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Abstract

We present indirect inference as a useful method for Bayesian optimal experimental
design for models with intractable likelihoods. The approach estimates the parameters
of an auxiliary model with a tractable likelihood in an offline step, using simulations
from the generative model, the assumed true model of interest. The resulting look-up
table is used in the design algorithm of Müller (1999), which uses Markov chain Monte
Carlo (MCMC) to sample from an augmented target distribution that is proportional to
the expected utility surface. The utility function is based on the precision of a particle
approximation of the indirect inference posterior. A novel approach is to consider
the gain in utility from the data over and above the utility derived from the prior
distribution. The current state-of-the-art method to optimise experimental design
for models with intractable likelihoods is to use approximate Bayesian computation
(ABC) (Drovandi & Pettitt, 2013). The proposed approach using indirect inference
is more flexible, since it is free of the restriction to a discrete design space as in the
ABC approach. Moreover, it can be extended to more complex design problems, which
would be difficult in the ABC approach, due to the necessity to store all simulations. In
contrast, the storage requirements of the indirect inference approach are independent
of both the dimension of the experimental design and the number of observations to
design for. The use of indirect inference for Bayesian experimental design is illustrated
using two stochastic models; a simple death process and an epidemiological model for
the evolution of macroparasites, which motivates this work.

Keywords: approximate Bayesian computation; Bayesian experimental design; indirect
inference; Markov chain Monte Carlo.
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1 Introduction

Experimental design has been fundamental to a wide range of biologically based research
activities from seminal work in agriculture (Fisher, 1926), through to recent advances in
systems biology (Kreutz & Timmer, 2009), epidemic processes (Cook, et al., 2008), medical
science (Delzell et al., 2012) and clinical trials (Berry, 2004). Aspects of data collection are
typically limited by the availability of resources such as time, financial cost and sample size.
Optimal experimental design aids statistical inference about the underlying process that
generates the observed data with the least experimental cost. Factors involved in the design
of scientific experiments include the number of experimental units required, the allocation
of subjects to treatments and the allocation of available resources.

A common approach is to specify a utility function to reflect the goals and limitations
of the experiment. The most useful design should correspond to the design that optimises
the utility and is often problem dependent. For example, a design that is optimal for model
choice may not be optimal for parameter estimation. In Bayesian statistics, the utility
function is typically based on mutual information, that is, the expected Kullback-Leibler
divergence (Kullback & Leibler, 1951) from the prior to the posterior distribution.

The focus of this paper is on stochastic models with intractable likelihoods. The aim
is to develop Bayesian experimental design methodology for such models in the presence of
parameter uncertainty. The motivating example is a stochastic epidemiological model for
the evolution of macroparasites. Macroparasites, typically transmitted by mosquitoes, cause
lymphatic filariasis disease in an estimated 120 million people worldwide (Ottesen, 2006).
A stochastic Markov model for the evolution of Brugia pahangi larvae in cats is examined
(Michael et al., 1998; Riley et al., 2003). The original experiment (Denham et al., 1972)
involved the injection of the larvae in host cats. At various times the cats were sacrificed
and the number of mature parasites were recorded. A similar experiment was carried out
using mice (Paciorkowski et al., 2000). In a more recent article, Fox et al. (2013) examine the
importance of host behaviour and immunity in modelling parasite transmission in a grazing
system. For experimental design, the focus is the optimum time to observe the stochastic
process for efficient estimation of the model parameters. That is, when to sacrifice the
animal.

Much of the experimental design literature, in both the classical and Bayesian paradigms,
requires likelihood evaluations. Some exceptions include a recent example to design for
Markov process models by Cook et al. (2008), which uses a moment closure approximation
to the likelihood to make the utility tractable. The approach is to make a distributional
assumption about the state of the process at time t and to close the system by constrain-
ing higher-order moments as a function of lower-order moments based on this assumption
(Krishnarajah et al., 2005). Although the moment closure approach worked well in the ex-
amples presented by Cook et al. (2008), the moment closure approximation will not always
adequately represent the behaviour of a stochastic process. This is demonstrated by Riley
et al. (2003), where simulation based parameter estimation techniques performed better than
moment closure approximations. As a result, the moment closure approach is not useful in
the case of the macroparasite model.
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The design algorithm of Müller (1999) uses Markov chain Monte Carlo (MCMC) to sam-
ple from an augmented target distribution, which has a margin that is proportional to the
expected utility surface. The modal utility can be found with its corresponding design. The
design algorithm of Müller (1999) is particularly useful in the case of models with intractable
likelihoods, due to the cancellation of the likelihood terms in the Metropolis-Hastings accep-
tance ratio for the design proposal. Drovandi & Pettitt (2013) use an approximate Bayesian
computation (ABC) approach to experimental design for models with intractable likelihoods.
The utility is specified as a function of the simulation based ABC posterior. This approach
is practical since the models are easy to simulate from, but suffers from the usual disad-
vantages of ABC. A suitable tolerance must be chosen and this will increase as the number
of experimental observations to design for increases. For a small number of experimental
observations, it is possible to match the simulated data to the observed data directly. This
requires storage of a large number of simulations. As a result, the approach does not extend
well to complex problems such as designs with a large number of experimental observations
to design for or high dimensional designs, where there is more than one controllable vari-
able. Alternatively, summary statistics could be chosen. However, the appropriate choice of
summary statistics is not obvious and a loss of information would be incurred by not using
the full data. Nevertheless, the approach works well and avoids likelihood evaluations for
low dimensional designs with a small number of observations.

In indirect inference, a statistical model is used as an auxiliary for estimation and in-
ference about the generative model. The auxiliary model is based only on observable data
and has a tractable likelihood, whereas the generative model may contain unobservables and
has an intractable likelihood. Indirect inference has been widely considered as an inferen-
tial approach in the frequentist literature (Gourieroux, et al., 1993; Smith, 1993; Gallant &
Tauchen, 1996). Some recent advances have been made in the Bayesian literature, combining
classical ideas with ABC, where the summary statistics are obtained using the parametric
auxiliary model. Drovandi, et al. (2014) present a review of the Bayesian indirect inference
methodology.

