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Abstract— This paper introduces a minimalistic approach
to produce a visual hybrid map of a mobile robot’s working
environment. The proposed system uses omnidirectional images
along with odometry information to build an initial dense pose-
graph map. Then a two level hybrid map is extracted from the
dense graph. The hybrid map consists of global and local levels.
The global level contains a sparse topological map extracted
from the initial graph using a dual clustering approach. The
local level contains a spherical view stored at each node of the
global level. The spherical views provide both an appearance
signature for the nodes, which the robot uses to localize itself in
the environment, and heading information when the robot uses
the map for visual navigation. In order to show the usefulness of
the map, an experiment was conducted where the map was used
for multiple visual navigation tasks inside an office workplace.

I. INTRODUCTION

Different methods have been introduced to tackle the
problem of acquiring a map of a mobile robot’s environment.
The problem is called simultaneous localization and mapping
(SLAM). Due to the importance of solving the SLAM prob-
lem before truly autonomous mobile robots can be built, the
robotics community has given much attention to SLAM over
the last decade. The result is a wide variety of methods, with
each method having its own advantages and disadvantages.

Recently, the methods which deal with SLAM as a non-
linear graph optimization problem, i.e. graph-based SLAM,
have gained increasing attention in the literature. The output
of these methods is a pose-graph where the nodes associate
past poses of the robot with map features. The edges of the
graph model spatial constraints between the nodes [1]. The
optimization step aims to select the spatial configuration of
the nodes, which best satisfies the constraints encoded in
the edges. Generally, the output from the graph optimization
algorithms is a pose-graph map, where the nodes of the
graph are created at every step the robot has performed.
Therefore, the graph is dense and it contains redundant
information that can be removed leading to a more compact
map, which is preferable in the case of mobile robots with
limited resources.

In this paper we use a graph-based SLAM algorithm to
produce an initial dense pose-graph map of the environment.
Then the initial map is used to build a sparse hybrid map
consisting of two levels, global and local. Fig. 1 illustrates
the hybrid map. On the global level, the world is represented
as a topological map. The topological map is extracted from
the initial dense pose-graph using a dual clustering approach,
introduced in this paper. The proposed approach selects
nodes from the initial map which are located in areas such
as doorways and corners, allowing the topological map to

maintain full coverage of the environment while minimizing
the required number of nodes. On the local level of the map,
each node stores a spherical view representation of image
features extracted from an omnidirectional image recorded
at the position of the node. The spherical views contain the
3D location of the image features on a sphere. Thus, we only
store the direction of the features (but not their distance or
depth) from the centre of the sphere, which corresponds to
the centre of that node. The spherical views are used for
estimating the robot’s heading in a visual navigation system
where we use the map to perform a path following task.

The paper is constructed as follows. In Section II, we
discuss related work in the field. Section III contains details
of the method to build the initial map. In Section IV we
present the dual clustering algorithm which selects the nodes
of the global map. A visual navigation strategy is presented
in Section V. The experiment and results are presented in
Section VI. Finally, we draw conclusions in Section VII.

II. BACKGROUND

Different vision-based mapping methods using graph op-
timization have been proposed [2], [3], [4]. These methods
follow the same general approach where the map is built as
a graph, with the nodes containing camera views from the
environment and the graph edges are expressed as geometric
constraints between these views. A loop closing mechanism
is deployed to detect when previously mapped areas are
revisited. When a loop is detected, a new constraint link is
added to the graph and then a graph optimizer is invoked to
correct the map. Although the work presented in this paper
follows the same general approach, we differ by proposing a
spherical view representation for the nodes in the local level
of the hybrid map and also we introduce a dual clustering
algorithm to reduce the number of nodes in the global level.

The loop detection mechanism in this paper uses a sim-
ilarity measure between the views stored in the nodes of
the map. The detection mechanism could simply be a direct
one-to-one view matching procedure. However, more sophis-
ticated methods for loop detection can be used to provide real
time performance when the graph contains a large number
of nodes. Such methods include the hierarchical vocabulary
tree [5] and the FABMAP visual vocabulary [6].

