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Ferromagnetism in graphene is fascinating, but it is still a big challenge for practical 

applications due to the weak magnetization. In order to enhance the magnetization, here, we 

design plasma-enabled graphene nanopetals with ultra-long defective edges of up to 10
5 

m/g, 

ultra-dense lattice vacancies and hydrogen chemisorptions. The designed graphene 

nanopetals display robust ferromagnetism with large saturation magnetization of up to 2 

emu/g at 5 K and 1.2 emu/g at room temperatures. This work identifies the plasma-enabled 

graphene nanopetals as a promising candidate for graphene-based magnetic devices. 

Key words: Graphene nanopetals, Ferromagnetism, Saturation magnetization, Plasma 

enhanced CVD. 
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Magnetic ordering in carbon-based materials has attracted widespread attention in scientific 

communities due to only light elements rather than transition metals like Fe, Co and Ni 

involved.
1,2-3

 Carbon-based magnetic materials possess lots of attractive properties, such as 

low density, biocompatibility, plasticity and so on, which are practical significance for next 

generation magnetic devices.
3-4

 Graphene, a 2D single sheet of carbon, shows extraordinarily 

high electron mobility, thermal conductivity and mechanical strength, and holds great 

promising for many applications such as nanoelectronics, spintronics and optoelectronics.
5
 

Magnetic ordering in such graphene may have great potential to be used in the design of 

future magnetic nanoelectronic and spintronic devices. Ferromagnetism has been predicted 

and observed in graphite and graphene, which is attributed to localized unpaired spins 

induced by defects.
4,6,7-8

 The induced magnetic moments interact ferromagnetically if defects 

locate at different hexagonal sublattices of graphene.
9
  

 

Many approaches have been used to produce ferromagnetism in graphene, including 

introduction of hydrogen (H) chemisorptions defects, vacancy defects and edge defects with 

H plasma process or high-energy ions irradiation.
8,10

 To date, however, the observed 

maximum magnetization in either polycrystalline or single crystal graphene synthesized by 

CVD or mechanical cleavage is weak.
3,7

 The lack of large magnetization hinders the 

applications of graphene in practical magnetic devices. On the other hand, assuming each 

carbon atom has a ferromagnetic moment of 1 μB, graphene would have magnetization σs = 

465 emu/g, which means only a tiny fraction of the carbon atoms participate in the 

magnetism.
2
 In order to achieve large magnetization and realize practical application, it is 

essential to employ new techniques to enhance intrinsic magnetization of graphene.  

 

Here, to achieve robust ferromagnetism and large saturation magnetization, we design 

graphene nanopetals (vertically aligned petal-like graphene) with ultra-long defective edges, 

ultra-dense vacancies and H chemisorptions on edges, vacancies and carbon (C) atoms. 

Indeed, plasma-enabled graphene nanopetals display robust ferromagnetism with enhanced 

saturation magnetization of up to 2 emu/g at low temperatures and 1.2 emu/g at room 

temperatures. The observed ferromagnetism is intrinsic magnetic behavior of graphene and 

can be attributed to the ulta-long defective edges, plasma induced vacancy defects and H 

adatoms in growth process of graphene nanopetals. Our results indicate plasma aided 
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synthesis is a new way to enhance the ferromagnetism in graphene for practical applications. 

 

Plasma aided growth has been found quite suitable for the controlled synthesis of 

nanostructures.
11

 Vertical graphene networks are grown directly with self-organized patterns 

by the PECVD without any catalyst and substrate heating.
12

 The growth of vertical graphene 

nanosheets was carried out in an inductively coupled plasma-enhanced chemical vapour 

deposition (ICP-CVD, 13.56 MHz, 1.0 kW) reactor. Firstly, Ar gas was fed into the chamber 

where plasma was generated at 3.0 Pa with RF power 800 W. And -50 V of substrate bias was 

used to enhance the plasma interaction with Si substrate. After 3 minutes of plasma treatment, 

a gas mixture of 30% CH4, 20% H2 and 50% Ar was fed into the chamber and the rf power 

increased up to 800 W for the deposition. Here, H atoms can be adsorbed on graphene surface 

when H plasma is exposed to the sample at high temperatures. Hence, plasma serves as a 

main H source and produces H absorption defects in graphene 
13-14

. The deposition time was 

kept for 8 minutes. 