The use of indirect inference in this paper is similar to Gallant & McCulloch (2009) and
Reeves & Pettitt (2005). Instead of using the auxiliary parameter estimates as summary
statistics in ABC, we do not reduce the data to a set of summary statistics. Rather, the
auxiliary likelihood of simulated data from the generative model is evaluated at the auxiliary
parameter estimates. This parametric likelihood is used in the analysis as a substitute for the
intractable likelihood of the generative model. Drovandi et al. (2014) refer to this method
as pdBIL (parametric Bayesian indirect likelihood on the full data level) and demonstrate
that this method is not exact and will rarely target the true posterior. However, Drovandi
et al. (2014) suggest that, if the auxiliary model likelihood acts as a good replacement to
the generative model likelihood for non-negligible regions of the posterior, then a useful ap-
proximation can be obtained. Gallant & McCulloch (2009) apply this approach to modelling
asset pricing.

In this paper, we present a novel approach to Bayesian experimental design for models
with intractable likelihoods using indirect inference and demonstrate its effectiveness in the
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case of Bayesian experimental design for stochastic biological processes. The utility function
is specified as a function of an indirect inference posterior, which is based on a tractable
auxiliary model. Having found a suitable auxiliary model, the approach is to learn the
relationship between the auxiliary model parameters and the data model parameters us-
ing simulations from the data model and maximum likelihood estimation in an offline step.
Auxiliary parameter values and their corresponding generative model parameter draws from
the prior are stored and used in the design algorithm of Müller (1999) for Bayesian design
optimisation. An important advantage of the indirect inference approach to experimental
design is that the storage requirements are independent of the number of experimental ob-
servations and the dimension of the design. Furthermore, the ABC approach of Drovandi &
Pettitt (2013) must be carried out over a discrete design space, whereas the indirect inference
approach is free of this restriction.

The paper describes the Bayesian approach to optimal experimental design in Section 2.
Section 3 explains the novel indirect inference approach to Bayesian optimal design. Section
4 illustrates the methodology using the death model and the stochastic epidemiological model
for the evolution of macroparasites. The paper concludes with a discussion in Section 5.

2 Bayesian experimental design

This paper concerns the Bayesian design of experiments, where the design of interest is the
choice of the sampling times of a stochastic process, based on prior beliefs. The prior distri-
bution p(θ), can be elicited from experts or based on previous experiments. The aim is to
choose observation times that are expected to lead to the most precise posterior distribution.
Following Lindley (1972), the design choice is framed as a decision problem by specifying a
suitable utility function u(d,y,θ), where y are the data that may be observed when exper-
imental design d is applied and where θ is the vector of model parameters. The Bayesian
optimal design corresponds to the maximum posterior expected utility. The problem of
Bayesian experimental design can be addressed by the following optimisation for designs
d ∈ D;

d∗ = argmax
d∈D

u(d), (1)

where u(d) is the expected utility function over the data y and the prior distribution of the
model parameters θ;

u(d) = Eθ,y[u(d,y,θ)] =

∫
y

∫
θ
u(d,y,θ)p(y|θ, d)p(θ)dθdy. (2)

However, integration across all possible values of the data y that are yet to be observed and
model parameters θ is typically intractable. In our case the likelihood p(y|θ, d) given the
design d is also intractable.

A pragmatic approach taken by Müller (1999) is to sample from an augmented joint
probability distribution;

h(d,θ,y) ∝ u(d,y,θ)p(y|θ, d)p(θ). (3)
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Note that the normalising constant required for this distribution for fixed d is the expected
utility u(d) of Equation 2. Thus the margin over y and θ of the target distribution h(d,θ,y) is
proportional to u(d) and shares the same mode. Müller (1999) borrows ideas from simulated
annealing (Van Laarhoven & Aarts, 1987), tempering the distribution by a single temperature
J . This exaggerates the peaks of the distribution and enables an easier search for the mode.
The tempered target distribution is

hJ(d,θ,y) ∝
J∏
j=1

u(d,yj,θj)p(yj|d,θj)p(θj), (4)

where θj is an independent draw from the prior distribution of the generative model param-
eters and yj is a simulation from the generative model given the design d and θj. Increasing
the value of J tightens the distribution further at its mode, but incurs a computational
cost. Algorithm 1 outlines the design algorithm of Müller (1999). In line 4, Algorithm 1,
q(.|.) denotes the Metropolis-Hastings proposal distribution. The algorithm is particularly
appealing for models with intractable likelihoods due to the cancellation of the likelihood
terms from the Metropolis-Hastings ratio. This results from the simulation of the proposed
data y∗ from the likelihood in line 5, Algorithm 1. However, the utility function u(d,y,θ)
typically requires likelihood evaluations. The next section demonstrates how the utility can
be approximated without calculating the likelihood of the generative model, using indirect
inference.

Algorithm 1: MCMC algorithm for robust Bayesian experimental design (Müller,
1999).

INPUT: Initial design d0, number of iterations T ;

1 Draw θ0
j ∼ p(θ) and simulate y0

j ∼ p(y|θ0
j , d

0) for j = 1 . . . J ;

2 Calculate the utility u0
j = u(d0,θj,y

0
j ) for j = 1 . . . J and define u0 =

∏J
j=1 u

0
j ;

3 for t = 1, . . . , T do
4 Draw d∗ ∼ q(d∗|di−1);
5 Draw θ∗j ∼ p(θ) and simulate y∗j ∼ p(y|θ∗j , d∗) for j = 1 . . . J ;

6 Calculate u∗j = u(d∗,θ∗j ,y
∗
j ) for j = 1 . . . J and let u∗ =

∏J
j=1 u

∗
j ;

7 Set (dt, ut) = (d∗, u∗) with probability min(1, α) where,

α =
u∗

ut−1

q(dt−1|d∗)
q(d∗|dt−1)

.

