
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Buckingham, Lawrence & Hogan, James M.
(2014)
Computational science for undergraduate biologists via QUT.Bio.Excel. In
Abramson, David, Lees, Michael, Krzhizhanovskaya, Valeria, Dongarra,
Jack, & Sloot, Peter M.A. (Eds.)
Procedia Computer Science, Elsevier, Cairns, QLD, pp. 1403-1412.

This file was downloaded from: http://eprints.qut.edu.au/73076/

c© Copyright 2014 Lawrence Buckingham and James M. Hogan

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://dx.doi.org/10.1016/j.procs.2014.05.127

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/33491702?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Buckingham,_Lawrence.html
http://eprints.qut.edu.au/view/person/Hogan,_James.html
http://eprints.qut.edu.au/73076/
http://dx.doi.org/10.1016/j.procs.2014.05.127

Computational Science for Undergraduate Biologists

via QUT.Bio.Excel

Lawrence Buckingham1 and James M. Hogan1*
1 Queensland University of Technology, Brisbane, Australia.

l.buckingham@qut.edu.au, j.hogan@qut.edu.au

Abstract

Molecular biology is a scientific discipline which has changed fundamentally in character over the

past decade to rely on large scale datasets – public and locally generated - and their computational

analysis and annotation. Undergraduate education of biologists must increasingly couple this domain

context with a data-driven computational scientific method. Yet modern programming and scripting

languages and rich computational environments such as R and MATLAB present significant barriers

to those with limited exposure to computer science, and may require substantial tutorial assistance

over an extended period if progress is to be made. In this paper we report our experience of

undergraduate bioinformatics education using the familiar, ubiquitous spreadsheet environment of

Microsoft Excel. We describe a configurable extension called QUT.Bio.Excel, a custom ribbon,

supporting a rich set of data sources, external tools and interactive processing within the spreadsheet,

and a range of problems to demonstrate its utility and success in addressing the needs of students over

their studies.

Keywords: Bioinformatics, Molecular Biology, Computational Thinking, Education.

1 Introduction

Molecular biology is one of a number of scientific disciplines which has changed fundamentally

over recent years through an explosion in data availability. From the mid-1990s onwards, well-funded

public sequencing centres and projects generated a substantial number of annotated reference

sequences, data which formed the foundations of curated collections such as GenBank [1]. Publicly

accessible reference collections enabled scientific work beyond that of the individual laboratory, and

researchers picked carefully the low hanging genomic and proteomic fruit through standard – often

web-hosted – toolsets such as BLAST [2] and Clustal [3]. More recently, successive waves of Next

Generation Sequencing (NGS) technologies [4] have taken data generation from the national and

trans-national sequencing consortia and placed it firmly in the hands of the individual laboratory. The

* Author to whom all correspondence should be addressed. This work was supported in part by a grant to the second author

from Microsoft Research (Redmond), and the QUT Teaching and Learning Grant Schemes.

dramatic nature of these changes – in sequencing cost and consequent data availability and

computational challenges – is compellingly illustrated in Figure 1.

As has been argued elsewhere [5], such revolutionary changes in technology and data availability

present complex challenges to conventional scientific enquiry, with the late Jim Gray arguing

persuasively for the emergence of a data-driven science. This Fourth Paradigm relies on targeted

exploration and discovery from large data sets – data usually collected not to validate a specific

hypothesis, but as an umbrella resource supporting a scientific community. The idea is not in itself

new, being analogous to the taxonomic reference collections of a natural history museum, but operates

more dynamically and at far greater scale. The approach complements earlier methods based on

theory, experiment and simulation, retaining many of the characteristics of its predecessors, yet

differing markedly in its operation and in the mechanisms for generating hypotheses.

