
1. INTRODUCTION
The use of Wireless Sensor Networks (WSNs) for
vibration-based Structural Health Monitoring (SHM) has
increasingly become popular due to many features such
as low cost, fast and flexible deployment. Moreover, this
sensing technology is capable of processing data at
individual nodes and therefore enabling each
measurement point to be a mini intelligent monitoring
station (Lynch and Loh 2006). As a result, many WSNs
have been proposed for SHM applications and their
capacity and features can be found in several
comprehensive reviews (Lynch and Loh 2006; Rice and
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Spencer 2009). In more recent time, SHM research
community has paid more attention on commercial WSN
platforms as they offer modular hardware and open
software which can be further customized with ease to
meet requirements of SHM applications.

However, the use of WSNs for SHM poses a number
of technical challenges. Most WSNs have been initially
designed for generic purposes rather than SHM (Ruiz-
Sandoval et al. 2006). As a result, there are many
limitations of such a generic platform such as low-
sensitivity sensors, high noise, poor resolution of
analog-digital converters, inaccurate synchronization
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distinct WSN uncertainties that can directly degrade
data quality are data loss and data synchronization error
(Nagayama et al. 2007). Brief review and discussion
regarding these two factors are presented below.

Data loss has been seen as a serious problem for the
generic WSN platform and resulted from unreliable
wireless communications between sensor nodes
(Nagayama et al. 2007). In SHM-oriented WSNs,
reliable communication protocol based on
acknowledgement approach have been developed in
middleware services so that lost data packets can be
resent (Nagayama et al. 2009). Wireless data
transmission without loss is currently achievable though
it has not been available in a real-time manner.

Data Synchronization Error (DSE) is another well-
known uncertainty in WSNs which consists of two main
components, namely initial DSE and jitter-induced
DSE. Major sources of initial DSE include the timing
offset among local clocks and the random delay in start
time of sensing in sensor nodes (Nagayama et al. 2009).
Jitter-induced DSE is mainly due to (1) clock drift, (2)
fluctuation in sampling frequency of each sensor node
and (3) difference in sampling rate among sensor nodes.
In the SHM-oriented WSN platform, there are a number
of solutions in both hardware and software
customization efforts to cope with DSE. Rice and
Spencer (2009) customized a multi-metric sensor board
named SHM-A in order to effectively mitigate the
second and third source of jitter-induced DSE. The first
source of jitter-induced DSE, clock drift, can be
effectively dealt with using clock drift compensation
algorithm (Nagayama et al. 2009). As a result, the
remaining synchronization error for SHM-oriented
Imote2 platform is mainly initial DSE which is random
in range of a single sampling period (Linderman et al.
2011). Even though a lower initial DSE can be further
achieved with re-sampling algorithm (Nagayama et al.
2009), this algorithm costs more computation effort at
leaf nodes. Tolerance capacity of SHM applications
with respect to relatively small DSE in SHM-oriented
WSNs needs to be assessed in order to avoid
unnecessarily computational burden.

There are limited studies that have investigated
effects of DSE on SHM applications and almost all of
them focused on effect of DSE on OMA techniques.
The rationale for that is, as a global SHM approach,
OMA generally requires data from different
measurement points to be well-synchronized with each
other (Nagayama et al. 2007). It is worth noting that this
requirement can be easily met in the traditional wired
sensing system but not in case of WSNs with inherent
synchronization errors. Nagayama et al. (2007) noted
substantial effects of initial DSE on modal phases
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and unreliable data transmission (Spencer et al. 2004).
Typical example can be seen in the case of the generic
version of the Imote2 WSN, i.e. using basic sensors and
sensor board ITS400 (Rice and Spencer 2009).
Realizing such limitations, a number of research centers
have begun enhancing capacity of selective WSN
models in order to align them with requirements of
SHM applications. High-fidelity sensor boards for SHM
have been customized and specific middleware
algorithms have been written to achieve tighter network
synchronization and reliable wireless communication
(Rice and Spencer 2009; Pakzad et al. 2008; Nagayama
et al. 2009). This SHM-oriented WSN platform can be
best illustrated in the combination of Imote2-based
control & communication unit with SHM-A sensor
board and middleware developed in the Illinois
Structural Health Monitoring Project (Rice and Spencer
2009). Since they are the most popular WSNs which
have been used for SHM applications, the generic and
SHM-oriented platforms of Imote2 are selected as
representatives for this study hereafter.