A naive solution to reduce the number of nodes in the
graph would be based on the time stamp of the nodes, where
the graph is sampled using a fixed time step. This method
would fail if the robot stands still for some time or has a
changing speed while mapping the environment. Another
simple solution would be based on the distance between
the nodes [7]. However, this method does not take into



Fig. 1. Proposed hybrid map with two levels i.e. global and local. The
environment is represented as an adjacency graph of nodes on the global
level of the map and each node on the local level represents the 3D location
of image features on a sphere. Our method represents the direction of the
features (but not their distance or depth) from the centre of the sphere,
which corresponds to the centre of that node.

account the rapid change in the appearance of the robot’s
surroundings which could occur when the robot crosses a
door or goes round a corner. Successive images can differ
considerably on the two sides of the doors or corners, which
could become a challenge when the robot tries to actually
use the map for navigation. This implies that image similarity
should be considered in the process. In general, the methods
which use image similarity to reduce the number of nodes
in the map start by clustering the nodes based on image
similarity and then choose key nodes as a representative for
each image group [8]. These methods can be used when
information about the geometric distances between the nodes
is not available. However, in our case the distance between
the nodes is provided by the graph optimization approach
and we can use that as an additional source of information.
Instead of choosing the key nodes in the graph based on the
geometric distance alone or the similarity alone, we propose
a method which selects the nodes in the graph based on a
combination of the two metrics.

Recently, Ila et al. [9] introduced a pose-graph mapping
method where they measure statistical content on links to
enforce node sparsity and limited graph connectivity. The
result is a compact map which contains non-redundant nodes
and links. The main criteria with which the nodes are selected
relates directly to reducing the uncertainty in the estimation
of the robot position. This tends to produce densely dis-
tributed nodes when the robot performs curved paths and
sparsely distributed nodes when the robot performs straight
forward paths. This is because of the increasing uncertainty
resulting from turning motions. The method presented in this

paper uses different criteria to reduce the number of nodes
in the map. Our main goal is to produce a map with sparse
nodes located in places that are suitable to use the map for
visual navigation tasks.

III. BUILDING THE HYBRID MAP

We aim to produce a hybrid map extracted from an initial
dense pose-graph map. The hybrid map consists of a global
level contains a sparse topological map and a local level
which stores a spherical view for each node (see Fig. 1).
Each spherical view is generated from an omnidirectional
image recorded from the position of the node.

The initial map building process is carried out based on a
stop-sense-go strategy, where the robot is driven by a human
operator. The driver follows the following routine. The robot
starts a mapping step by capturing an omnidirectional image
from a camera on-board, while it is static, along with the
odometry reading from the wheel encoder. Then the robot
moves a short distance forward and stops. If there is a need
to perform a rotation, the robot rotates a certain angle and
ends the current mapping step by stopping. The driver repeats
as many mapping steps as required to cover the environment.

The constraints between each consecutive poses along
the trajectory of the robot consist of two components, i.e.
translation and rotation. These constraints can be extracted
from the internal odometry of the robot. However, using the
odometry alone is not always accurate enough to build the
constraint network. First, the odometry measurements are
affected by noise due to wheel drift and slippage, especially
during rotation. Second, using odometry alone cannot pro-
vide any information about loop closure. To deal with these
limitations, we use measurements from the omnidirectional
vision sensor on-board as an input for a Bayesian filtering
framework (extended Kalman filter) to reduce the error from
the odometry measurements. In addition to that, the vision
sensor is used to perform loop closure. A loop closure results
in an edge in the constraint network which relates the current
robot pose with a former robot pose. These loop closure
edges contradict the pose estimates resulting from plain
odometry. In order to correct the structure of the graph after
a loop is detected, we use the graph optimization algorithm
TORO [10] which considers each edge in the pose graph as a
cost function for each two connected nodes and re-arranges
the nodes in the graph such that the total costs associated
with all edges are minimized.

A. Relations Based on Odometry

Let the robot’s pose at any given time step t be represented
as pt = (xt, yt, θt), where (xt, yt) are the coordinates of
the robot and θt is the current heading. In our stop-sense-
go strategy, robot motion between two consecutive poses is
approximated by a translation d followed by a rotation δ,
and the model which obtains the pose pt from pt−1 isxtyt

θt

 =

xt−1yt−1
θt−1

 +

d̂t cos (θt−1)

d̂t sin (θt−1)

δ̂t

 , (1)



where d̂t = dt + εd and δ̂t = δt + εrot are obtained from
odometry measurement by adding independent Gaussian
noise, where:

εd ∼ N(0, ωrange|d|), (2)

εrot ∼ N(0, ωturn|δturn|+ ωdrift|d|). (3)

ωrange, ωturn and ωdrift represent the range error, the turn
error and the drift error of the robot encoder respectively.