Otherwise set (dt, ut) = (dt−1, ut−1);

8 end
OUTPUT: Marginal draws of the designs d;
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3 Bayesian experimental design using indirect infer-

ence

Assume there exists a statistical model, which is a good approximation to the generative
model in regions of high posterior density. The parameters of the auxiliary model are denoted
φ and for a given design d, the tractable auxiliary likelihood is denoted pa(y|φ, d), where
the subscript a denotes the auxiliary model. The parameters of the generative model are
denoted θ and its likelihood p(y|θ, d) given design d is intractable.

For Bayesian experimental design using indirect inference, the approach is to learn the
relationship between the auxiliary model parameters and the data model parameters using
a training design dT in an offline step via Algorithm 2. The training design could be of the
same structure as in previous experiments, but the user is free to choose this design (more
information is provided in the discussion in Section 5). For θi, the ith value of θ generated
from the prior, a dataset x is simulated from the generative model based on the training
design dT . The auxiliary parameters are estimated given this data, producing φi = φ(θi,x),
where

φi = argmax
φ∈Φ

pa(x|φ, dT ). (5)

Repeating this process for a collection of n parameters from the prior produces a look-up
table {θi,φi}ni=1. This process effectively produces a noisy estimate φ(θ,x) of the mapping
φ(θ), between the generative and auxiliary parameters. In an attempt to reduce the noise,
one can instead simulate m independent replicates of the data, denoted x1:m = (x1, . . . ,xm).
The corresponding φi is given by φi = φ(θi,x1:m). Under the assumption that the auxiliary
estimator is consistent, the true mapping φ(θ), for a particular value of θ, can be recovered
as m→∞. Increasing the value of m results in a more precise determination of the mapping
for a particular value of θ while increasing n allows the mapping to be approximated for
more points across the prior space. For the purposes of auxiliary parameter estimation we
recommend maximum likelihood estimation in line 4, Algorithm 2, since it generally leads to
more statistically efficient estimators compared with other techniques, but we note that other
methods could be used such as the method of moments. It is important to stress that with
the indirect inference approach we only need to store the look-up table {θi,φi}ni=1, whose
size is independent of the number of experimental observations and the number of design
dimensions. In contrast, the ABC approach of Drovandi & Pettitt (2013) requires storage of
all the simulated data, whose size grows exponentially with the number of design dimensions.
Furthermore, as the number of experimental observations grows, the ABC tolerance will
increase. This can be mitigated by increasing the number of prior simulations but this
again increases the storage requirements. Having estimated the map from the generative
model to the auxiliary statistical model, indirect inference can be used to optimise Bayesian
experimental design. The design algorithm of Müller (1999), Algorithm 1, is employed, where
the utility is a function of the indirect inference posterior in place of the true posterior. This
is similar to the approach of Drovandi & Pettitt (2013), where the utility is a function of the
ABC approximation to the true posterior. The choice of utility function for this problem was
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Algorithm 2: Offline step to estimate φ(θ).

INPUT: Training design dT , number of simulations n;
1 for i = 1, . . . , n do
2 Draw θi ∼ p(θ);

3 Simulate xj ∼ p(y|θi, dT ), j = 1, . . . ,m;

4 Find φi = argmax
φ∈Φ

∏m
j=1 pa(xj|φ, dT );

5 end

OUTPUT: Look-up table {θi,φi}ni=1;

driven by the goal of parameter estimation. One useful utility is the ‘Bayesian D-posterior
precision’ (Drovandi et al., 2013), which is a function of the precision of the indirect inference
posterior distribution pa(θ|y, d,φ(θ,x)), defined by

u(d,y) = 1/det(V̂ar(θ|y, d,φ(θ,x))). (6)

This is appropriate for unimodal posterior distributions that are not significantly skewed.
However, we found that the use of this utility was relatively flat across the design space.
In order to sharpen the utility surface, a large value of J > 100 is required in line 6 of
Algorithm 1, which is highly computationally intensive. Instead we propose the following
utility, which represents a gain in utility from the data over and above the utility found from
the informative prior;

ũ(d,y) = max{(u(d,y)− sup), 0}, (7)

where up is the utility calculated from the prior distribution;

up = 1/det(Var(θ)), (8)

and where s ≤ 1 is a scaling factor on up to aid mixing of the Markov chain in Algorithm
1. This is a similar idea to the Kullback-Leibler divergence (Kullback & Leibler, 1951) from
the prior to the posterior, which is often used as a utility in Bayesian experimental design
(Cook et al., 2008; Drovandi et al., 2013; Huan & Marzouk, 2012) but is unavailable in the
case of models with intractable likelihoods. Using the utility of Equation 7, we found that
the utility surface was substantially sharpened using a value of only 10 for J . The idea is
demonstrated in Figure 1(a) for one observation of the macroparasite model. The mean
utility of 1, 000 simulations is plotted for 15 discrete observation times. This is possible for
k = 1 observation but difficult for k > 1 due to the exponential growth of the discretisation of
the design with the number of observations k. The solid curve is a lowess smooth (Cleveland,
1979) of the calculated mean utilities. The dashed line in Figure 1(a) is the prior utility,
up. This bound can be lowered using s in Equation 7 to ensure that the utility remains
positive with probability close to 1. Note that the y-axis in Figure1(a) is truncated below
at 4.4× 1011 and that the utility u(d,y) relative to the origin is a very flat surface.
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Figure 1: Plot (a) displays the mean utility of Equation 6 for 1 observation calculated using
1, 000 simulations over a fixed grid of designs, where the dashed line is the prior utility up
and the solid curve is a lowess smooth (Cleveland, 1979) of the mean utilities. Plot (b)
displays the marginal relationship between the auxiliary parameter θa and the generative
model parameter θ for the death model. Plots (c) and (d) respectively display the marginal
relationship between the auxiliary parameter β0 and generative model parameters θ = (µL, ν)
for the macroparasite example, having carried out the offline Algorithm 2. In plots (b) to
(d), the black line is a lowess smooth (Cleveland, 1979), to indicate the relationship between
these generative and auxiliary parameters.
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The utility in Equation 6 is calculated using Algorithm 3, where an indirect inference
posterior for θ is formed using importance sampling, where the prior p(θ) is the importance
distribution and the ith importance weight is proportional to pa(y|φi, d) for i = 1, . . . , n.
This is deterministic given the look-up table {θi,φi}ni=1 that is precomputed in Algorithm 2.
This ensures fully reversible Metropolis-Hastings moves in Algorithm 1, satisfying detailed
balance. Otherwise a pseudo-marginal approach would be necessary (Andrieu & Roberts,
2009). This is similar to the approach of Huan & Marzouk (2012), who use a sample average
approximation combined with a deterministic quasi-Newton method to optimise the design of
experiments for non-linear systems. As in our case, the same set of “noise” random variables
is used for different values of d, which makes the design optimisation problem deterministic,
rather than stochastic.