Data driven science is necessarily experimental, but fundamentally a computational paradigm:

each stage of the process, from the germination of the idea, through the selection and refinement of an

hypothesis and the data to test it, through to the confirmation or falsification itself depends upon the

computational facility of the researcher. If scientists of the future are to deal with the increasingly data

intensive nature of their disciplines, then their education must incorporate patterns of computational

thinking [6] in their approach to scientific questions, and practical training in the use of flexible

computational tools and environments. Elements of Exploratory Data Analysis (EDA [7]), data

filtration and visualisation must also be introduced.

These challenges are especially pronounced in molecular biology, a discipline in which many

students commence with limited exposure to mathematics and computer science, and one in which the

computational focus has changed rapidly as data generation has moved to the individual laboratory.

Training in computational science for molecular biologists must allow access to existing repositories

and the standard tools which accompany them, but provide sufficient flexibility in selection,

transformation and display to support novel analysis and annotation of local data sets. To be

successful in the undergraduate environment, these facilities must present few barriers to adoption,

and ideally they should be hosted within an environment already familiar to the students.

In this work, we introduce a developing environment for bioinformatics education built upon the

widely available Microsoft Excel spreadsheet product, using the add-in mechanism to provide a ribbon

called QUT.Bio.Excel, hosting algorithms and data structures from the established .NET Bio

bioinformatics libraries [8] and elsewhere. The toolset allows lightweight manipulation of large and

complex bioinformatic data sets and has been successfully used in undergraduate bioinformatics

classes at QUT for three semesters at various levels of maturity.

Figure 1: Decline in the cost of

sequencing since the original Human

Genome Projects, illustrating the

relative flat-lining that would have

resulted had the trend followed Moore’s

Law.

Source: National Human Genome

Institute Sequencing Costs:

http://www.genome.gov/sequencingcosts/

http://www.genome.gov/sequencingcosts/

This paper is organised as follows. In section 2 we provide some additional background to our

design choices and a technical overview of the system and the relationship between the computational

environment (Excel), the bioinformatics library (.NET Bio) and the external data and computational

services made available. Section 3 is concerned with examples of the exercises and their use within

undergraduate classes. We conclude in section 4 with a brief discussion of our experiences and plans

for further development of the system and its underlying ideas.

2 Background and System Design Principles

The arguments for embedding computational approaches to problem solving across the broader

curriculum are well summarized by Wing [6] and have found broad support in the computer science

community – through both academic and industrial initiatives. The need for a new breed of biologist –

fluent or at least comfortable conversing in the language of mathematics and computer science – has

been recognized for more than a decade [9], and scientists themselves were quick to recognize that

graduate coursework programmes in bioinformatics, however welcome, could not address the

fundamental gap in the skill base of the next generation of scientists. Hack and Kendall [9] noted in

2005 that:

“Teaching of the life sciences at undergraduate level has not yet adapted to [the

changes], and graduates with good first degrees often lack the skills required to

succeed in the new data-driven environment”.

and there is abundant anecdotal evidence that little has changed in many universities. These authors

suggested that biology departments should adopt learning outcomes based on those of the physical

sciences, with recommendations closely aligned to those of Isbell et al [10]:

“At a minimum, the curriculum of existing courses should be revisited to inculcate

computationalist thinking—specifically, core competencies in modelling, scales and

limits, simulation, abstraction, and automation”.

Yet these authors were also cognizant of the limitations of school education in preparing students

outside the specialist mathematics, physics and computer science programmes for these challenges,

and this was a key constraint on our approach. Our intention was to develop an environment that could

cater readily to the needs of first and second year undergraduate biology students, while offering

sufficient power and flexibility that it could support them in more sophisticated work over honours

and graduate study, and act as an interface between biology and computer science students in joint

projects. Sophisticated parsing and algorithms for search and pattern discovery were thus abstracted

away, provided by the .NET Bio project, but data and annotations are then available at scale within the

Excel environment.

