
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Amoah, Raphael, Suriadi, Suriadi, Camtepe, Seyit A., & Foo, Ernest
(2014) Security analysis of the non-aggressive challenge response of the
DNP3 Protocol using a CPN Model. In IEEE International Conference on
Communications (ICC 2014), 10-14 June 2014, Sydney, NSW.

This file was downloaded from: http://eprints.qut.edu.au/73142/

c© Copyright 2014 IEEE

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/33491766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Amoah,_Raphael.html
http://eprints.qut.edu.au/view/person/Suriadi,_Suriadi.html
http://eprints.qut.edu.au/view/person/Camtepe,_Seyit.html
http://eprints.qut.edu.au/view/person/Foo,_Ernest.html
http://eprints.qut.edu.au/73142/

Security Analysis of the Non-Aggressive Challenge
Response of the DNP3 Protocol using a CPN Model

Raphael Amoah, Suriadi Suriadi, Seyit Camtepe, Ernest Foo
Information Security Discipline

Science and Engineering Faculty
Queensland University of Technology, Australia

{r.amoah, s.suriadi, seyit.camtepe, e.foo}@qut.edu.au

Abstract—Distributed Network Protocol Version 3 (DNP3) is
the de-facto communication protocol for power grids. Standard-
based interoperability among devices has made the protocol
useful to other infrastructures such as water, sewage, oil and gas.
DNP3 is designed to facilitate interaction between master stations
and outstations. In this paper, we apply a formal modelling
methodology called Coloured Petri Nets (CPN) to create an
executable model representation of DNP3 protocol. The model
facilitates the analysis of the protocol to ensure that the protocol
will behave as expected. Also, we illustrate how to verify and
validate the behaviour of the protocol, using the CPN model
and the corresponding state space tool to determine if there are
insecure states. With this approach, we were able to identify a
Denial of Service (DoS) attack against the DNP3 protocol.

Keywords—Supervisory Control and Data Acquisition Systems
(SCADA), Distributed Network Protocol Version 3 (DNP3), Non-
Aggressive Challenge Response (NACR), Coloured Petri Nets
(CPN).

I. INTRODUCTION

Supervisory Control and Data Acquisition systems
(SCADA) are systems that monitor and control industrial pro-
cesses within utility industries and critical infrastructures. They
are commonly used in industries such as water, electricity,
transportation, oil and gas to monitor and to ensure their
continued efficient operations [8].

SCADA systems comprise of master stations, outstations
and protocols. Master stations are centralised computerised
systems that interact with other devices by sending messages
in the form of requests. They are usually associated with
users (engineers). Outstations are the devices that take requests
from master stations and get them processed. They comprise
of Intelligent Electronic Devices (IEDs), Programmable Logic
Controllers (PLCs) and Remote Telemetry Units (RTUs) [8].
SCADA protocols define the various rules for which master
stations and outstations communicate via serial-line or TCP/IP
protocols.

In recent years, reported attacks have shown that there is a
growing number of malicious activities towards these critical
systems [10]. As a result, security concerns of industries have
been raised to ensure that these critical infrastructures are
not compromised [3]. Although concerns have been raised,
SCADA systems still face security issues as they (SCADA
systems) continually connect to corporate networks [5], [7].

There are many SCADA protocols deployed in various
industries. However, in this paper we focus mainly on the

Distributed Network Protocol Version 3 (DNP3) [1] protocol.
The purpose for our focus is because the protocol has a security
mechanism in its application layer [4], which has not yet been
formally analysed.

In this paper, we use Coloured Petri Nets (CPN) to create
a model specifically for DNP3 (based on the protocol spec-
ification) and also uses its corresponding state space tool to
perform the analyses.

CPN [6] is a formalism used to construct formal models
of systems. Its supported state space tool facilitates the veri-
fication and validation procedures for analysing models. The
applications of CPN and state space tool have been successful
in modelling and performing analyses for various systems such
as communication protocols, data networks and cryptographic
protocols [2], [9]. However, to the best of our knowledge, our
work so far is the first attempt at the formal verification of
security properties of a SCADA protocol using CPN.