Algorithm 3: Calculation of the utility u(d,y) using a particle approximation of the
indirect inference posterior distribution.

INPUT: Simulated data y, look-up table {θi,φi}ni=1, design d;

1 Calculate importance weights Wi ∝ pa(y|φi, d) for i = 1, . . . , n;

2 Set u(d,y) = 1/det(V̂ar(θ|y, d,φ(θ,x))), where Var(θ|y, d,φ(θ,x)) is estimated using

a particle approximation {Wi,θ
i}ni=1 of the indirect inference posterior distribution;

OUTPUT: Utility u(d,y);

Having learned the noisy mapping φ(θ,x) using Algorithm 2, the resulting look-up table
{θi,φi}ni=1 and the utility function of Equation 6 can be used in the design algorithm of
Müller (1999), Algorithm 1, to sample from the following tempered target distribution;

hJ(d,θ,y) ∝
J∏
j=1

u(d,yj)p(yj|θj, d)p(θj). (9)

The use of the indirect inference posterior distribution in the utility calculation allows the
algorithm to be carried out without the calculation of the intractable likelihood of the genera-
tive model. The approach is illustrated using the simple death process and the macroparasite
model in the following section.

4 Results

Bayesian experimental design using indirect inference is demonstrated using two examples.
The first is the death model (Renshaw, 1991), which is used as an illustrative problem
since the likelihood for the model is easy to compute. Comparisons can be made between
the design algorithm of Müller (1999) using indirect inference to the same algorithm using
the true likelihood as well as with the approach to Bayesian experimental design using the
moment closure approximation to the likelihood (Cook et al., 2008). The second example
motivates this work and concerns the population evolution of macroparasites (Michael et al.,
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1998; Riley et al., 2003). The likelihood is computationally intractable. This necessitates
the use of approximate methods to perform inference for the experimental design. The
experimental design of interest is the optimal time to observe the stochastic process. That
is, the time to sacrifice the animal. It is straightforward to simulate from this model using
the algorithm of Gillespie (1977).

Combinations of values of n ≤ 100, 000 and m = (3, 6, 10) in Algorithm 2 were examined
in our examples. m = 3 and n = 10, 000 worked well for both the death model and the
motivating macroparasite model. Values of m ≤ 10 did not have much effect on the auxiliary
parameter estimates. Assuming that the auxiliary estimator is consistent, as m → ∞,
φ(θ,x) → φ(θ), reducing the noise in the auxiliary parameter estimates. However, one
might expect that values of m close to 100 or more would be required to have an effect.
In an application of the indirect inference approach to modelling asset pricing, Gallant &
McCulloch (2009) use m ≈ 700 and an MCMC algorithm to find the maximum likelihood
estimator. This increase in computational complexity is deemed unnecessary in the context
of optimal experimental design. Our approach is to use m = 3 and in line 4 of Algorithm 2,
Nelder-Mead optimisation (Nelder & Mead, 1965), which is more pragmatic and works well
for our examples.

The target distribution was tempered using J = 10 in line 5, Algorithm 1, which was
deemed sufficient for our examples using the utility of Equation 7 with s ≈ 0.8. Increasing
J and s exaggerates the peaks of the marginal densities of the designs. However, increasing
J considerably increases the computation time. Large values of J or long runs of the design
algorithm of Müller (1999) are required for low values of s. For example, in the case of one
observation, the use of s = 0, requires J = 50 to achieve similar results in the same number
of iterations of the design algorithm of Müller (1999) as the use of s = 0.8 with J = 10. One
might expect that a much larger value of J such as 100 or more may have a stronger effect
on the densities. However, this would be highly computationally intensive and is deemed
unnecessary in the context of our optimal experimental design problems.

4.1 Death model example

4.1.1 Generative model

The simple death process (Renshaw, 1991) is used to illustrate the methodology. At time t,
with S(t) = i susceptibles, the probability that an infection occurs in the next infinitesimal
time period ∆t is given by

p (S(t+ ∆t) = i− 1|S(t) = i) = θi∆t+ o(∆t).

The observable data are susceptible, time pairs (t1, S1(t1)), . . . (tT , ST (tT )), where Sj(tj)
comes from a binomial distribution;

Sj(tj) ∼ binomial
(
Sj−1(tj−1), e−θ(tj−tj−1)

)
, j = 1, . . . , T. (10)

The process is initialised with one infected such that the number of susceptibles at time t0
is S0(0) = n− 1.
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4.1.2 Auxiliary model

To demonstrate the methodology, a normal distribution is used as an auxiliary model;

Sj(tj) ∼ normal
(
Sj−1(tj−1)e−θa(tγj−t

γ
j−1), σ2Sj−1(tj−1)e−θa(tγj−t

γ
j−1)

(
1− e−θa(tγj−t

γ
j−1)
))

.