More specifically, our goals were to:

1. Embed computational thinking directly within a tangible scientific context, supported with

practical manipulation of meaningful scientific data;

2. Enable practical facility with external data sets using standard tools while supporting post

processing and visualization; and

3. Avoiding the programming roadblock through the use of a familiar, yet flexible and

computationally rich environment. Specifically, we took the view that the spreadsheet

environment provided by Excel and equivalent systems was accessible to the biologists than

the more sophisticated facilities provided by MATLAB or R. Scripting languages such as

Python and Perl were not considered for similar reasons.

For computer science students we aimed to introduce them to the algorithmics of computational

science in a realistic setting, while allowing them to build new functionality on top of a sophisticated

open source library. From this perspective, Excel is a considerable burden, but its ubiquity and

familiarity to the student body, and its pervasive use as a cheap electronic lab note book offer

compelling advantages.

3 Architecture and Operation

In this section we describe the system in more detail, with a focus on the integration of Microsoft

Excel with external software and data sources to provide an accessible entry point for computational

biology. Many researchers utilize Excel to capture and process research data, particularly for

exploration, tabulation and visualisation. However, Excel does not readily process structured data files

of the types used in bioinformatics – typically genome definitions and annotations or result datasets

produced by software tools. Thus, if a user wishes to process this kind of data in Excel they are forced

into a laborious document formatting task. Significant efficiencies can be obtained by hosting tools

directly within the environment, and using worksheets as an input and output medium, removing the

need to copy and reformat data and switch between applications.

To this end we introduce a custom Excel tool ribbon which provides a simplified API for

programmatic interaction with Excel along with a standard procedure for integration of external

programs and datasets with Excel. The tool ribbon together with a suitable collection of external tools

allows an Excel workbook to be used as an executable scientific diary. As noted earlier, the principal

interactions take place using the .NET Bio libraries, but the approach is far more general.

A simplified schematic view of the system architecture is shown in Figure 2. The tool ribbon is

displayed as part of the Excel menu to provide access to external tools. Each tool is implemented by a

small collection of cooperating classes residing in a tool integration assembly deployed alongside the

add-in. When Excel starts, the add-in queries a configuration file to determine the identities and

logical groupings of tools to be added to the ribbon. Each action that can be performed through the

ribbon is represented by a button; buttons are laid out in visual groups according to the logical

groupings specified in the configuration file.

Figure 2: System architecture

Excel

QUT add-in

External data

External programs,

web services

Configuration Tool integration library

3rd party libraries

Figure 3 shows a view of the tool ribbon which has been configured to provide access to several

functions exposed by the .NET Bio [8] library plus visualisation software developed in-house at QUT.

The “Genome” group provides actions related to the processing of whole genomes: “Read GenBank

File” allows the user to load the details of an annotated bacterial genome from a GenBank-formatted

text file and store the content – DNA and gene annotations – into worksheets within the current

workbook; “GC Content” calculates the distribution of the nucleotides guanine and cytosine along a

selected strand of DNA. The actions in the group labelled “MUMmer” both perform a pairwise

comparison between two selected strands of DNA using the MUMmer algorithm [11] to locate short

stretches of identical DNA and plot the results. “Blast” actions allow the user to perform sequence

similarity searches with NCBI Web BLAST [2] and visualise the results using QUT’s SilverMap

software. The final group, “General” covers miscellaneous actions: “Choose Taxon” is a utility dialog

which allows the user to browse the NCBI Taxonomy database and select a taxonomic ID; “Run” is

used to execute tools.

The central ideas behind the add-in are:

1. Special purpose worksheets called Pages mediate interaction with tools. Pages are created by

clicking tool buttons in the ribbon.

2. Each page contains a metadata annotation which specifies the identity of the tool with which

the page is associated. The value used is the fully qualified name of the .NET class that

implements the tool.

3. Each page contains a table having rows which are records of a particular type associated with

the tool. Initially the table is empty. The table may be used as a data entry instrument which

is populated in some manner by the user, either via formulae or by hand, or the table may be

used as an output device; this depends on the tool. This arrangement allows the output of one

tool to be filtered in place then used as the input to another tool.