This paper proposes a CPN-based approach to construct
a formal representation of one of the features of the DNP3
protocol, namely the non-aggressive challenge response. We
also propose to verify security properties such as data integrity
and availability of services of the protocol via the CPN model
by using the state space analysis tool. Verifying the security
properties of the protocol by using the model, we found a
previously unidentified vulnerability that can be exploited by
an attacker. Also, an additional benefit of the model is that it
can serve as a framework. Other features of the DNP3 protocol
can be added and other security properties can also be verified.

The rest of the paper is organised as follows: Section II
introduces the DNP3 protocol. Section III presents the CPN-
based approach for transforming the DNP3 protocol (Non-
aggressive challenge response). The verification of the DNP3-
NACR is described in Section IV. Section V and VI present
the discussion, conclusions and the future research.

II. DISTRIBUTED NETWORK PROTOCOL VERSION 3

DNP3 [1] is a layered and non-proprietary protocol, which
is designed to facilitate communication between master sta-
tions and outstations via serial-line or TCP/IP protocols.

The application layer of the DNP3 protocol contains
DNP3’s security mechanism, which ensures that certain re-
quests or responses are challenged and authenticated before
they are processed. The mechanism involves a Keyed-Hash

Message Authentication Code (HMAC) and a challenge-
response exchange [4]. Challenge response exchange, in ac-
cordance with the protocol’s specification [1, p. 175] indicates
that there are literally two different mode of its kind. Thus,
challenge response mode and an aggressive challenge response
mode. To avoid confusion, we refer to the challenge response
mode as the non-aggressive challenge response (NACR). So,
in this paper, our focus will be on NACR mode.

NACR is described as a method where a master station
sends a request to an outstation. On receipt of the request, the
outstation inspects the content of the request to determine if the
request contains a ‘critical’ code. A ‘critical’ code, according
to the protocol’s specification [1, p. 175] is considered to be
any code that has the potential to control a station, perform
set-point adjustments and set parameters. These codes are
identified as Mandatory and for this reason, any station that
uses any of these codes shall be challenged by the receiver’s
HMAC mechanism to prove its identity. Otherwise, the request
will not be processed. However, in case the code in the
request is not marked Mandatory, then it is treated as Optional.
Optional codes are not challenged by the HMAC mechanism.

It is to be noted that in this paper, we will refer to
every request that contain Mandatory code as critical request
and every request that contain Optional code as non-critical
request.

A. DNP3 Messages

A DNP3 request or response fragment consists of an
application control field, a function code and an object header
field. Except that with response, it also introduces an additional
field called “internal indicator” [1, p. 20-21]. These fields are
described below.

Application control: This contains various sub-fields that
provide necessary information to build and reassemble multiple
DNP3 fragment messages.

Function code: This defines the purpose of a message sent.
That is, if an outstation receives a request from a master, it is
the function code that tells the outstation what to do. In Table
I, we list only the function codes that are considered for this
paper with their corresponding meanings and their criticality.

Object header: This is an additional supplementary in-
formation that may be required to create a complete DNP3
message. They are associated with DNP3 objects (ie. various
places that hold binary input/output data, analog data, and
counters). It consists of various sub-fields such as group,
variation, qualifier and range fields. Its purpose is to ensure
that when a master station for instance sends a read command
(“0x01”) to an outstation, the accompanied object header in
the request fragment specifies to the outstation what format,
type or group of data the outstation must read and return as
response. In Table I, we have combined all the sub-fields of
the object header as a single element.

Internal indicator: This is a field that only appears in
response fragments from outstations. It contains two sub-
fields to indicate certain states and error conditions within
outstations. In Table I, we combine these two fields as one
and represent it as IIN.

TABLE I. DNP3 MESSAGES COMPONENTS

Fields Message and Meanings Criticality

Function Code
(fc)

- 0x01
Read Function Non-critical

- 0x02
Write Function Critical

- 0x81
Standard Response

Not Applicable
(Non-critical)

Object headers
(oh)

g20v1 / g20v7 - If paired with Non-critical
fc then return feedback in the format of

xx|xx|xx, otherwise return in format xx-xx-xx
g20v1 / g20v7 - If paired with Critical fc then

return feedback in the format of “gxxx”

Internal Indicator
(IIN)

00 IIN 1 - This is produced
if an Non-critical fc is received

00 IIN 2 - This is produced
if an Critical fc is received

Fig. 1. The Non-aggressive Challenge Response Protocol

B. DNP3 NACR Protocol

Fig. 1 presents a message sequence chart that reflects the
exact behaviour of NACR described in the DNP3 specification.