(11)
This allows a more flexible variance and time scale than the binomial distribution. This is a
poor approximation for Sj−1 close to 0, giving support to negative values of Sj. Nevertheless,
it is useful for illustrative purposes and performs well for the design problem. For this
example, the auxiliary parameters are φ = (θa, γ, σ

2) and the generative model parameter is
θ. The prior distribution for θ follows Cook et al. (2008), where θ ∼ log normal(−0.005, 0.01).
Figure 2(a) displays the median of 100, 000 data simulations from the death model prior
together with 95% prediction intervals.

4.1.3 Design results

For the indirect inference approach to Bayesian experimental design, Algorithm 2 is carried
out offline to estimate the map φ(θ) via the resulting look-up table {θi,φi}ni=1. For the
purposes of illustration, the training design dT is 20 equispaced observations across 10 days
and the initial number of susceptibles is 50. The resulting densities of σ2 and γ were centred
close to 1, which was expected since the normal approximation to the binomial distribution
for large Sj(tj), is Equation 11, where σ2 = γ = 1. A strong relationship between θa and θ
can be seen in Figure 1(b).

The design algorithm of Müller (1999) was carried out for 100, 000 iterations of each of
one to four observation times. Designs d of interest are between dmin = 0 days and dmax = 10
days. The algorithm cycles through each design point in turn, given the current value of all
other design points. Observations are ordered such that d1 < d2 < . . . < dk. At iteration t,
the proposed value of dti is generated from a truncated normal random walk with variance
1, truncated at dti−1 below and dt−1

i+1 above for i = 1, . . . , k (where the notation assumes
that dt0 = dmin and dt−1

k+1 = dmax). Figure 3 displays the resulting density estimates for 1
to 4 observations (continuous lines). The likelihood of the death model is tractable and the
approach was also carried out using the true likelihood in place of the auxiliary likelihood in
the utility calculation of Algorithm 3. The resulting marginal densities are similar and are
plotted in Figure 3 (dashed lines).

For more than one observation time, the optimal design differs from the modes of the
marginal densities plotted in Figure 3, since the designs are time ordered. Consider the
case of two ordered observations drawn from uniform densities. The marginal modes would
appear at the endpoints 0 and dmax. A Gaussian smoothing kernel was used to estimate
the modal designs, finding the design that has the most other designs in its vicinity. The
resulting optimal designs are displayed in Table 1 using automatic bandwidth estimated
by the KernSmooth package in R via the plug-in method of Wand & Jones (1994). We
follow Drovandi & Pettitt (2013), tempering the bandwidth matrix by smoothing factors
h ∈ (0.1, 0.2, ...., 4) and optimising the density at each bandwidth. Possible alternatives
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Figure 2: Median (solid line) and 95% prior prediction intervals (dashed lines) of 100, 000 sim-
ulated counts of infecteds from the death model (plot (a)) from a log normal(−0.005, 0.001)
prior distribution for θ (plot (b)) and median (solid line) and 95% prior prediction intervals
(dashed lines) of 100, 000 simulated counts of mature parasites from the macroparasite model
(plot (c)) where li = 100 initial larvae were injected in each host and where (

√
ν,
√
µL) come

from a bivariate normal distribution a priori (plot (d)).
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Figure 3: Marginal density estimates of the designs for up to 1 to 4 observations of the
death model (plots (a) to (d) respectively) for 100, 000 iterations of the design algorithm
of Müller (1999) using indirect inference. The dashed lines are based on 100, 000 iterations
of the design algorithm of Müller (1999) using the true binomial likelihood in place of the
auxiliary likelihood in the utility calculation of Algorithm 3.
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Table 1: Optimal designs for k = 1, . . . , 4 observations of the death model using the design
algorithm of Müller (1999) and indirect inference (II) and the moment closure (MC) ap-
proximation (results from Cook et al. (2008)). Both approaches use a Gaussian smoothing
kernel to find the modal values. Expected utilities, Equation 12, are calculated using indirect
inference at the optimal design inferred by each approach.

k II optimal design d u(d) MC optimal design d u(d)
1 1.75 130.40 1.7 129.37
2 (1.2, 3.3) 135.92 (0.9, 2.4) 135.64
3 (0.8, 2.2, 4.2) 138.42 (0.7, 1.5, 2.9) 138.24
4 (0.6, 0.9, 2.0, 3.6) 139.41 (0.8, 1.7, 3.1, 5.3) 138.83

to this approach are discussed in Section 5. Having calculated the expected utility of any
resulting distinct designs, the optimum design is chosen accordingly. The expected utility is
calculated using simulations yj from the generative model, where

u(d) ≈
10000∑
j=1

u(d,yj), (12)

and where u(d,yj) is calculated using Algorithm 3. Results are displayed in Table 1 and
are similar to the optimal designs inferred by Cook et al. (2008) using the moment closure
approach.

4.2 Macroparasite model example

The motivating example for this work is a stochastic Markov model for the evolution of
L3 Brugia pahangi larvae in cats (Michael et al., 1998; Riley et al., 2003). In the original
experiment (Denham et al., 1972), approximately 100 or 200 larvae were injected in 21 host
cats that had never previously been exposed to the parasite. Microfilarial counts, that is,
the number of mature parasites, were recorded weekly in each cat and again at various
autopsy times between 24 and 1,193 days. Measurements also made at that time but not
published are included in Michael et al. (1998) and Riley et al. (2003) for 212 cats with
precisely recorded initial L3 larvae counts and final mature parasite counts at autopsy time.
This data is used to inform the prior distribution p(θ) for future experiments. The training
design dT is based on the same experimental design used to obtain the observed data. The
experiments were conducted over a number of years in which the availability of the larvae
varied. A similar experiment was recently carried out using mice (Paciorkowski et al., 2000),
where 50 L3 larvae were injected and mice were necropsied at fixed time points after 1 to 6
weeks post-infection. The design of interest is the optimum time to observe the stochastic
process, that is, the time of sacrifice of the cat, with the goal of parameter estimation.
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4.2.1 Generative model