4. Most pages contain a simple input form where the user sets up parameters for the tool.

5. The user executes the tool associated with a page by clicking the “Run” button.

The initial release of the bioinformatics add-in provides five page types. A DNA page contains

DNA records, each of which stores the name, length, ID and full DNA sequence of a bacterial

chromosome. A CDS page contains CDS records in which details of protein coding sequences are

stored: gene ID, gene function, location, orientation, symbolic name, locus tag and amino acid

translation. A MUMmer page is used to execute the MUMmer sequence alignment tool and tabulate

the results. Blast pages are used to perform protein homology searches via NCBI Web BLAST and

tabulate the results, while GC pages let the user compute the GC content of a DNA sequence.

When the user clicks the “Run” button the identity of the tool is obtained from the page and an

instance of the tool connected to the page is obtained. The tool then carries out the following generic

sequence of operations:

1. Fetch parameter values from the page; read data from any input tables to which the page is

connected.

2. Perform the operation to generate results.

3. Write the data back into the table. Optionally, the tool may also generate one or more Excel

charts to display the data.

As an example, each time the user clicks the “GC Content” button the system adds a new GC page

to the workbook. The GC page is a worksheet which has been formatted into two main areas. The top

Figure 3: The QUT Bioinformatics Tool Ribbon

region of the document is set up as a data entry form where the user enters the identity of a DNA page

that contains the DNA strand to be analysed and the numeric parameters for the calculation. The

remainder of the spreadsheet is formatted as a table which will be populated with a list of GCRecord

objects. When the “Run” button is clicked the system locates two tool objects, one of type GCPage

which is connected to the GC page and another of type DnaPage which is connected to the DNA page

in the workbook. The GCPage obtains the first visible DNA record from the DnaPage, computes the

GC content then emits the results as a series of GC records in the GC table. Finally, the tool adds a

chart to the worksheet which displays a plot of the GC content of the target DNA strand as depicted in

Figure 4.

The page-and-table conceptual framework provided by the add-in lends itself naturally to a data-

driven work pattern where the user executes a sequence of tools based on leads picked up by

examining the data while maintaining a trail of intact worksheets which capture the inputs and outputs

of each operation. To illustrate this, consider an extension of the example illustrated in Figure 4.

Having obtained the results of the GC scan, the user is free to explore the result set using built-in

Excel functionality to filter the table and observe the impact on the chart. In bacterial DNA, regions in

which the GC content diverges significantly from the median tend to harbour biologically interesting

genes: in the case of A. baumannii, a region of abnormally high GC content coincides with a large

pathogenicity island [12]. Having identified a region of interest, the user might then switch to the CDS

page to examine the genes located in that region. Excel’s built-in research functionality might be used

to discover more information about particular genes. The user could then select a few genes of interest

and conduct a BLAST search to discover homologous genes in other organisms.

The add-in is designed to make creation and addition of new tools simple and non-invasive –

computer science students in the third year of their degree should easily be equal to the task of

encapsulating existing tools and libraries, as should some microbiologists, albeit with some degree of

coaching on certain aspects of software development that may not be covered by in traditional

scientific computation courses.

Figure 4: GC Content of Acinetobacter baumannii strain AB0057.

Tools are programmed in a modern .NET language such as C#, F# or Visual Basic, and typically

consist of up to four classes. It is mandatory to provide a class which can activate the tool when the

user clicks the corresponding button in the tool ribbon. This class implements a very simple interface

called IButtonHandler which is defined in the add-in support assembly. The button handler may

perform arbitrary actions such as triggering a visualisation but one of the more common functions

carried out is the creation of a new page which serves as the user interface for an external tool. Two

classes are needed to define a page: one class is used to define the record type saved in the page’s

embedded table while another class implements the operations of the tool itself, responding when the

user clicks the “Run” button. All information required to build the Excel worksheet is embedded in

these classes via metadata annotations on the classes and their properties. The button handler and any

ancillary classes are compiled into an assembly which is published along with the add-in. In the final

step, the programmer adds an entry to the application configuration file to make the new tool available

at run time.