In Fig. 1, the master station sends a request to the outstation
(see line 1, Part A & B of Fig. 1). As the outstation receives
the request, a fragment inspection mechanism is triggered to
inspect the content of the request (details not show in Fig. 1).
Inspecting the request helps the outstation to determine if, the
received request contains a critical function code or not (i.e. a
critical or non-critical request). If the request received is a non-
critical message, the request is processed. And if, feedback is
required, the outstation replies with a “standard response” and
then the protocol terminates (see line 2, Part A of Fig. 1). A
standard response as we can see from line 2 of Fig. 1, contains
three fields, namely: a function code (0x81, see Table I), object
header and an internal indicator. It is to be noted that the object
header and internal indicator in the standard response can be
anything depending on request (see Table I row 2 & 3).

Alternatively, in case the request is a critical message, the
outstation’s HMAC mechanism is triggered to respond with
an authentication challenge to the master station (see lines
1 and 2, Part B of Fig. 1). The use of the authentication
challenge is to allow the user(s) associated with the master
station, to prove their identity by providing a valid HMAC
tag. After computation is completed and the HMAC tag is
obtained, the master station sends the tag to the outstation as an
authentication response (see line 3, Part B of Fig. 1). On receipt
of the authentication response, the outstation creates its own

HMAC tag using the same computation elements previously
used by the master station.

Afterwards, the outstation compares the tags for equality
in order to authenticate the master station. If the tag values
match, then authentication is granted, otherwise authentication
fails. If authentication is successfully granted, the outstation
generates a standard response and sends the standard response
to the master station (see line 4, Part B of Fig. 1). However,
if authentication was not successful, an error message is also
generated by the outstation and sent as a response to the master
station (see line 5, Part B of Fig. 1).

III. THE CPN-BASED APPROACH

CPN [6] is a formalism used to graphically construct
formal models of systems. It has the capabilities of Petri nets
for creating graphical models and a high-level programming
language that provides the primitives for defining data types,
data manipulations and creating compact models. Moreover, it
supported state space tool also facilitates the verification and
validation procedures for analysing models.

A CPN model consists of places, transitions and directed
arcs. Places capture various states of a model. They are
assigned with colour sets (.i.e data types) and may contain
data items called tokens or a multiset (collection data items).
Transitions signifies events. Arcs connect places to transitions
and transitions to places. In CPN, there are also variable that
are used. A variable may represents a particular colour set.
They are typed and can be assigned values. An assigned value
to a variable is known as a binding element.

In CPN, the occurrences of transitions may remove various
tokens (specified by the binding elements) from places and
distribute or create new tokens to other places. When places
in CPN have a given token(s), it is referred to as a marking, and
whenever a transition also occurs, it represents state changes.

A. Transforming DNP3-NACR protocol into CPNs

In this section, we show how we translated the high-level
description of DNP3-NACR into a formal model of CPN. To
achieve this, we use the message sequence chart provided
in Fig. 1 to informally describe how our transformation was
accomplished. However, it is worth noting that translating
SCADA processes or operations using CPN can be very
complex and challenging as well, depending on what type of
operations needs to be captured and how large the SCADA net-
work system is. For example, in this paper, we only modelled
a communication mode, which involved a security mechanism
between two entities. However, statistics from Table III of
initial our model show that, there are 922 nodes (places and
transitions) and 1254 arcs involved in the model. This figures
can get higher than these stated values (i.e. if, there should be
any additional operations required).

To represent the coordinated activities of master station,
outstation and the network (which all the details are not
depicted in Fig. 1), we use CPNs’ places, transitions and
various arcs expressions and functions to model the protocol.

Additionally, to capture the various DNP3 messages, we
model the representation of function code, object header,
internal indicator and all the dynamic states of the protocol

as CPN colour sets (See Table II), and then we captured its
operations using CPN standard metalanguage functions (SML).
Employing this approach made modelling easy and inclusive
as virtually any type of DNP3 messages can be captured.

Moreover, by making use of the CPN colour set types such
as product and record, we were effectively able to combine
and encode all vital information to represent DNP3 messages
from either the master station or the outstation, and use SML
to simulate their operations. It is to be noted that the SML
functions used in CPN are mostly symbolic rather than the
real operation. For example, the outstation’s way of generating
appropriate messages based on a particular request from the
master station, does not perform the actual generation of
response expected from the protocol specification. Rather, we
simply use SML to mimic the behaviour. In Table II, we
demonstrate this approach by modelling the responses from
the outstation.