Although SHM-oriented WSNs have achieved initial
promising results, uncertainties of this platform have not
been completely removed. Effects of SHM-oriented
WSN uncertainties have not been studied in depth,
particularly with respect to popular but demanding
global SHM applications such as output-only modal
analysis (OMA) and output-only modal-based damage
identification (OMDI). It is worth noting that, OMA and
OMDI have gained more popularity in comparison to
their input-output counterparts in recent years as they
are more applicable for monitoring in-service civil
structures such as bridges under normal traffic operation
(Brincker et al. 2003).

To address this need, this paper first presents a brief
review of major uncertainties of the SHM-oriented
WSN platform and their effects on OMA techniques
from prior studies. Then, effects of the most inherent
uncertainty are investigated with respect to one of the
frequent OMA applications, i.e. OMA employing
merged data from multiple tests (Dohler et al. 2010).
Frequency Domain Decomposition (FDD) and data-
driven Stochastic Subspace Identification (SSI-data) are
selected for this investigation as each of them has been
considered as the most robust technique for either
frequency domain or time domain.

2. MAJOR UNCERTAINTIES OF SHM-
ORIENTED WSNS

There are a number of technical uncertainties or
challenges that have been identified by prior studies
(Lynch and Loh 2006; Spencer et al. 2004). However,
from a perspective of SHM applications, two major and



detected from simulation model by one parametric
OMA method, whereas Krishnamurthy et al. (2008)
observed considerable influence of initial DSE on mode
shape magnitudes estimated by FDD in an experiment.
Yan and Dyke (2010) confirmed effects of DSE on
mode shapes in both simulation and experimental
studies. Nguyen et al. (2014) compared effects of
different DSE levels on data collected from one real
tower structure using the single sensor setup. Since
previous research has mostly focused on simple
structures such as cantilever and simply supported
beams or on the use of the single sensor setup, effects of
initial DSE on OMA of civil structures in larger scales,
which in many cases need to employ multi-setup tests,
need to be further studied. Such effects on the most
popular (but in different domains) OMA techniques (i.e.
FDD and SSI-data) definitely deserve a comparative
investigation in order to uncover their strength and
weakness. For the sake of completeness, FDD, SSI-data
and associated strategies of data merging are briefly
described in the next section.

3. OMA AND DATA MERGING METHODS
Representing non-parametric OMA is Frequency
Domain Decomposition (FDD), proposed by Brincker et
al. (2000). This technique starts with estimation of
output power spectral density matrices each of which
(Gyy) corresponds to one of the discrete frequencies (ωi)
in the frequency range of interest. These matrices are
then decomposed by the Singular Value Decomposition
(SVD) algorithm as follows

(1)

Where Ui = [ui1,ui2,...,uim] is a unitary matrix
containing the singular vectors uij; Si is a diagonal
matrix containing singular values si; j and m are the
index and total number of measured responses,
respectively. Next, singular value lines are formed by
assembling si for all discrete frequencies (ωi) and
plotted for implementing the peak-picking of modes. A
mode is generally estimated as close as possible to the
corresponding resonance peak of the first singular value
line where the influence of the other modes is as small
as possible. In the case of two orthogonally coupled
modes occurring at one frequency, the previous step is
carried out for the stronger mode whereas the peak on
the second singular value line will be “picked” for the
weaker mode (Structural Vibration Solutions A/S 2011).
Mode shapes are finally derived from singular vectors
(uij) corresponding to selected frequencies. Besides
FDD, there are two variants of this technique, i.e.