4 Learning Activities

A suite of learning activities has been created to apply the QUT Excel extension in the setting of an

undergraduate computational biology course. The activities, which are available as self-paced learning

tasks at [13], are designed to provide useful educational outcomes for students while stimulating the

development of new tools and learning activities by faculty. The initial set of activities aims to bring

students up to speed with the facilities provided by modern versions of Excel and then move on to

comparative genomics. The learning activities are described below: the first two activities should be

completed in the order of presentation, while subsequent activities may be attempted in any order.

The first activity, “Work with GenBank Files,” demonstrates basic functionality of the add-in:

parsing an annotated bacterial genome from a GenBank-formatted text file using routines made

Figure 5: Large-scale symmetrical inversions between genomes of C. trachomatis and C. pneumoniae

identified by the MUMmer tool.

available by the .NET Bio library. The user selects one or more GenBank files and the contents are

added to pages in the current workbook: the full DNA sequence of the organism is added to the DNA

page while a list of records, each of which contains details of a protein coding gene, are added to the

CDS page. The activity also demonstrates how to download bacterial genomes from the NCBI FTP

server. Although rudimentary in nature, this action is the precursor to all subsequent activities.

A second activity, “Use Tables and Pivot Tables to Process Genomic Data,” makes students aware

of some of Excel’s data management capabilities. Students learn how to create tables, how to sort and

filter the contents of tables to organise information, and how to apply formulae to generate new

information from the content of a table. Students also learn how to use a simple pivot table to

summarise the contents of a collection of genomic information. This activity should bring students’

knowledge of Excel to a level where they are able to engage effectively with subsequent activities.

The activity “Produce a GC Map of a DNA Sequence” introduces the concept of GC Content – the

probability that a nucleotide selected at random from that sequence is guanine (G) or cytosine (C). The

lesson follows the process outlined in the extended example above to teach students how to plot the

distribution of G+C nucleotides across a genome and analyse the results. Students use Excel’s filtering

operations to identify regions of extreme GC content and identify the genes that occupy those regions.

In “Compare two DNA sequences with MUMmer” the .NET Bio implementation of MUMmer

[11], is used to compare the genomes of two closely related bacterial species. Students create a scatter

plot showing the relative locations of identical regions within a pair of sequences. By creating simple

formulae and working with Excel's built-in data sorting and filtering operations they zoom in and

explore regions of potential biological interest identified from the scatter plot. Students learn to

recognise a range of distinctive evolutionary events such as insertions, deletions, transpositions and

reversals by examining the scatter plots. An example which illustrates the effects of symmetrical DNA

inversions is shown in Figure 5.

The “Search NCBI sequence databases with BLAST” activity and its sequel, “Analyse BLAST

results with Excel and SilverMap” follow on from either of the two preceding activities. Having

identified one or more protein coding genes of interest the student uses the NCBI Protein BLAST tool

to search for genes which encode similar proteins. The tool tabulates the result set, a list of gene

subsequences similar to the query gene, with numerical goodness-of-fit values, the location and extent

of each matching subsequence and copies of the aligned subsequences. The integrated SilverMap

Figure 6: Genes exhibiting a high degree of similarity to C. trachomatis gatA.

visual analysis tool augments the tabular result display with a graphical view which shows the way

subsequences align against the query sequence and a radar view which provides a tangible overview of

sequence similarity. Figure 6 shows the outcome of a search for the gene gatA in Chlamydia

trachomatis viewed in SilverMap. Aligned subsequences are shown on the left hand side of the

display. The radar view appears on the right hand side: the query gene is placed at the centre of the

map; icons representing the aligned subsequences are laid out so that the distance from the centre

reflects the measure of similarity – sequences similar to the query are positioned close to the centre

while less similar sequences are placed further away. A third panel at the extreme right of the display

– collapsed in Figure 6 for clarity – presents the full detail of each match.