B. The CPN Model of the DNP3-NACR protocol

In this section, we present the CPN model for the DNP3-
NACR protocol. However, we focus more on the mechanism
that inspects the contents of requests on the outstation. Before
we present our model, we first present the assumptions made
when creating the model and then define its data structure.

1) Modelling Assumptions:

• Communication is unicast.

• Both stations transmit requests and responses at time
that fit in a single fragment.

• The underlying layers of the protocol are reliable.
Therefore, we do not expect communication failures.

• Both stations are aware of which function code re-
quires critical operation or non-critical operation.

• The security mechanism in the application layer is in
place. And also, the user ID is pre-associated with
both stations.

2) Declarations: Table II depicts the declaration for the
CPN model of the DNP3-NACR protocol. The table has
three columns; Remarks, Components and Corresponding CPN
declarations, and four rows which also comprises of Requests,
Responses, Dynamic states and Functions. Remarks in the
table presents the various DNP3 objects. Components show
the elements that form the DNP3 objects. Corresponding CPN
declarations presents the translation of the DNP3 objects into
the CPN language.

An example for instance is, under Remarks, the Requests
row shows that a request fragment is made up of a function
code and an object header components. These components
have their corresponding CPN declaration to be colour set
(colset) fcode & oheader, which both have strings as its
data types. In addition, both colour sets have also been
assigned with token values. Thus, 1‘(“0x01”), 1‘(“0x02”),
and 1‘(“g20v1”), 1‘(“g20v1”) respectively. Therefore, in sum-
mary, a complete CPN request fragment is modelled by
assigning a data type called product, which binds both the
function code and the object header together (see the last
row of components and corresponding CPN declarations in
Table II).

Fig. 2. CPN Diagram of the Non-aggressive Challenge Response Protocol - The Top-level Page

TABLE II. CPN DECLARATION FOR THE OUR MODEL

Remarks Components Corresponding CPN Declarations

Requests

Function Codes
Val allrqfc = 1‘(“0x01”),

1‘(“0x02”), Colset fcode =
string; Var f:fcode;

Object Headers
Val alloh = 1‘(“g20v1”),

1‘(“g20v7”), Colset oheader =
string; Var oh:oheader;

CPN Request Fragment Colset Request =
product fcode*oheader;

Responses

Function Codes
Val allrspfc = 1‘(“0x81”),

Colset fcode =
string; Var f:fcode;

Object Headers Colset oheader =
string; Var oh:oheader;

Internal Indicator Colset IIN = string;
Var i:IIN;

CPN Response fragment Colset Response =
product fcode*oheader*IIN;

Dynamic States Eg: Master station
waiting for response

Colset states= with Ready
|WaitRq|WaitRsp|Process
|Critical|Terminate|Trigger|

Functions

Outstation Response
- “0x01”

fun OutPro(f:fcode, oh:oheader)
=let val(ff)=f val(ohh)=oh in if
f=“0x01” andalso oh=“g20v1”

then 1‘(“00|00|01”) else if f=“0x01”
andalso oh=“g20v7”

then 1‘(“111101”) else empty end;

Outstation Response
- “0x02”

fun Vresp(f:fcode, oh:oheader)
=let val(ff)=f val(ohh)=oh in if
f=“0x02” andalso oh=“g20v1”

then 1‘(“10|01|10”) else if f=“0x02”
andalso oh=“g20v7”

1‘(“11-00-11”) else empty end;

Outstation Response
with relation to the
Internal Indicators

(“0x01” or “0x02”)

fun OutIIN(f:fcode, oh:oheader)
=let val(ff)=f val(ohh)=oh in if
f=“0x01” then 1‘(“00 IIN 1”)

else if f=“0x02” then
1‘(“00 IIN 2”) else empty end;

3) Model Structure and CPN Diagrams: The DNP3-NACR
model is a hierarchical CPN consisting of two levels: a top-
level page (shown in Fig. 2) and a second-level page (shown in
Fig. 3). The top-level (Fig. 2) page shows the NACR model in
a single page to depicts all the internal structures of the master
station, outstation and the network (see the demarcations on
Fig. 2). It consists of 26 places and 13 substitution transitions.

