QUT

Queensland University of Technology
Brisbane Australia

This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Md Enzai, Nur Idawati & Tang, Maolin (2014) A taxonomy of computation
offloading in mobile cloud computing. In 2nd IEEE International Confer-
ence on Mobile Cloud Computing, Services, and Engineering, 7-10 April
2014, Oxford, United Kingdom.

This file was downloaded from: http://eprints.qut.edu.au/72913/

© Copyright 2014 Crown Copyright

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http.//dx.doi.org/10.1109/MobileCloud.2014.16

https://core.ac.uk/display/33491553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Md_Enzai,_Nur_Idawati.html
http://eprints.qut.edu.au/view/person/Tang,_Maolin.html
http://eprints.qut.edu.au/72913/
http://dx.doi.org/10.1109/MobileCloud.2014.16

A Taxonomy of Computation Offloading in Mobile
Cloud Computing

Nur Idawati Md Enzai and Maolin Tang Senior Member, IEEE

Abstract— The ability of cloud computing to provide almost
unlimited storage, backup and recovery, and quick deployment
contributes to its widespread attention and implementation.
Cloud computing has also become an attractive choice for
mobile users as well. Due to limited features of mobile devices
such as power scarcity and inability to cater computation-
intensive tasks, selected computation needs to be outsourced
to the resourceful cloud servers. However, there are many
challenges which need to be addressed in computation of-
floading for mobile cloud computing such as communication
cost, connectivity maintenance and incurred latency. This paper
presents taxonomy of the computation offloading approaches
which aim to address the challenges. The taxonomy provides
guidelines to identify research scopes in computation offloading
for mobile cloud computing. We also outline directions and
anticipated trends for future research.

Index Terms— offloading; mobile; cloud computing

I. INTRODUCTION

Cloud computing can be defined as a computing approach
which provides dynamically scalable and often virtualized
resources as services over the Internet [1]. Initially, cloud
computing is utilized by fixed nodes or desktop users to
make use of cloud resources. However, due to increasing
portability and mobility of devices as well as dynamically
changing network topology, simply adopting the wired cloud
computing paradigm is not feasible. The distinct features of
mobile devices and wireless communication networks need
to be considered. On the other hand, the factor of limited
resources (storage and processing power) of mobile devices
boosts the requirement of cloud computing.

Consequently, the mobile devices need other resource
providers to perform the execution of its mobile applications.
Mobile cloud represents an infrastructure which could allow
data storage and processing to occur outside the mobile
device. The usage of mobile cloud allows execution of
computer intensive applications on low resource mobile
devices [2]. The availability of cloud computing services in
a mobile environment to deal with resource limitations of
mobile devices is defined as mobile cloud computing (MCC)
in [3]. MCC is also explained as a concept that aims at using
cloud computing techniques for storage and processing of
data on mobile devices [4].

Differing to previous definitions which highlight the lack
of resources in mobile devices, MCC is defined by [5] as

N. I. Md Enzai is with School of Electrical Engineering and Computer
Science, Queensland University of Technology, 2 George Street, Bris-
bane, Australia (email: nuridawati.mdenzai @student.qut.edu.au); M. Tang is
with School of Electrical Engineering and Computer Science, Queensland
University of Technology, 2 George Street, Brisbane, Australia (email:
m.tang @qut.edu.au).

optimization of an objective function which involves the
execution of a mobile application within cloud platform.
Examples of objective function are the application response
time and energy consumption where the goal is to minimize
the objective function.

Nevertheless, MCC is still based on fundamental cloud
computing requirements which include on-demand self-
service, broad network access, resource pooling, rapid elas-
ticity and measured service [6]. The plus side of mobile
cloud computing compared to its base are its empowered
mobile computing and a wide range of potential mobile cloud
applications such as image processing, natural language
processing, sharing GPS, sharing Internet access, sensor data
applications, querying, crowd computing and multimedia
search [2].

In summary, MCC provides mobile users with the data
processing and storage services in the cloud [7]. Therefore,
limitations of mobile devices especially the processing power
and data storage can be leveraged. The battery life could also
be prolonged by transferring the execution of computation
intensive application to the cloud [8]. The process of moving
computation to the cloud is called computation offloading.

Computation offloading is typically used to boost the
computational capability of a resource constrained device
for a single user. Computation offloading is also known as
“cyber foraging” and surrogate computing”. These terms
are used interchangeably [9]. In our opinion, computation
offloading is best described in [10]. Computation offloading
is a mechanism where resource-intensive computations are
migrated from a mobile device to the resource-rich cloud
or server or nearby infrastructure. Computation offloading
evolves from serving client-server paradigm to mobile sys-
tems and cloud computing. Client-server paradigm is still
part of a cloud. However, cloud computing implies busi-
ness, data stores, and other resources which are remotely
hosted. Nonetheless, simply adopting the migration concept
of client-server to cloud computing is not straightforward.
Characteristics which are unique to cloud computing such
as visualization and elasticity of cloud resources need to be
taken into consideration. One of frameworks for computation
offloading approaches consists of a partitioner, a profiler or
a resource monitor and a solver or cost model [11]. A user
agent on the mobile device and a server coordinator to handle
the authentication and security is also included as one of
offloading components in [5].