The following stochastic model was developed to explain the within-host population dynam-
ics of lymphatic filariasis (Michael et al., 1998; Riley et al., 2003) . At time t, a host is
described by the following random variables, the mature parasite count M(t), the larvae
count L(t) and a discrete measure of the host’s immunity I(t). The host cats have never
previously been exposed to the parasite and thus have no experience of infection, no im-
munity and no mature parasites. This gives initial conditions of I(0) = 0, M(0) = 0 and
L(0) = li, since the initial number of L3 larvae li for cat i is injected at time 0. The values
of the states at time t are M(t) = i, L(t) = j and I(t) = k. The larvae mature to adult
parasites, die due to the natural death of the larvae, or die due to the immune response
of the host. Note that the number of larvae is unobservable at autopsy, as is the level of
immunity. Only the number of mature parasites is counted. The mature parasites die at a
rate µM per day. Larvae mature at a rate γ per day. Larvae die at a rate µL+βI(t) per day,
where µL corresponds to the natural death rate of the larvae and β is the additional death
rate due to the host’s immune response. The host’s immune response, I(t), is assumed to
increase at a rate ν per larva per day and decrease at a rate µI per unit of immunity. The
immune response is assumed to affect larvae only and not the mature parasites. Thus for a
small time interval ∆t such that at most one event can occur, the transition probabilities at
time t+ ∆t are given by;

p(i+ 1, j − 1, k) = γj∆t + o(∆t),

p(i, j − 1, k) = (µL + βk)j∆t + o(∆t),

p(i− 1, j, k) = µM i∆t + o(∆t),

p(i, j, k + 1) = νj∆t + o(∆t),

p(i, j, k − 1) = µIk∆t + o(∆t). (13)

4.2.2 Auxiliary model

The observed data is the initial larvae count li and the mature larvae count mi at autopsy
time ti for hosts i = 1, . . . , n. An auxiliary beta-binomial distribution based on the observed
data has been used in the literature (Drovandi et al. (2011)) where,

p(M(ti) = mi|αi, βi) =

(
li
mi

)
B(mi + αi, li −mi + βi)

B(αi, βi)
.

This is re-parameterised in terms of a proportion pi = αi/(αi + βi) and overdispersion
ξi = 1/(αi + βi). The auxiliary model relates these parameters to the covariates (ti, li) via;

logit(pi) = fp(ti, li) = β0 + β1(log(ti)− log(t)) + β2(log(ti)− log(t))2.

log(ξi) = fξ(ti, li) = fξ(li) =

{
η1, if li ≤ 100

η2, otherwise
.

With the above re-parameterisation, the auxiliary parameters are φ = (β0, β1, β2, η1, η2) and
the generative model parameters are θ = (ν, µI , µL, β).
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4.2.3 Design results

The model parameters used for the design of experiments using indirect inference are (ν, µL)
as they can be reasonably well estimated by mature parasite counts (Drovandi et al., 2011)
and they relate to the auxiliary parameter estimates φ consistently across the parame-
ter space of interest. The prior distributions are taken from a previously published study
(Drovandi et al., 2011), where (

√
ν,
√
µL) are approximated by a bivariate normal distribu-

tion with mean (0.0361, 0.0854) and standard deviations (0.0045, 0.0342) with a correlation
of −0.6974. Figure 2(c) displays the median of 100, 000 data simulations from this prior
together with 95% prediction intervals. Other parameters are assumed known at estimates
found in previous studies; γ = 0.04 (Suswillo, et al., 1982), µM = 0.0015 (Michael et al.,
1998), β = 1.1 and µI = 0.31 (Riley et al., 2003). Note that β and µI can be difficult to esti-
mate from observed mature counts only (Drovandi et al., 2011). To make comparisons with
Drovandi & Pettitt (2013), designs are restricted to earlier than dmax = 300 days. Designs
are also restricted to be later than dmin = 24 days, as this is the minimum autopsy time of
the original training design dT . Beyond approximately 75 days there are no juveniles left a
priori, after which, the mature parasites follow a simple death process with death rate µM ,
since the immunity is affected only by the juvenile larvae. Note that the number of juveniles
is unobserved at autopsy time and only the number of mature parasites is recorded.

The offline step, Algorithm 2, was carried out for m = 3 and n = 10, 000. Figure 1(c) and
Figure 1(d) display the marginal relationship between θ = (µL, ν) and β0 as an example of
the relationship between the generative model parameters θ and the auxiliary parameters φ.
The black line is a lowess smooth (Cleveland, 1979), which indicates a strong relationship
between these generative and auxiliary parameters. Results for 100, 000 iterations of the
design algorithm of Müller (1999) are displayed in Figure 4 for the macroparasite exaumple.
The proposal distribution is a truncated normal random walk as described in the death
model example, Section 4.1.3, but with a standard deviation of 100. The utility function for
this problem was defined as the inverse of the determinant of the variance of the indirect
inference posterior distributions for (µL, ν);

u(d,y) = 1/det(V̂ar(µL, ν|y, d,φ)), (14)

where φ = φ(θ,x). Other choices of utility functions could be used such as the inverse of
the trace of the covariance matrix or the precision of µL or ν.

The optimal designs found by the indirect inference approach were similar to the optimal
designs inferred by the ABC approach (Drovandi & Pettitt, 2013). Results are displayed in
Table 2. As in the death model example, Gaussian kernel density estimation was used to
find the optimal design, with an automatically selected bandwidth, which was tempered by
smoothing factors h ∈ (0.1, 0.2, ...., 4) and restricted from 24 to 300 days.