On the top-level page, the master station is shown to be on
the far left, the network in the middle and the outstation on
the far right (see Fig. 2). As we can see from the figure, all the
coordinated activities of the master station have been modelled
with three substitution transitions: Sending Request, Received

Response, MGenerate Mac Tag, the network part with; Net-
work and the outstation with; Receive Request, Received Auth
Response, Creating Auth Challenge, SendTo Process Ncritical,
SendTo Process Critical, OGenerate Mac Tag, Overify Tags,
Process Auth Failure and Process All Requests.

The second-level page (Fig. 3) presents the details page of
various substitutions transitions from the top-level page that we
are interested. The purpose for this page is also to make it easy
to visualise the flow messages while making reference to the
protocol’s behaviour. The various substitutions transitions we
consider include: Sending Request, Received Response, Con-
nectA, ConnectB, Receive Request, SendTo Process Ncritical
and Process All Requests (see the top-level page).

4) Operation of the Model: Using our second-level page in
conjunction with Fig. 1, we describe the operation of our CPN
model. The initial markings of the master station constitute of
four places: M Ready, Object Headers, Function Codes and
LPN. These four places have the token colours of 1‘Ready,
1‘(“g20v1”) 1‘(“g20v7”), 1‘(“0x01”) 1‘(“0x02”) and 1‘()
respectively (see Sending Request on Fig. 3).

In the model, M Ready models the state where the master
station is ready to transmit requests (see Fig. 1). LPN is
introduced in the model to limit the number of requests sent at
a time. Object Headers and Function Codes model the request
contents from the master station to the outstation (see lines 1
and 2, Part A & B of Fig. 1).

The master station initiates request by firing transition Ini-
Pack if its enabled. IniPack gets its inputs (tokens) from place
Function Codes, Object Headers and the support of M Ready
and LPN to form requests. After IniPack has occurred or
fired, it creates a new token (multiset) to place Request. The
availability of a token in Request enables transition SendPack
to also fire or occur. As SendPack occurs, new tokens are
concurrently created or distributed to place M WaitRsp, Xfcode
and SendRq. M WaitRsp indicates that the master station is
waiting for response (see Waiting for response, Part A & B of
Fig. 1). Xfcode captures only critical request. SendRq indicates
that the master station is sending a request to the outstation
via the network (see lines 1 and 2, Part A & B of Fig. 1).

At this point, we assume that the request has been suc-
cessfully transmitted via the network and transition RecvRq on
the outstation is enabled (see Received Request on Fig. 3).

Fig. 3. The derived CPN Diagram from the Non-aggressive Challenge Response Protocol - The Second-level Page

RecvRq is enabled because it is already in the state WaitingRq
and the request its been waiting for has arrived. This concur-
rently causes the outstation to 1) change its state from place
WaitingRq to place OPrcs (see Processing, Part A & B of
Fig. 1 and Dynamic States in Table II), and 2) also causing
it to inspect the content of the request received (details are
not shown in Fig. 1). Inspecting the content of the request
is to determine if, the request requires a critical operation or
not. We model that by the various arc expressions surrounding
RecvRq.

As the received request requires no critical operation, then
transition Nritical Operation (on the outstation) is enabled to
forward the request to transition Process (see Process All
Requests on Fig. 3). As Process is enabled, it concurrently
accessed the rules provided on the arcs of place P readA,
P write, P readB and IntInd to generate standard response
for the master station (see Functions on Table II and also lines
2 and 4, Part A & B of Fig. 1).

On the outstation, we have been able to model the pro-
cessing of standard response fields with 6 places: Resps FC,
HeaderOut, Binary Input, Analog Output, Binary Output, and
IntInd respectively (see Process All Requests on Fig. 3). Place
Binary Input, Analog Output, Binary Output and HeaderOut
have the colour sets oheader (see Table II). They model the
various DNP3 objects on the outstation (details are not shown
in Fig. 1). Analog Output, and Binary Output have markings of
one token each (i.e. 1‘(“00|00|01”) and 1‘(“111101”) respec-
tively). HeaderOut represents the object header for the Binary
Input, Analog Output, and Binary Output places. Place IntInd
also models the internal indicator on the outstation. IntInd is
assigned with colour set IIN, but it has no token colour (see
Table II). Place Resps FC, which is also assigned with colour
set fcode, models the repository for response function codes
(see Table II). Resps FC has a token colour of 1‘(“0x81”) (see
line 2, Part A of Fig. 1).

