0.029

0.244 0.021 0.031 0.073 0.006 0.224 0.081 0.017 0.004 0.015

0.013 0.006 0.104 0.013 0.163 0.051 0.007 0.053 0.017 0.010



B
(2)

=


0.037 0.010 0.004 0.053 0.005 0.016 0.010 0.004 0.024 0.061

0.017 0.001 0.040 0.200 0.000 0.005 0.019 0.060 0.002 0.152

0.008 0.005 0.218 0.028 0.268 0.003 0.002 0.193 0.005 0.033

0.008 0.044 0.077 0.056 0.029 0.007 0.006 0.059 0.006 0.066

0.021 0.180 0.014 0.109 0.008 0.007 0.040 0.018 0.008 0.006

0.002 0.010 0.034 0.001 0.000 0.004 0.003 0.000 0.037 0.006

0.027 0.001 0.011 0.007 0.008 0.002 0.005 0.041 0.024 0.000

0.009 0.175 0.002 0.017 0.003 0.006 0.228 0.012 0.001 0.005

0.000 0.011 0.000 0.232 0.004 0.003 0.042 0.006 0.011 0.057

0.002 0.009 0.008 0.080 0.012 0.007 0.060 0.021 0.019 0.188

0.003 0.005 0.015 0.013 0.009 0.009 0.005 0.038 0.007 0.006

0.006 0.008 0.007 0.044 0.007 0.004 0.008 0.010 0.006 0.083
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