 

Figures 1a shows the scanning electron microscope (SEM) images of plasma enabled 

graphene nanopetals on Si, in which graphene nonosheets are all nearly perpendicular to their 

substrates, with height ranging from 300 to 500 nm. Based on the scale of SEM images, the 

estimated edge length is up to 10
5
 m/g. To ensure the magnetic signal originating from the 

graphene nanosheets, we have analyzed the vertical graphene with x-ray photoelectron 

spectroscopy (XPS) and Energy-dispersive X-ray spectroscopy (EDX). As shown in Fig. 1b,c 

only carbon elements have been detected, which proves that our graphene nanopetals have 

high purity.  

The magnetization analysis of the vertical graphene films has been performed with vibrating 

sample magnetometry (VSM) in Physical Property Measurement System (PPMS). To 

exclude the influences of SO2/Si, the plasma enabled graphene nanopetals were cleaved from 

the substrate before VSM measurements. Firstly, the sample holder and plastic tapes which 

were used to carry samples were measured and display absolute diamagnetism, as shown in 

Fig. 2a. Fig. 2b displays the magnetic hysteresis loops of the plasma-enabled graphene 

powders (milled from graphene nanopetals) measured at temperatures 5, 50 and 200 K, which 

show weak ferromagnetism at 5 K and paramagnetism at higher temperatures. The saturation 

magnetization Ms is about 0.6 emu/g at 200 K.  
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Figure 3 exhibits the magnetization hysteresis loops for the plasma-enabled graphene 

nanopetals at 5, 10, 50, 100, 200 and 300 K. The saturation magnetic moment reaches up to 2 

emu/g at 5 K and 1.2 emu/g at 300 K. The ferromagnetism can be seen clearly in the enlarged 

hysteresis loops in Fig. 3b. Fig. 4a shows the magnetic behavior of magnetic graphite as a 

function of temperatures [zero field cooled (ZFC) and field cooled (FC) for H=1 kOe]. A 

clear magnetic transition was observed at Tc = 365 K. The extracted temperature dependence 

of saturation magnetization and coercivity are plotted in Fig. 4b and c. Compared with the 

magnetization in plasma-enabled graphene powder, the saturation is giant enhanced. This 

shows that morphology and structures of graphene nanopetals play a significant role in the 

generation of robust ferromagnetism and giant saturation magnetization. 

 

As it is well known, H adtoms can generate spontaneous magnetism in graphene.
15

 In general, 

H atoms adsorb on graphite surface via the formation of stable H clusters consisting of two to 

four H atoms.
16

 H adtoms break the double C=C bond and format C-H bond, and release 

unpaired electrons. The bonding of H and C atoms results in a removal of the π orbital from 

the low energy sector. Additionally, the H chemisorption also leads to a transition from sp
2
 to 

sp
3
 - sp

2
 hybridization and sp

3
-type defects introduce local sublattice imbalances and 

unpaired spin electrons.
13, 17

 There are two carbon atoms per unit cell located at two 

inequivalent sublattices, A and B. The H chemisorption defects give rise to the strong Stoner 

ferromagnetism with a magnetic moment of 1 μB per defect when the defects are located at 

the same sublattice.
9,18

 The stability of the magnetic configurations depends on the distance 

between H adatoms and the strength of exchange couplings between the defect-induced 

magnetic moments.
18

 As shown in Fig. 5, in plasma-enabled graphene nanopetals, the H 

adatoms are not only adsorbed on the graphene surfaces, but also at interlayers in the plasma-

growth process.
19

 Partial H adatoms induce the formation of unpaired electrons which lead to 

the observed magnetization.
20

 Theoretical calculations suggest that H maintains the magnetic 

moment of the defects and give rise to a macroscopic magnetic signal.
21

 
 

 

The long-range coupling of local moments is expected to take place through spin alternation 

due to the presence of half-filled π-orbitals in graphene.
22

 DFT calculations show that 

periodic H adsorption results in electronic band structure with the highest occupied band 

filled with electrons of same spin in a ferromagnetic configuration.
23

 As calculated by density 

functional theory, the magnetic moments interact, ferromagnetism or antiferromagnetism, 
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depend on the relative adsorption graphene sublattice.
24