5 Discussion

A novel approach to Bayesian experimental design has been presented for models with
intractable likelihoods. The use of indirect inference and the design algorithm of Müller
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Figure 4: Marginal density estimates of the designs for up to 1 to 4 observations of the
macroparasite model (plots (a) to (d) respectively) for 100, 000 iterations of the design algo-
rithm of Müller (1999) using indirect inference.
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Table 2: Optimal designs for the macroparasite model for k = 1, . . . , 4 observations, using
the design algorithm of Müller (1999) and indirect inference and using ABC (results from
Drovandi & Pettitt (2013)). Both approaches use a Gaussian smoothing kernel to find the
modal values. Expected utilities, Equation 12, are calculated using indirect inference at the
optimal design inferred by each approach.

k II Optimal design u(d) ABC Optimal design u(d)
1 93.7 4.971× 1011 99 4.971× 1011

2 (66.3, 116.0) 5.488× 1011 (71, 127) 5.457× 1011

3 (68.2, 101.3, 156.5) 5.932× 1011 (95, 105, 231) 5.841× 1011

4 (63.0, 105.2, 170.7, 238.3) 6.300× 1011 (79, 121, 231, 273) 6.262× 1011

(1999) allows sampling from an augmented joint probability distribution without calculating
the likelihood. The marginal mode of this distribution is the optimal time to observe the
stochastic process. The indirect inference approach is a more flexible approach than the
ABC approach of Drovandi & Pettitt (2013). It is carried out over a continuous design
space, unlike the ABC approach, which is carried out over a discrete set of designs. It avoids
the usual deficiencies of ABC such as large storage requirements and the necessity to choose
a tolerance level. As a result it could be extended to more complex design problems such
as designs with many experimental observations or multi-dimensional designs, which would
be difficult in the ABC approach. Furthermore, a new utility was proposed which improved
mixing and hence required less computation time and a lower tempering value J of the target
distribution.

The methodology was demonstrated using two examples and comparisons were made to
published results from existing methods. The death model served to introduce the approach
and results obtained were similar to the optimal designs inferred by the moment closure
approach (Cook et al., 2008). Marginal densities of the designs were similar to the same
inference carried out using the true tractable likelihood. The motivating example was a
stochastic epidemiological model for the evolution of macroparasites. The optimal designs
found by the indirect inference approach for both examples were similar to other approaches
in the literature such as moment closure and ABC. This highlights the success of the indirect
inference approach to optimal fully Bayesian experimental design. Furthermore, the moment
closure approximation is limited in its application and the ABC approach to optimal Bayesian
design has several drawbacks. The indirect inference approach helps us overcome some of
these drawbacks.

An important advantage over existing methods of the proposed indirect inference ap-
proach to Bayesian experimental design for models with intractable likelihoods is that the
indirect inference approach can be extended to include other design variables, without incur-
ring additional parameter storage costs. The ABC approach of Drovandi & Pettitt (2013)
suffers from a restriction in the dimensionality of the design space due to storage require-
ments. For example, in the macroparasite model, the number of initial larvae injected in the
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host cats could be incorporated in the inference for optimal design as well as the optimal
observation times. The auxiliary model could be altered to reflect this, for example, by ex-
pressing the overdispersion as a polynomial function of the initial larvae. One would expect
that the maximum number of available larvae would be optimal as this would provide more
informative data. But this would come at an experimental cost. A useful example to consider
is the optimal design for a clinical trial, where the optimal drug dose and observation times
of patient response could be estimated jointly by this approach. The ABC approach would
have difficulty storing all of the prior predictive data produced by discretising two design
dimensions. In the approach using indirect inference, all that is required is the storage of
the look-up table, {θi,φi}ni=1, regardless of the design dimension.

One difficulty with this design problem results from the fact that, for more than one
observation of the stochastic process, the observations are time ordered. This means that
the multi-dimensional density estimates of the design are defined on a simplex. For example,
for two ordered sampling times, uniform draws would see marginal modes at the end points
despite there being no unique multivariate mode over the simplex. The modes of the marginal
densities in Figures 3 and 4 are drawn towards endpoints dmin and dmax. Kernel density
estimation is used to find the true modes. As in Drovandi & Pettitt (2013), we take a
somewhat ad-hoc approach to temper the optimal bandwidth selected by the plug-in method
of Wand & Jones (1994) by various smoothing factors. The mode corresponding to the
highest utility is chosen as the optimal design. Bandwidth selection is fixed across the
space, which may not be appropriate. Ideas for further research include ascertaining a more
principled approach to this problem such as adaptive kernel density estimation or through
the use of Gaussian processes. Alternatively, a principled approach is to re-parameterise
a large number of experimental observations times over a lower dimensional space as in
Ryan et al. (2014), where the design algorithm of Müller (1999) is operated over the lower
dimensional parameterisation using the quantiles of a beta distribution. This is a flexible
approach requiring the optimisation of only two parameters of the beta distribution. Using
this methodology, the use of indirect inference could be extended to optimise a large number
of experimental observations, for example, 10 or more. This would be problematic for the
ABC approach due to an increase in tolerance for high dimensional designs, which can only
be offset by an increase in the storage requirements.

In the current setup, the offline step requires a training design dT , which is used to
estimate the relationship between the generative model and the auxiliary model through a
noisy mapping φ(θ,x). For simplicity we used the same structure as a previous experiment.
But it may be possible to improve estimation by relaxing this restriction. The choice of
designs dT from which to generate simulations x is itself a design problem and requires
further consideration in future extensions and applications of this approach. Other ideas
relating to the offline step include the smoothing of the estimate φ(θ,x) of φ(θ), without
incurring the increased computational cost as m → ∞. As discussed in Section 3, under
the assumption that the auxiliary estimator is consistent, the true mapping φ(θ), for a
particular value of θ, can be recovered as m→∞. Possibilities to avoid the computational
cost of increasing m and simultaneously (perhaps) improve inference, include the use of a

19



local multivariate smoother such as a spline, a kernel smoother or a Gaussian process, to
recover an estimate φ̂(θ) of φ(θ), based on the noisy mapping φ(θ,x).
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The work of Caitŕıona M. Ryan was supported by the Australian Research Council Discovery
Project DP1210269 and that of Christopher C. Drovandi and Anthony N. Pettitt by an
Australian Research Council Discovery Project DP110100159.