B. Tracking of the robot heading

In order to reduce the uncertainty in tracking the position
of the robot as much as possible, we use an extended Kalman
filter (EKF) [11] to track the heading component of the
robot’s pose as follows: at step t, we compute the relative
orientation between the current pose of the robot pt and the
previous pose pt−1 using the two omnidirectional images
which were recorded at each position. Then by adding this
relative orientation to the heading θt−1, we obtain a vision
based observation for the robot’s heading at step t. Then by
feeding this heading observation to the EKF filter with the
robot motion model from Eq. 1 to produce a prediction step
of the filter, we estimate the robot pose at step t. The relative
orientation between two omnidirectional images is computed
based on the epipolar geometry of spherical cameras [12].

C. Loop Closure Using Vision

Loop closing capability is an essential part of any mapping
system. In our case, without this capability the robot can face
the problem of assigning the same area in the environment
to multiple nodes leading to a globally inconsistent map.
Therefore, the robot uses its vision sensor to detect loops
along the trajectory using place recognition based on image
similarity. As mentioned earlier, each node in the map
contains a group of image feature points extracted from
an omnidirectional image recorded when the node was first
created. Using these image features, the similarity between
any two nodes in the map is measured using the number of
matched feature points between the two groups of features
stored in each node [13]. So in order to detect loop closures,
the robot calculates the similarity between the current node
and all the nodes which are located within a certain radius.
When the ratio of the number of matched feature points to
the number of features stored in the current node exceeds a
certain threshold, a loop is considered detected. As a result,
the robot adds a link between the two detected nodes in
the graph with a distance of zero. Then TORO, the tree
optimizer, is run on the graph to correct the pose estimates
of the nodes in the map according to the newly added link.

There are two important parameters that appear in the
above loop closure strategy. First, the distance in which the
robot checks for a loop closure. The longer the radius the
more nodes need to be matched with the current node. In our
experiments we use a radius of 3m. Second, the matching
threshold which the robot uses to decide that a loop has
been closed. This threshold is affected by the texture of the
mapped environment, which in turn affects the number of
image features that can be extracted from the images. In our

Fig. 2. Maximising the intra-cluster similarity aims to automate the
selection of reference views from areas such the middle of the doorways
and the edge of the corners.

experiment a loop is considered closed if 35% of the features
are matched (a parameter that was obtained experimentally
for our set-up).

IV. GRAPH PRUNING BY DUAL CLUSTERING

The resulting map from the above step is a dense graph
containing nodes created at each step the robot has per-
formed. In this section we extract a sparse topological map
from the dense graph by deploying a graph pruning step.

In our case, the map is considered as a set of spatial
objects with the nodes representing these objects. Each node
has two attribute domains, a geometric domain in the XY
plane and a non-geometric domain represented by image
similarity. The aim is to select a sub-set of these nodes in
a way that sufficiently covers the environment, allowing the
robot to use the map for tasks such as autonomous visual
navigation. In order to do that we use a clustering method
called dual clustering [14]. Dual clustering is the process
which partitions a set of spatial objects into different clusters
in such a way that each cluster forms a compact region in
the geometric domain while maximizing the similarity in the
non-geometric domain.

In the geometric domain, the clustering algorithm pro-
duces compact clusters. This is a preferable effect as we do
not want the selected nodes, which correspond to the centers
of the clusters, to be very sparse creating gaps in the final
map. In the non-geometric domain (i.e. image similarity), the
clustering algorithm selects the centers of the clusters in a
way which maximizes the intra-cluster similarity. The effect
of this process is also preferable for our case because, in the
cases where a cluster of nodes expands through a doorway
or a corner, the center of the cluster will be selected from
the middle of the doorway or the edge of the corner. This
selection allows the node to cover both sides of the door
and the corner preventing a discontinuity in covering the
environment, which can be a problem when actually using



the map for tasks such as visual navigation. Fig 2 illustrates
this situation.

A. The clustering algorithm

Our clustering algorithm is inspired by a fast imple-
mentation of the dual clustering method presented in [14].
The algorithm performs clustering based on density in the
geometric domain, while maximizing the similarity in the
non-geometric domain. In order to achieve this, for each
cluster center in the geometrical domain, the neighborhood
of a given radius Ψd should contain a minimum number
of points. And in the non-geometric domain, the similarity
between the neighborhood points of each cluster and the
center of that cluster should be above a certain threshold
Ψs. The clustering process is performed incrementally as
follows:

1) Initialize a cluster by starting from the first unclassified
node in the graph Np (based on the time stamp). If
the number of nodes in the neighborhood of Np is
less than a predefined threshold κ the node is ignored.
Otherwise, create a new cluster C.