 Strong long-range coupling between 

local magnetic moments at same sublattice can maintain room-temperature ferromagnetic 

ordering against thermal fluctuations. The stability of the magnetic configurations depends on 

the distance between H atoms and the strength of exchange couplings between the defect-

induced magnetic moments. The H induced magnetic moments can be aligned by magnetic 

fields and generate ferromagnetic state that has maximized exchange energy. H saturation can 

stabilize the vacancy structure and induce magnetic coupling between the defects and the 

ferromagnetic ordering is accompanied with a semiconducting property.
25

 Ferromagnetic 

behavior in plasma-enabled graphene can be attributed to topological defects and strong 

Coulomb interaction between electrons 
26

.  

 

The zigzag edges in graphene nanoribbons can be magnetic due to introducing spin polarized 

edge states. The net spin moment in zigzag-edged nanosheets results from topological 

frustration of the π-bonds.
27

 In our case, the plasma-enabled graphene nanopetals have one 

side with open defective edge and another side attached on substrates. The zigzag and 

armchair edges coexist in plasma-enabled nanopetals. The absorption of H at the edges of 

graphene nanopetals leads to the formation of a spin-polarized band at the Fermi level. The π 

electrons on hydrogenated zigzag edges may create a ferromagnetic spin structure on the 

edge due to edge localized states. H adatoms at zigzag edges can passivate the σ dangling 

bonds and leave all the π orbitals unsaturated and carrying the magnetic moments. Adsorption 

of atomic H in graphene leads to a magnetic moment of 1 μB localized on the orbitals 

surrounding each H atom. In the vertical graphene nanosheets, there is ultra-long edges of up 

to 10
5 

m/g, which results in giant saturation magnetization. The magnitude of the 

ferromagnetism strongly depend on the position of the H atoms relative to the edges.
24

  

 

Charged plasma aided growth of graphene nanopetals give rise to the formation of large 

amount of atomic vacancies in the graphene nanosheets. These lattice vacancies also generate 

localized electronic states and magnetic moments due to the hybridization of pz orbitals in the 

π-band. Calculated magnetic moments are 1.12~1.53 μB per vacancy defect depending on the 

defect concentration.
9
 And vacancy defects in the same sublattice induce ferromagnetic 

ordering based on theoretical calculation. But the naked vacancy defects generate much 

weaker ferromagnetic order than H-defect ones. On the other hand, H adatoms can easily 
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adsorb on vacancy dangling bonds and format vacancy-H complexes that can provide larger 

magnetic moment, which might plays a dominant role in plasma-enabled graphene 

nanosheets.
21

  Density functional theory (DFT) calculations show that H saturation stabilizes 

vacancy-induced ferromagnetic ordering in graphene, which has to be accompanied with a 

semiconducting property.
25

 

 

In conclusion, the plasma-enabled graphene nanopetals exhibit robust ferromagnetic ordering 

with giant enhanced saturation magnetization. The observed ferromagnetism is much higher 

than the obtained magnetization in the case of flat few-layer graphene. Plasma-enabled 

graphene nanopetals can be particularly useful to explore magnetic ordering in graphene 

through introducing controllable edge, lattice vacancy and H defects. By manipulating the 

conditions of plasma, it is possible to tune flexibly the magnetism of graphene. The plasma-

enabled nanopetals are very promising candidates for the graphene based magnetic 

nanodevices. 
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Figures and captions 

 

 

 

Figure 1 (a, b) SEM images, (c) XPS spectra and (d) EDX spectra for the plasma-enabled 

graphene nanopetals.  
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Figure 2 Magnetization hysteresis loops for (a) sample holder, and (b) plasma-enabled 

graphene powders.  
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Figure 3 Magnetization hysteresis loops for plasma-enabled graphene nanopetals at different 

temperatures. 
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Figure 4 (a) ZFC and FC magnetization as a function of temperatures, ranging from 5 K to 

380 K. The arrow shows the magnetic transition temperatures, Tc = 365 K. (b) Saturation 

magnetization and (c) Coercivity as a function of temperatures. 
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Figure 5 Atomic structures of the graphene nanopetals with hydrogen chemisorption defects, 

edge defects and lattice vacancy defects. 