G j U S Uyy i i i i
Hω( ) =

Enhanced FDD and Curve-fit FDD but three techniques
work similarly except the fact that estimation of
damping ratios is only implemented in the two later
ones. Similar to traditional input-output non-parametric
techniques, FDD family is said to be fast, simple and
user-friendly as well as immune to computational
modes (Zhang et al. 2005). However, difficulties may
arise in the case that dense and close modes are
simultaneously present.

On the other hand, data-driven Stochastic Subspace
Identification (SSI-data) has been considered as one of
the most robust families of OMA time domain
techniques since it can take into account furious modes
from measurement noise; cope well with dense and
closely spaced modes and avoid spectrum leakage
(Zhang et al. 2005; Brincker et al. 2001). This OMA
family relies on directly fitting parametric state space
models to the measured responses of a linear and time
invariant physical system (Overschee and Moor 1996;
Structural Vibration Solutions A/S 2011) as follows.

(2)

Here, xt and yt are the state vector and the response
vector at time t, respectively. A is the system state
matrix whereas C is the observation matrix. Amongst
two stochastic processes, wt is the process noise (i.e. the
input) that drives the system dynamics whilst vt is
measurement noise of the system response.

In later phase, subspace models are first established
for different dimensions up to the user-defined
maximum value. Estimates of matrices A and C (i.e. Â
and Ĉ, respectively) are then obtained by the least
square solution. By performing the eigenvalue
decomposition of the system matrix estimate (Â), its
discrete poles (µi) and eigenvectors (Ψ) can be found
as follows (Brincker and Andersen 2006):

(3)

The continuous time poles and subsequently modal
frequencies and damping ratios are then obtained:
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(4c)

where ∆t is simply the sampling period. The mode shape
matrix is finally derived from the observation matrix
and eigenvectors:

(5)

By using increasing subspace model orders, multiple
sets of modal parameters for each pole are obtained and
their deviation can be used to examine whether the pole
is as stable as a genuine structural mode. This leads to
the extensive use of the stabilization diagram not only in
SSI-data (see Figure 5 or 6 for illustration) but also in
most parametric modal analysis methods. It might be
worth noting that there is another SSI family that is
based on covariance of data and therefore named
covariance-driven SSI (SSI-cov) but this OMA
approach is likely to confront higher computational
errors due to the issue of matrix squared up in its
calculation process (Zhang et al. 2005). Among
different estimation algorithms for SSI-data (Structural
Vibration Solutions A/S 2011), Un-weighted Principal
Component (UPC), has been used most for OMA of
civil structures. Another advantage of the SSI-data
techniques over the FDD family is that they have
potential to be operated in the automated manner.

Besides the use of a single dataset, it is not unusual in
practice, to merge data from multiple setups in both
input-output and output-only modal analysis (Reynders
et al. 2009). Such a usage is able to cover a large
number of measurement points using a limited number
of sensors for the denser measurement which is always
desirable in modal analysis, particularly for mode shape
estimation. Multiple successive test setups are employed
with a few sensors (known as reference sensors) being
kept fixed while the others are being roved along the
structure. A common problem with this usage is the
inconsistency and non-stationary amongst different
datasets (for instance, due to different operational and
environmental conditions) which may cause estimation
errors in the OMA process (Reynders et al. 2009). Since
DSE is a newer type of measurement uncertainty as
previously mentioned, it is necessary that its impact be
thoroughly investigated.

There are two most common ways of merging data in
both SSI approaches in general and SSI-data family in
particular from multiple tests, namely Post Separate
Estimation Re-scaling (PoSER) and Pre Global
Estimation Re-scaling (PreGER). By means of data of
reference sensors, the former merges secondary data

Φ Ψ= Ĉ

ζ
λ

λi
i

i

=
( )Re

(i.e. mode shapes) estimated by SSI of all individual
tests whilst the latter relies on merging the correlation of
all primary sub-datasets (i.e. time series) into a unified
set before performing SSI techniques (Dohler et al.
2010). Compared to PoSER, the advantage of PreGER
is that only one stabilization diagram needs to be dealt
with in the identification phase regardless of number of
the setups while the user of PoSER may need to work
with every single diagram of each setup. However,
PreGER is likely to be less robust with respect to small
non-stationarities (Reynders et al. 2009) which may be
the case of DSE. The robustness of both methods and
particularly PreGER with respect to DSE obviously
deserves further investigation. For the sake of
simplicity, SSI-data-UPC-PoSER and SSI-data-UPC-
PreGER are hereafter shortened as UPC-PoSER and
UPC-PreGER, respectively.