References

C. Andrieu & G. O. Roberts (2009). ‘The pseudo-marginal approach for efficient Monte
Carlo computations’. The Annals of Statistics 37:697–725.

D. A. Berry (2004). ‘Bayesian statistics and the efficiency and ethics of clinical trials’.
Statistical Science 19(1):175–187.

W. S. Cleveland (1979). ‘Robust locally weighted regression and smoothing scatterplots’.
Journal of the American Statistical Association 74(368):829–836.

A. R. Cook, et al. (2008). ‘Optimal observation times in experimental epidemic processes’.
Biometrics 64(3):860–868.

D. A. P. Delzell, et al. (2012). ‘Key properties of D-optimal designs for event-related func-
tional MRI experiments with application to nonlinear models’. Statistics in Medicine
31(29):3907–3920.

D. A. Denham, et al. (1972). ‘Studies with Brugia pahangi.-I. Parasitological observations on
primary infections of cats (Felis catus)’. International Journal for Parasitology 2(2):239–
247.

C. C. Drovandi, et al. (2013). ‘Sequential Monte Carlo for Bayesian sequentially designed
experiments for discrete data’. Computational Statistics & Data Analysis 57(1):320–335.

C. C. Drovandi & A. N. Pettitt (2013). ‘Bayesian experimental design for models with
intractable likelihoods’. Biometrics 69(4):937–948.

C. C. Drovandi, et al. (2011). ‘Approximate Bayesian computation using indirect inference’.
Journal of the Royal Statistical Society: Series C (Applied Statistics) 60(3):317–337.

C. C. Drovandi, et al. (2014). ‘Bayesian Indirect Inference using a para-
metric auxiliary model’. Tech. rep., Queensland University of Technology,
http://eprints.qut.edu.au/63767/.

20



R. A. Fisher (1926). ‘The arrangement of field experiments’. Journal of the Ministry of
Agriculture of Great Britain 33:503–513.

N. J. Fox, et al. (2013). ‘Modelling Parasite Transmission in a grazing system: the importance
of host behaviour and immunity’. PloS one 8(11):e77996.

A. R. Gallant & R. E. McCulloch (2009). ‘On the determination of general scientific mod-
els with application to asset pricing’. Journal of the American Statistical Association
104(485):117–131.

A. R. Gallant & G. Tauchen (1996). ‘Which moments to match?’. Econometric Theory
12(04):657–681.

D. T. Gillespie (1977). ‘Exact stochastic simulation of coupled chemical reactions’. The
Journal of Physical Chemistry 81(25):2340–2361.

C. Gourieroux, et al. (1993). ‘Indirect inference’. Journal of Applied Econometrics 8(S1):S85–
S118.

X. Huan & Y. Marzouk (2012). ‘Gradient-based stochastic optimization methods in Bayesian
experimental design’. International Journal for Uncertainty Quantification .

C. Kreutz & J. Timmer (2009). ‘Systems biology: experimental design’. FEBS Journal
276(4):923–942.

I. Krishnarajah, et al. (2005). ‘Novel moment closure approximations in stochastic epi-
demics’. Bulletin of Mathematical Biology 67(4):855–873.

S. Kullback & R. A. Leibler (1951). ‘On information and sufficiency’. The Annals of Math-
ematical Statistics 22:76–86.

D. V. Lindley (1972). Bayesian statistics, a review. Capital City Press, Montepelier, Ver-
mont.

E. Michael, et al. (1998). ‘Modelling variability in lymphatic filariasis: Macrofilarial dynamics
in the Brugia pahangi–cat model’. Proceedings of the Royal Society of London. Series B:
Biological Sciences 265(1391):155–165.

P. Müller (1999). ‘Simulation-based optimal design’. Bayesian Statistics 6:459–474.

J. A. Nelder & R. Mead (1965). ‘A simplex method for function minimization’. Computer
Journal 7(4):308–313.

E. A. Ottesen (2006). ‘Lymphatic filariasis: treatment, control and elimination’. Advances
in Parasitology 61:395–441.

21



N. Paciorkowski, et al. (2000). ‘B1 B lymphocytes play a critical role in host protection
against lymphatic filarial parasites’. The Journal of Experimental Medicine 191(4):731–
736.

R. W. Reeves & A. N. Pettitt (2005). ‘A theoretical framework for approximate Bayesian
computation’. In Proceedings of the 20th International Workshop on Statistical Modelling,
Sydney, pp. 393–396.

E. Renshaw (1991). Modelling biological populations in space and time. Cambridge University
Press, Cambridge.

S. Riley, et al. (2003). ‘Robust parameter estimation techniques for stochastic within-host
macroparasite models’. Journal of Theoretical Biology 225(4):419–430.

E. G. Ryan, et al. (2014). ‘Towards Bayesian experimental design for nonlinear models that
require a large number of sampling times’. Computational Statistics & Data Analysis
70:45–60.

A. A. Smith (1993). ‘Estimating nonlinear time-series models using simulated vector autore-
gressions’. Journal of Applied Econometrics 8(S1):S63–S84.

R. R. Suswillo, et al. (1982). ‘The number and distribution of Brugia pahangi in cats at
different times after a primary infection.’. Acta Tropica 39(2):151–156.

P. J. M. Van Laarhoven & E. H. L. Aarts (1987). Simulated annealing: Theory and Appli-
cations. D. Reidel Publishing Company, Dordrecht.

M. P. Wand & M. C. Jones (1994). ‘Multivariate plug-in bandwidth selection’. Computational
Statistics 9(2):97–116.

22