As the non-critical request requires to read a value, the
object header in the request specifies which format and what
type of data value to read and return (see line 1, Part A & B
of Fig. 1). After the request has been executed from Process, a
token is taken from either Analog Output or Binary Output and
placed on HeadertOut. The presence of tokens on HeaderOut,

Resps FC, and IntInd enable transition feedback to transmit
standard responses to the master station via the network (see
lines 2, 4 and 5, Part A & B of Fig. 1).

However, if the received request requires a critical opera-
tion (i.e. request contains a critical function code), then tokens
are distributed to place Critical Request and Critical Operate
to trigger the outstation’s HMAC mechanism.

On the master station, transition RecvRsp gets enabled as
the outstation transmits the response via the network (see
Received Response on Fig. 3). Firing RecvRsp concurrently
distributes appropriate tokens to the various places associated
with the transition. The associated places model the DNP3
objects on the master station (details are not shown in Fig. 1).

IV. VERIFICATION OF THE DNP3-NACR PROTOCOL

In this section, we present the behavioural analysis of the
CPN model of the DNP3-NACR protocol. The purpose for this
analysis is to 1) find out how the protocol operates or behaves
under normal circumstance and 2) how the protocol behaves
under an attack scenario. This, therefore divides our analysis
into two parts. The first part being the analysis of our initial
model while the second part deals with an integrated adversary
in the network portion of the second-level page (see Fig. 4).
In our analysis, we will refer to the model with the adversary
as the “modified model”.

A. Baseline Behavioural Analysis of our Initial Model

TABLE III. STATE SPACE
REPORT - INITIAL MODEL

State Space Report
State Space Nodes 922
State Space Arcs 1254

SCC Graph Nodes 922
SCC Graph Arcs 1254

Time 0
Home Markings None
Dead Markings 19

Dead Transitions None
Live Transitions None

TABLE IV. STATE SPACE
REPORT - MODIFIED MODEL

State Space Report
State Space Nodes 121
State Space Arcs 130

SCC Graph Nodes 121
SCC Graph Arcs 130

Time 0
Home Markings None
Dead Markings 6

Dead Transitions 1
Live Transitions None

Table III presents the full state space report of our initial
model. It shows that the State Space and the Strongly Con-
nected Components (SCC) Graph have the same number of

Fig. 4. The Attacker Model - The Attack Page

nodes and arcs. SCC Graphs are usually employed to test for
reachability and for identifying loops in a given model [6].
Since our SCC graph values match our state space values,
every node in our model can be reached from at least one other
node. Furthermore, there are no loops in our model. Also, the
table shows the Home Markings row as none. A home marking
is a state or marking which can be reached from every state.
Since the home marking shows none, it also implies that our
model has a termination point.

Moreover, Table III also states 19 Dead Markings but no
Dead & Live transitions. A dead marking is a state in our
model, which has no binding elements to enabled it. These
identified dead markings contribute to the absence of home
markings, as well as the absence of dead & live transitions. A
transition is considered dead if, it has no path from a reachable
marking to enable it. And also, a transition is considered live
if, from any path of a reachable marking we can always find
an occurrence sequence containing the transition [6]. So, with
the absence of these transitions, it means that all transitions in
our model get activated at certain instances.

To inspect all the occurrences of the dead markings, we
used CPN’s SML query functions and also the state space
to individually simulate all the dead markings identified. A
close inspection on our results confirmed that all the dead
markings obtained and the absence of dead & live transitions
from our model are expected. This implies that the DNP3-
NACR protocol we modelled is terminating as expected.

B. Introducing an Attack Model in Our Initial Model

This section introduces an attack model in our initial CPN
model. It is assumed that the attacker is an insider. As a result,
our attack is modelled to be part of the network on the second-
level page (see Fig. 3). Due to space constraints, we only
present the network part of the second-level page where the
attacker is modelled (see Fig. 4).

In Fig. 4, the attacker is modelled with one transition (At-
tacker Machine) and one place (Capture Fragment). Attacker
Machine and Capture Fragment model the attacker’s ability
to capture request packet, modify its contents and re-route the
packet to its destination (see the arcs inscriptions on Fig. 4).
Also, we have assumed that the attacker is only interested in
modifying critical request to non-critical request since data in
the fragments are in ‘clear text’.