4. RESEARCH METHODOLOGY
As previously discussed, effects of common initial DSE
on OMA approach especially on two most popular
OMA techniques (i.e. FDD and SSI-data-UPC) need to
be investigated more thoroughly on more complex
structures with another realistic sensor arrangement
strategy (i.e. employing multiple sensor setups). To
realize this aim, a sophisticated and large-scale
laboratory bridge model is selected for data acquisition
with multiple successive tests using limited number of
sensors. In order to have DSE-free data, the original data
herein was collected by a precisely synchronized wired
sensing system, before being contaminated with an
additional amount of measurement noise to account for
the higher presence of this factor on WSNs in
comparison with the wired sensing system employed
herein. Serving as benchmark (or DSE-free) data, the
noise-added accelerations are then introduced with a
relaxed level of initial DSE for SHM-oriented WSN
platform in a random manner. To investigate impact of
DSE randomness, this pollution process was repeated
fifty times to generate fifty sets of DSE-corrupted data
for subsequent analyses. Both DSE-free and DSE-
corrupted data are used for OMA utilizing FDD and two
variants of SSI-data-UPC techniques, to identify modal
frequencies, mode shapes and their changes with respect
to DSE. Damping ratios are not under consideration of
this study based as their estimation can be inaccurate in
OMA approach and they are not among commonly-used
damage indices for SHM (Brincker et al. 2001). The use
of projection channels is also explored to see whether it
can mitigate DSE impact. The basis for this is that the
impact of DSE is generally higher for higher modes (see
section 6.3) which is similar to the impact of
conventional measurement uncertainties such as
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measurement noise which can be handled by the use of
the projection option. Figure 1 presents the flowchart of
the investigation approach and further details can be
found in section 5.

5. BRIEF DESCRIPTION OF TESTS AND
ANALYSIS
5.1. The Bridge Model and Wired Sensing
System
Object for data acquisition is the through-truss bridge
model at the Queensland University of Technology
(Figure 2). With almost 600 degrees of freedom and
dimensions of 8550 mm by 900 mm for its foot print and
the height of 1800 mm at the two towers, this bridge
model can be one of the largest laboratory through-truss
bridge models for SHM purposes. To simulate ambient
excitation, three large industrial fans were used at three
different positions along the structure. Fan speed and
direction were altered from one test to another to take
into account changes of wind speed and wind direction
in reality.

The bridge model was instrumented with nine high-
quality uni-axial seismic ICP® accelerometers
(www.pcb.com) with the sensitivity of 10 V/g. In each
test, the sensors were divided into three groups each of
which covers one cross section. This is based on the
assumption of the cross section moving as a rigid body,
the movement of one rectangular cross section can be

described by three uni-axial accelerometers (Structural
Vibration Solutions A/S 2011). In each group, two
accelerometers were used for vertical measurement and
the other was to measure the lateral response. Of three
groups, one was kept as the reference (i.e. near mid-
span) and the other two were roved along the bridge
model. Figure 3 illustrates two examples of the sensor
setups. The total number of successive sensor setups
was set at seven.

The sensing system was controlled by a National
Instruments (NI) data acquisition system including NI
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Figure 1. Flowchart of the investigation approach
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Figure 2. Physical bridge model and its wired sensing system



cDAQ 9172 chassis, NI 9234 dynamic signal
acquisition modules and LabVIEW Signal Express
software (www.ni.com). To achieve precise
synchronization, the internal timebase of one module is
selected to be shared with the other modules so that all
modules can use the same timebase in the sampling
process. Sampling rate was set at relatively high value,
i.e. 1766 Hz which allows the use of different
decimation factors to achieve different lower sampling
rates. For illustration purpose, the data used hereafter
was obtained by decimating ten times the original data,
therefore resulting in 176.6 Hz as the effective sampling
rate. This effective rate can be considered belonging to
a common range for practical SHM applications.