2) Insert all nodes from the neighborhood of Np, which
have similarity with Np greater than Ψs, in C.

3) Compute the center of the cluster Nref by selecting
the node which is most similar to all other nodes in
the cluster, as

Nref = arg max
k∈C

(
∑
j∈C

sim(Nj , Nk)),

where sim(Nj , Nk), the similarity between the two
views in the nodes Nj and Nk, is the number of
matched image features.

4) Check an arbitrary node Nq , from the neighborhood of
Np. If the number of nodes in the neighborhood of Nq

is at least κ, and the similarity between an unclassified
node No in the neighborhood of Nq and the center of
the cluster is above Ψs, then insert No to the cluster
C and recompute the center of the cluster as in step 3.
Repeat step 4 until the cluster C can not be extended
any more.

5) Repeat all the steps until all the nodes in the graph are
classified.

We discuss how to set the clustering parameters in our
experiments in Section VI.

V. USING THE MAP FOR NAVIGATION

Every map can be judged by its usefulness for practical
purposes. In our case the map is used for a path following
routine inside an indoor environment.

When robots work inside an indoor environment, their
navigation generally is restricted to what the humans con-
sider to be a path inside that environment, such as corridors
and the areas between the furniture. These routes effectively
simplify the task of navigation by limiting the robot to only
one degree of freedom along the path. And by representing
this path as a sequence of images, the following framework
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Fig. 3. The proposed visual navigation strategy. Nj is the current node in
the path and Nk is the next node. The dashed line is the path, θj and θk
are the relative orientations between the robot’s heading and the reference
orientation of the nodes Nj and Nk respectively. θr is the robot’s desired
heading.

of the appearance-based approach for visual navigation is
used in the literature [15], [16], [17]:
• The path is first built during a learning phase where the

robot is controlled by a human operator. During this
phase the robot captures a sequence of images along
the path.

• A subset of the captured images is selected to represent
the reference images along the path.

• During the replay phase, the robot starts near the first
position and is required to repeat the same path.

• The robot extracts the control commands of its motion
by comparing the currently observed image with the
reference images along the path.

In this work we adopted a similar framework for visual
path following using a sequence of nodes from the map.
Fig. 3 illustrates the navigation strategy. First the robot
localizes itself to one of the nodes in the path. This is done by
selecting the node which has the the highest similarity score
with the currently observed view. Let Sj be the similarity
score, i.e. the number of matched points. The similarity score
is also computed between the current view and the next node
in the sequence. Let Sk be the similarity score with the next
node. Then the following ratio is computed:

ωj =
Sj

Sj + Sk
, ωk =

Sk

Sj + Sk
. (4)

The heading angle θr is computed as a weighted sum:

θr = ωj ∗ θj + ωk ∗ θk. (5)

where θj and θk are the relative orientation between the
current view and the nodes Nj and Nk respectively (see
Fig. 3). By following this navigation strategy, the nodes in
the path can be considered as directional signs which lead
the robot toward its goal.

In order to estimate the relative orientation between two
views, we use epipolar geometry. The method first estimates



Fig. 4. Left: The true trajectory of the robot. Right: The experimental
platform. An ActivMedia P3-AT robot equipped with an omnidirectional
vision system.

the so-called essential matrix E. Then, based on the method
introduced by Hartley and Zisserman in [18], the essential
matrix is factored to give Eq. 6 which contains the rotation
matrix R ∈ SO(3) and the skew-symmetric matrix [t]× of
the translation vector t ∈ R3.

E = [t]×R. (6)

After that, the the relative orientation is extracted from the
rotation matrix R.

VI. EXPERIMENTS AND RESULTS

Our experimental platform is an ActivMedia P3-AT
robot equipped with a GigE progressive camera (Jai TMC-
4100GE, 4.2 megapixels) with a curved mirror from 0-
360.com. The following experiment was carried out in an
office floor at the University of Lincoln. We drove the robot
on a tour between the offices while recording a set of
omnidirectional images. The resulting database contains 222
images with approximately 35 cm between the consecutive
images. Fig. 4 shows the positions of the recorded images
obtained using the GMapping library [19]. The GMapping
algorithm provides a SLAM solution using laser range-
finder scans based on a Rao-Blackwellized particle filter. The
output of the algorithm is an estimate of the robot trajectory
along with an occupancy grid map of the environment. We
would like to emphasize that our method does not use laser
scan matching. We use this information for visualisation
purposes only.