Now, we simulate our modified model with the state space
tool to obtain the second state space report.

Fig. 5. The State Space Analysis of the Modified Model

C. Behavioural Analysis of our Modified Model

Table IV presents the state space analysis of our modified
model. Comparing Table IV to Table III, we have identified
some major differences. First of all, in Table IV, we see a
reduction in the number of nodes and arcs present in the state
space and SCC Graph. This reduction indicates that there is
an unusual activity within the model. Secondly, we also see a
reduction in the the dead markings (thus, from 19 to 6). Lastly,
it is also stated that we have obtained a dead transition.

The decrease in the dead markings stated in Table IV
indicates that there are certain instances in our modified
model which prevent the model from terminating correctly
(i.e. comparing to the analysis of the initial model). Also,
obtaining a dead transition signifies that there is a transition in
our modified model that does not get activated or fired. These
behaviours (dead markings and transition) are not expected in
our model. Therefore, we must perform further investigations.

First-level Investigations: We firstly used the SML query
(ListDeadMarkings ()) to search throughout the model and
list all the dead markings. The dead markings results we
obtained are: 99, 97, 96, 24, 121, and 100. Afterwards, we also
simulated individually, all the dead markings obtained from the
query by using the state space tool. This, was to determine if
all the listed dead markings were expected in our modified
model (comparing to our initial dead markings in Table III).
The results we obtained from the simulations indicated that
dead marking 99, 97 and 121 were not expected.

Second-level Investigation: As we obtained unexpected
dead markings, we needed to create SML queries that will
have the inputs (markings) of the unexpected dead markings
and determine if there exists insecure states in our modified
model. If there exists insecure states in our model, then it
indicates that the protocol we modelled has a vulnerability.

As it is shown in Fig. 5, two SearchNodes queries were
defined. The first SearchNodes query was defined to have its
input from place Request while the second SearchNodes query
had its inputs from M WaitRsp, Xfcode, OPrcs and Ncritical
Operate from our modified model (see the first and second
SearchNodes queries of Fig. 5). The purpose for these queries
having their markings (inputs) from the mentioned places is
because, we have assumed that the master station has sent
a critical request to the outstation and therefore, we expect
tokens on place Critical Request and Critical Operate (see

Received Request on Fig. 3). However, if there exists a token
in any other place apart from Critical Request and Critical
Operate, then it indicates that there are insecure states in our
model (a vulnerability in the protocol).

From Fig. 5, the two queries have returned the node lists of
(93, 21, 2) and (54, 31, 110) respectively (see the comments for
both queries). By obtaining these node lists, we also needed to
verify and validate if they were reachable from each other. The
purpose for verifying and validating the reachability properties
of these node lists, is to determine or get the assurance that it
is not possible to get tokens in our expected places (i.e. place
Critical Request and Critical Operate).

The last section of Fig. 5 presents the use of SML query,
Reachable (), for pairing the node lists obtained. Results from
the pairings indicated that it is possible to reach node 110 from
node 93, node 54 from node 21, and node 31 from node 2 (see
the comments, where it is indicated true on Fig. 5). Reaching
node 110 from node 93, node 54 from node 21, and node 31
from node 2 indicate that there are instances in our modified
model, where Critical Request and Critical Operate do not
possess tokens but rather Ncritical gets a token. The presence
of a token on Ncritical indicate that there are insecure states
in our modified model, which eventually results in unexpected
dead markings. This, therefore indicates that the DNP3-NACR
protocol we modelled, will not always terminate as expected
due to the undesirable dead markings identified in our model.

A close inspection of our investigations (especially with the
second-level investigation) revealed that the presence of token
on Ncritical contributes to the presence of a dead transition
in the state space report (see Table IV). In terms of our
model, it means that as Ncritical on the outstation gets a
token, every critical request sent from the master station to
outstation is being treated as a non-critical request. Due to
this reason, transition T writeB on the outstation never gets
enabled because the data integrity has been compromised (see
Fig. 3). Moreover, it also implies that as T writeB cannot be
executed to generate the desirable response for the master, it
results in a Denial of Service (DoS) attack.