5.2. Simulation of Noise and Initial DSE
All seven-subset data were added with relatively high
level of Gaussian noise (i.e. 20 percent in root-mean-
square sense) to account for the presence of higher noise
in WSNs in comparison with the wired sensing system
used herein. In this step, the MATLAB function named
“randn” was utilized to create sequences of Gaussian
distributed numbers with the specified root-mean-square
values (MathWorks 2011). Acting as the DSE-free
source, each noise-added acceleration sequence is then
contaminated with an initial DSE which was randomly
assigned between zero and the effective sampling period
in the simulation process. To do so, the DSE value was
first added to the initial time vector of each time series to
obtain the (DSE-induced) delayed time vector and based
on these two time vectors, the DSE-corrupted data was
then derived from the DSE-free acceleration sequence by
means of the MATLAB one-dimensional interpolation
function named “interp1”. The “interp1” function has a
number of options which are actually the methods of

interpolation including popular ones such as linear or
cubic spline interpolation methods. It is worth noting that
the linear interpolation method has already been utilized
in the re-sampling algorithm for SHM-oriented WSN
middleware (Nagayama et al. 2009) due to the fact that
it requires less computational effort from sensor
resources. Since the simulations herein are not subjected
to such a computational constraint, the cubic spline
interpolation method in the “interp1” function was
adopted to achieve more accurate simulation results
(MathWorks 2011). This process was run fifty times to
generate fifty DSE-corrupted datasets to facilitate
statistical analyses.

5.3. OMA and Analyses of Effects of DSE
The DSE-free and fifty DSE-corrupted datasets were
used as the input for FDD, UPC-PoSER and UPC-
PreGER techniques. The analysis was conducted using
ARTeMIS Extractor software (Structural Vibration
Solutions A/S 2011) with two options for channel
projection as previously mentioned (i.e. enable and
disable). It is worth noting that the use of channel
projection is mainly recommended to the case that has
many sensors. After several trials, the number of
projection channels selected was four as they provided
the best results. Also, the dimension for the state space
model (i.e. the maximum model order) was set 180 as it
was found to be sufficient for both UPC-PoSER and
UPC-PreGER. In ARTeMIS Extractor software, UPC-
PoSER is simply called UPC or Un-weighted Principal
Component (see also Figure 4) whilst UPC-PreGER is
known as UPC Merged Test Setups.

For each OMA technique, fifty sets of modal
parameters (i.e. frequencies and mode shapes) were
estimated at each mode and can be used to compare with
the benchmark modal parameter set (i.e. from the DSE-
free data). As this direct comparison is the same as level
1 of modal-based damage identification process
(Brincker et al. 2001), popular damage indices such as
frequency changes and the deviation from unity of
Modal Assurance Criterion (MAC) of mode shape pairs
can be used as primary indicators for assessment of DSE
impact. Interested readers could refer to Allemang
(2003) for more details of the MAC index.

To evaluate changes of modal parameters with
different bases like frequencies under DSE impact, basic
statistical measures are employed including root-mean-
square error (RMSE) of DSE-corrupted frequencies
(with respect to the DSE-free frequency) and relative
difference of DSE-corrupted frequency estimates. With
MAC deviations which share the same base (i.e. zero),
box-plot function (MathWorks 2011) was adopted to
visualize some useful statistical properties (such as
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Figure 3. Two examples of the sensor setups



median, quartiles and extremes) of MAC deviations at a
number of first modes.

6. RESULTS AND DISCUSSIONS
6.1. Common Results of OMA for DSE-Free
Data
The first four modes detected are purely (or almost
purely) lateral modes, at around 6.5, 7.7, 13.2 and 14.2
Hz, respectively (Figure 4) whilst three higher modes
detected (at around 18.2, 22.2 and 23.4 Hz) are mostly
coupled ones between lateral and vertical responses.
Figure 4 shows such a coupled mode (mode 7).