The robot starts from location (x0 = 0, y0 = 0) and comes
back to the same start point. The dashed line in Fig. 5 shows
the trajectory of the robot based on the odometry alone where
the drift effect is clear. Fig. 5 also shows the trajectory after
we added the EKF as a filter for the observation of the
robot heading. Although the robot does not have any method
to detect loop closure, the resulting error in estimating the
trajectory is smaller. The final output of the mapping step

Fig. 5. The green dashed line represents the trajectory of the robot from
the odometry. The red line is the result of using vision estimated relative
orientation as an observation with an EKF filter. The black line is the final
output after loop closing and graph relaxation.

is shown as well in Fig. 5, where the graph optimization
algorithm produced a map which is globally consistent.

In the next step, we applied our dual clustering algorithm
which pruned the dense graph produced from the previous
step and generated the final map. The number of nodes in
the final map is affected by the initial neighborhood radius
Ψd and the image similarity threshold Ψs. The parameter
Ψd gives an initial radius for the node to cover and then the
algorithm expands the node based on the image similarity
threshold Ψs. In our experiments the map is intended to be
used for autonomous visual navigation; therefore the sparsity
of the map should not result in gaps where the robot cannot
estimate its heading relative to one of the nodes in the map.
In order to achieve that we assign Ψd to 1 m as a minimum
distance between the nodes and Ψs to 35 feature points as
the minimum number of matched points between any view in
the node and the center of the node; and finally we assign κ,
the minimum number of points required in the neighborhood
of any node, to 1 m. Fig. 6 shows the result of the pruning
step where a set of 23 nodes was selected.

In order to test the map for visual navigation, we per-
formed five path following runs using the nodes of the map.
The paths were chosen randomly, while covering all nodes
in the map. At the start of each run the robot was given a
sequence of nodes to follow. The robot then followed each
path using the navigation strategy presented in Section. V.

In addition, an array of sonar sensors was used for obstacle
avoidance. The same five runs were then re-executed using
manual drive where a human driver steers the robot taking
the best track where the robot was driven through the shortest
distance and at the same time was kept away from obstacles.
Table I shows the results for both the autonomous and
the manual runs. In order to show the robustness of the
navigation procedure, the 5 autonomous runs were executed



Fig. 6. The selected nodes from the dual clustering algorithm along with
five sequences of nodes which the robot was given to follow.

twice. The mean and minimum sonar range distances to
obstacles were calculated for each run along with the traveled
distance. These values are used as an indication about the
quality of the navigation performance. As the results show,
although the robot takes a slightly longer distance to reach
its goal, the autonomous routes were smooth and similar to
the manual runs. The average mean distance to any obstacle
was 1.00 m and for the autonomous runs was 0.88 m. The
average value of the minimum range to obstacles was 0.49 m
for manual driving and 0.44 m for the autonomous ones.

VII. CONCLUSION

This paper introduced a minimalistic mapping method
using an omnidirectional vision sensor. The produced map
is hybrid with two levels of representation, global and local.
On the global level, the world is represented as a graph
of adjacent nodes with each node containing a group of
image features. On the local level, the features inside each
node form a spherical view, which is used for estimating

TABLE I
VISION GUIDED NAVIGATION RESULTS

Distance Mean Range Minimum Range
[m] [m] [m]

Path 1
Manual 22.87 0.85 0.43
Auto1 24.07 0.82 0.42
Auto2 24.28 0.82 0.44

Path 2
Manual 14.30 1.20 0.58
Auto1 15.34 0.90 0.45
Auto2 14.90 0.99 0.48

Path 3
Manual 9.81 0.94 0.56
Auto1 10.66 0.85 0.41
Auto2 10.70 0.87 0.51

Path 4
Manual 8.97 1.04 0.42
Auto1 9.27 0.97 0.37
Auto2 9.09 1.02 0.42

Path 5
Manual 15.52 0.98 0.48
Auto1 16.42 0.85 0.46
Auto2 16.69 0.78 0.47

the robot’s heading using multi-view geometry. The map
is built using a sequence of images along with odometry
information. The global consistency of the map is achieved
using a graph optimization algorithm. In order to reduce the
number of nodes in the map, a dual clustering algorithm for
post-processing the initial map was developed. The map was
used in an experiment where the robot performed multiple
path following tasks.
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