V. DISCUSSION

Through our model and its formal analysis, we were able
to identify insecure states that an attacker can exploit to cause
a DoS attack. DoS is possible if the attacker continues to
flip every critical request from the master station to a non-
critical request sent to the outstation. This behaviour will cause
the master station to be receiving unexpected messages (i.e.
unexpected dead marking in our model) from the outstation,
as the outstation will treat every request received from the
master station as valid. Secondly, this behaviour also indicates
that the availability of a particular service needed by the master
station is denied.

In the protocol specification [1, p. 206], it is stated that
there could be unexpected messages from a corresponding
station. However, occurrences of such behaviours are logged
after a threshold. We argue that even though there is a log
for such behaviour, there are no mechanisms that verifies data
integrity at the receipt of messages on any of the stations.
Additionally, there are no mechanisms to ensure the protocol
takes appropriate actions against this unusual activity. This

gives the attacker the chance to continually ensure that the
master station receives unexpected messages. Moreover, as the
availability of service is also compromised, there could be seri-
ous inconveniences in the SCADA environment. For example,
an outstation of a sewage industry is expecting a request from
the master station to control the flow of its sewage. As the
availability of service is compromised, controlling the flow of
the sewage will not be possible.

A solution that may counter this behaviour is to introduce
a digital signature scheme for all request or response messages
exchanged between the stations. A signed message will allow
any station to determine if a given message is authentic or the
message has been tampered with.

VI. CONCLUSIONS AND FUTURE WORK

We have shown that CPN can be used to model DNP3’s
non-aggressive challenge response protocol effectively. We
have shown that the state space tool supports various prop-
erties that can verify availability and data integrity. We have
illustrated how these properties can be used to identifying
unsecured states in the model which translates to attack on
DNP3’s non-aggressive challenge response mode.

Future work involves the refinement and generation of
the modelling and analysing of HMAC mechanism for both
non-aggressive and aggressive challenge-response. We will
also build a front-end framework to simplify the modelling
and analysis of SCADA protocols. Such a framework will
be generic and therefore applicable to widely used SCADA
protocols.

REFERENCES

[1] “IEEE Standard for Electric Power Systems Communications-
Distributed Network Protocol (DNP3),” IEEE Std 1815-2012, no. 1815-
2012 (Revision of 1815-2010), pp. 1–866, 2012.

[2] I. Al-Azzoni, D. G. Down, and R. Khedri, “Modeling and Verification of
Cryptographic Protocols using Coloured Petri Nets and Design/CPN,”
Nordic Journal of Computing, vol. 12, no. 3, p. 201, 2005.

[3] E. Byres and J. Lowe, “The myths and facts behind cyber security risks
for industrial control systems,” in Proceedings of the VDE Kongress,
vol. 116, 2004.

[4] G. Gilchrist, “Secure authentication for DNP3,” in Power and Energy
Society General Meeting-Conversion and Delivery of Electrical Energy
in the 21st Century, 2008 IEEE. IEEE, 2008, pp. 1–3.

[5] V. M. Igure, S. A. Laughter, and R. D. Williams, “Security issues in
SCADA networks,” Computers & Security, vol. 25, no. 7, pp. 498–506,
2006.

[6] K. Jensen, L. Kristensen, and L. Wells, “Coloured Petri Nets and CPN
Tools for modelling and validation of concurrent systems,” International
Journal on Software Tools for Technology Transfer (STTT), vol. 9, no. 3,
pp. 213–254, 2007.

[7] A. Nicholson, S. Webber, S. Dyer, T. Patel, and
H. Janicke, “SCADA security in the light of Cyber-Warfare,”
Computers & Security, vol. 31, no. 4, pp. 418–436, June
2012. [Online]. Available: http://dx.doi.org/10.1016/j.cose.2012.02.009;
http://www.sciencedirect.com/science/article/pii/S0167404812000429

[8] K. Stouffer, J. Falco, and K. Scarfone, “Guide to Industrial Control
Systems (ICS) Security,” NIST Special Publication, vol. 800, p. 82,
2008.

[9] S. Suriadi, C. Ouyang, and E. Foo, “Privacy compliance verification in
cryptographic protocols,” Transactions on Petri Nets and Other Models
of Concurrency VI: Lecture Notes in Computer Science, vol. 7400, pp.
251–276, 2012.

[10] K. Wilhoit, “The SCADA That Didn’t Cry Wolf,” Trend Micro Inc.,
White Paper, 2013.