6.2. The Use of Channel Projection
Of the three techniques, the channel projection has the
most substantial influence on robustness of UPC-
PreGER with respect to DSE presence. While the
projection-disabled version of UPC-PreGER works
properly with DSE-free data estimating all
aforementioned modes, it completely fails detecting
modes 3 and 4 from most of the fifty sets of DSE-
corrupted data [Figure 5(a)] even though higher
dimensions of the state space model were tried.
However, the use of channel projection has enhanced
UPC-PreGER so that these two modes can be
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Figure 4. Typical mode shapes estimated from DSE-free data
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Figure 5. Stabilization diagram of UPC-PreGER with projection: (a) disabled; (b) enabled



estimated again in the projection-enabled version
[Figure 5(b)]. Besides, the channel projection has also
certain effect on the way UPC-PoSER copes with
DSE. Some noise modes are mistakenly detected at
locations of true modes [see Figure 6(a) for the case of
mode 2] if the channel projection is not used. This
problem is also resolved once the projection option is
enabled [Figure 6(b)]. Obviously, channel projection
is needed for two SSI-data-UPC techniques in order to
effectively detect genuine modes under the presence
of DSE. Impact of the projection option on
performance of FDD technique is presented in the
next section.

6.3. Effects of DSE on Outcomes of Three
OMA Techniques
The previous section has proven the necessity of
applying the channel projection for UPC-PreGER and
UPC-PoSER when DSE is present in the sensing
system. Besides, it is necessary to examine whether

FDD is under the same impact of the projection.
Therefore, in each OMA round, the projection method
was applied for two UPC-PreGER and UPC-PoSER
whilst the robustness of FDD was also examined for
both cases i.e. with the channel projection being enabled
and disabled. The remaining of this section will present
and discuss the results of DSE impact on estimates of
frequencies and mode shapes.

There is no change in frequencies estimated by FDD
for both DSE-free and DSE-corrupted data. This once
again reinforces the prior findings that DSE does not
affect frequencies estimated by FDD (Krishnamurthy et
al. 2008; Yan and Dyke 2010) and highlights the
robustness of this technique with respect to DSE impact
on frequency estimation.

Frequency estimates by SSI family are subjected to
certain influence from DSE but the effects are fairly
different for two SSI-data-UPC sub-techniques as
illustrated in Table 1. Whilst UPC-PoSER experiences
the maximum frequency RMSE of less than 0.01 Hz,
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Figure 6. Stabilization diagram of UPC-PoSER with projection: (a) disabled; (b) enabled

Table 1. Effects of DSE on frequency estimates by UPC-PoSER and UPC-PreGER

Technique Mode DSE-free (Hz) RMSE (mHz) Min (Hz) Max (Hz) RD (%)

1 6.550 0.04 6.550 6.550 0.00
2 7.700 0.15 7.700 7.701 0.01

UPC- 3 13.187 6.36 13.167 13.183 0.13
PoSER 4 14.271 2.32 14.272 14.278 0.04

5 18.171 7.41 18.158 18.180 0.12
6 22.207 1.29 22.203 22.208 0.02
7 23.425 6.23 23.426 23.447 0.09
1 6.547 19.33 6.573 6.616 0.66
2 7.705 3.05 7.706 7.718 0.15

UPC- 3 13.215 89.66 13.290 13.643 2.67
PreGER 4 14.288 65.04 14.348 14.540 1.35

5 18.210 70.63 18.304 18.601 1.63
6 22.094 109.89 21.913 22.273 1.63
7 23.433 101.45 23.339 23.676 1.44

∗ RD = (Max-Min)×100/DSE-free



that figure of UPC-PreGER can be as large as 0.1 Hz.
Similarly, the upper bound for relative frequency
difference of the former technique is only 0.13 percent
whereas that of the latter is up to 20 times larger.