5 Experience and Conclusions

In this work we have presented a new approach to embedding a computational mindset into the

education of undergraduate biologists while avoiding traditional barriers of programming experience

and the need to learn complex data representations and languages. The toolset is freely available and

builds on a virtually ubiquitous software tool in Microsoft Excel, a rich open source bioinformatics

library in the .NET Bio system, and, through web service connections, a very broad range of publicly

accessible data sets and established software tools in the field. The approach has been trialed in

undergraduate bioinformatics practical classes at second year level for three semesters in collaboration

with our colleagues Professor Peter Timms and Dr. Adam Polkinghorne. The approach has

significantly enhanced the richness of the explorations possible in the timeframe. Even in these

classes, however, the student experience may be hampered by differences in laboratory configuration,

and in the difficulties some students experience in using cell reference formulae.

Much of this work will continue as a project associated with .NET Bio and our work in

bioinformatics visualisation. It is expected that additional exercises will be developed through faculty

activity and through ongoing student projects over the coming years.

References

[1] Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J., Wheeler D.L. (2006) GenBank,

Nucleic Acids Res. 2006 Jan 1; 34(Database issue):D16-20.

[2] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) Basic local alignment

search tool. J. Mol. Biol. 215:403-410.

[3] Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H.,

Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J. and Higgins D.G. (2007)

ClustalW and ClustalX version 2. Bioinformatics 2007 23(21): 2947-2948.

doi:10.1093/bioinformatics/btm404

[4] Metzker M.L. (2010) Sequencing technologies — the next generation. Nature Rev. Genetics,

Vol 11, pp.31-46

[5] Szalay, A.S., Blakely, J.A. (2009) Gray’s Laws: Database-centric Computing in Science. In:

Hey, A., Tansley, S., Tolle K. (eds) The Fourth Paradigm: Data-Intensive Scientific Discovery, pp.5-

10. Microsoft

[6] Wing, J. (2006) Computational Thinking. Communications of the ACM March 2006/Vol. 49,

No. 3, pp33-35.

[7] Tukey, John W. (1977). Exploratory Data Analysis. Addison-Wesley

[8] The .NET Bio Project, retrieved from http://bio.codeplex.com

[9] Hack, C. and Kendall, G. (2005) Bioinformatics: current practice and future challenges for

life science education. Biochemistry and Molecular Biology Education, vol 33, no. 2, pp82-85.

http://bio.codeplex.com/

[10] Isbell, C.L., Stein, L.A., Cutler, R., Forbes, J., Fraser, L., Impagliazzo, J., Xu, Y. (2010).

(Re)defining computing curricula by (re)defining computing. SIGCSE Bull., 41(4), 195-207. doi:

10.1145/1709424.1709462

[11] Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C. Salzberg,

S.L. (2004) Versatile and open software for comparing large genomes. Genome Biology Vol 5, Issue

2, Article R12. http://genomebiology.com/2004/5/2/R12

[12] Smith, M.G., Gianoulis, T.A., Pukatzki, S., Mekalanos, J.J., Ornston, L.N., Gerstein, M. and

Snyder, M. (2007) New insights into Acinetobacter baumannii pathogenesis revealed by high-density

pyrosequencing and transposon mutagenesis. http://genesdev.cshlp.org/content/21/5/601.full

[13] The QUT.Bio.Excel Project http://bio.mquter.qut.edu.au/qut.bio.excel

http://genomebiology.com/2004/5/2/R12
http://genesdev.cshlp.org/content/21/5/601.full
http://bio.mquter.qut.edu.au/qut.bio.excel