Figure 7 shows the distribution of MAC deviations
(from unity) of mode shapes estimated by FDD (with
two options for the channel projection), UPC-PoSER
and UPC-PreGER. Obviously, the results of these four
cases can be seen to be classified into two groups.
MAC indices of mode shapes estimated by FDD with
two cases and UPC-PoSER mainly experience drops
of less than 0.1 and their trend clearly show that DSE
impact increases along with the increase in the mode
order. However, those from UPC-PreGER can be as
large as 0.3 or even higher for extreme cases and their
trend is somewhat non-stationary at transitions
between certain modes. These trends are reflected not
only via median value of MAC deviations but also in
general through the dispersion statistics such as the
inter-quartile range (i.e. the height of the box in
Figure 7).

The results above show that FDD is the most robust
technique among those studied herein with respect to
DSE effects. Its frequency estimates stay unchanged
under the impact of DSE regardless of whether the
channel projection is applied or not. The mode shape
magnitudes estimated by this technique have also
changed the least. It appears, with reasonable number of
sensors like those used in this research, that FDD does
not necessarily require the assistance from projection
method even though a slight improvement in MAC
values can be seen if the projection option is enabled.
Amongst three techniques, UPC-PreGER is the worst
possibly due to the fact that this technique merges the
correlation of data before performing SSI and errors
may be exaggerated during this merging phase. With the
help of the channel projection, UPC-PoSER also
overcomes negative impact of DSE on local sets of data
and achieves considerable robustness to cope with this
uncertainty.

It can also be seen from the above results that, impact
of DSE on estimates of mode shapes generally increases
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with the order of modes which is similar to effects of
measurement noise. One simple way to combat this
negative influence is to limit number of modes of
interest and this fact has become a fundamental axiom to
achieve a feasible modal-based SHM solution in
practice. MAC deviation (from unity) of around 0.05 at
the sixth mode estimated by FDD or UPC-PoSER might
be considered as an acceptable fluctuation threshold for
monitoring of structural damage in real civil structures,
see for instance (Brincker et al. 2001).

7. CONCLUSIONS
This paper has presented an intensive investigation of
effects of uncertainties of SHM-oriented WSNs on
performance and outcome of several popular OMA
techniques considering a frequent realistic application.
Based on a brief review, the paper has first revealed that
whilst data loss can be effectively treated using reliable
communication protocols, DSE is still unavoidable and
can be considered as the most inherent uncertainty.
Since OMA has been identified as one of the SHM
approaches possibly suffering the most from negative
impact of DSE, effects of a relaxed DSE level on three
most frequently-used OMA techniques have been
investigated with respect to one of the common usages
i.e. merging data from multiple tests. A combination of
precisely synchronized experimental data of a large-
scale laboratory structure, simulation of SHM-oriented
WSN uncertainties including random noise and random
DSE and commonly-used statistical tools such as the
box-plot has been adopted to facilitate the assessment
process. The results have first shown that the impact of
DSE on modal parameters (except frequencies
estimated by FDD) tends to be more severe for higher-
order modes and this trend is similar to conventional
measurement uncertainties such as measurement noise.
Of the three OMA techniques, FDD is the most robust
technique possibly because it avoids working directly
with time-domain data like the other two and impact of
DSE at spectral peaks is the least. Without using
channel projection, both variants of SSI-data (i.e. UPC-
PoSER and UPC-PreGER) have been found to suffer
from unreliable estimation of modal characteristics
under disturbance of DSE. In this regard, the use of the
channel projection has been proven to be able to
enhance the performance of the two SSI-data variants to
some extent. Nevertheless, the remaining impact of
DSE on the outcome of UPC-PreGER is still
considerable while that of UPC-PoSER is reduced to be
more or less the same as the impact on the outcome of
FDD. Since parametric and non-parametric OMA
approaches have always been recommended to be used
together to complement each other, the combination of

both FDD and UPC-PoSER with the channel projection
option has been shown to be effective and highly
recommended for OMA of multi-setup datasets
subjected to DSE such as those collected by WSN.
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