o The partitioner determines which portions of a compu-

tation to be offloaded. A computation can be modeled
using a call graph that comprises of a set of nodes and a

set of edges. The nodes could be software components,
program modules, procedures, functions, objects, meth-
ods or threads based on the granularity level employed.
The edges usually represent the interactions between
nodes such as invocations. The edges could also be used
to represent the maximum number of units of data that a
channel can hold [12]. The identified partitions need to
be determined if they could be offloaded. For instance,
for a partition to be offloaded, it must not access 1/O
devices and hardware of a mobile device [13]. Common
methods for partitioning are through static analysis and
dynamic analysis [13], [14], [15], [16]. Static analysis
is an offline method and dynamic analysis is conducted
online. Though dynamic analysis is more accurate, it
poses challenges such as complexity and extra overhead.
Examples of analysis tools are Soot and JOrchestra [17],
[18].

o The profiler measures and estimates the weight of the
nodes and edges in the call graph. Weight is usually
the cost of executions. The cost for nodes could be
the execution time, energy consumption for execution,
CPU cycles and memory used for execution [13], [14],
[15], [16], [19]. Meanwhile, examples of weight for
edges are: size of data to be transferred between two
nodes, time taken to transfer data or state and energy
consumed to transfer the state. Possible elements to be
profiled are device, network and program [13], [14],
[15], [16], [19]. The instrumentation and measurement
process could also adapt to varying conditions for
instance changing network bandwidth and intermittent
connectivity [20] [21]. Output of profiling is then fed to
the optimizer or solver. An example of power estimation
model is PowerTutor [22].

o The solver aims to minimize cost of computation of-
floading such as energy consumption and execution
time. Basically it leverages between computation and
communication cost. Based on solution generated by the
solver, nodes are allocated for execution either locally
on the mobile device or remotely in the cloud. The dis-
tribution could be between a client and a server (single
site), or a client to multiple sites or between multiple
clients and multiple sites. For offloading to multiple
destinations, it could be in parallel or sequential. On
the cloud side, the sites could be in virtualized form or
clones of client device [13], [14], [19].

Another framework includes component to assess whether
it is favorable to perform computation or just execute it
locally instead. There are four requirements to be satisfied
for a computation to be favorable for offloading in terms of
performance gain and energy efficiency. The requirements
are: heavy computation, fast server, small data exchange
and high bandwidth [9]. The working flow of computation
offloading is summarized in Fig. 1.

We are aware that there is quite a number of liter-
ature review conducted on mobile cloud computing and
computation offloading. Among recent works are: reviews

Offloading

Enabled
Yes
No
Resources
Available
No Yes
Offloading
Favourable
No Yes
vy v
: Mormal Execution with
Execution Cloud Support
Fig. 1. Process of computation offloading [10]

of methods for boosting mobile cloud computing which
includes offloading and surveys on computation offloading
approaches for mobile systems up to year 2010 [5] [9]. Fur-
thermore, reference [10] provides comprehensive overview
of MCC in terms of architecture, offloading decision factors,
classification and models. However, unlike our paper, the
aspects of partitioning granularity and emerging application
of distributed execution are not touched. This paper will
focus on computation offloading since 2010 and specifically
addresses the cloud computing environment instead of the
whole mobile systems. Nevertheless, referring to older works
is inevitable for knowledge background.

This paper classifies the computation offloading ap-
proaches for mobile cloud computing into six metrics
namely: objectives, granularity, scheme, adaptation, dis-
tributed execution and communication. These categories are
identified as common desired characteristics in a computation
offloading approach.

II. OBJECTIVES

As mentioned in previous section, computation offloading
framework comprises components such as partitioner, profiler

and solver. All of them will be conducted based on the
objectives. For instance, if the objectives are to reduce energy
and execution time, the related parameters of program, device
and network will be estimated or profiled. The objectives are
essential in determining the direction of design and develop-
ment of a computation offloading framework. Partitioning
decision is affected by computation offloading objectives.

Among popular objectives for computation offloading are
to save energy and reduce execution time. This scope is ad-
dressed by [13], [14], [21], [23], [24], [25], [26]. Minimizing
execution time and energy consumption are usually tackled
together due to the relations as formulated below:

E=PxT (1)

where P represents power consumption, 7' is the time
needed to execute computation and E is the formulated
energy consumption. By reducing execution time, energy
consumption can also be reduced.

The potential and applicability of computation offloading
in saving energy has been explored in [27]. Kumar and
Lu conclude that to make computation offloading worth it,
the number of instructions (amount of computation) should
be large, the size of data for offloading should be small
and the network bandwidth should be large. In addition,
the execution time and energy consumption for execution
at mobile device should be larger than the time and energy
taken to execute and transfer to the cloud [27].

Kumar and Lu also shows the formula for energy saving
if the computation is executed at server instead of at mobile
system as follows:

C . C D
chM Pz><S Pth 2)

Each parameter involved is detailed in Table I.

The trade-off between shortening execution time and ex-
tending battery life of mobile devices is further explored
in [11]. Obviously offloading the application from mobile de-
vices onto the remote cloud server can reduce execution time
and save energy consumption. However, remote execution
is not obligatory because processing on the cloud requires
additional data communication, which may increase the
execution time and the battery consumed by communication.

Based on these findings, Wu et al. argued that energy
and time saving cannot be achieved simultaneously [11].
There must be some kind of trade-off between them. Their
proposed computation offloading mechanism involves finding
a server that satisfies constraints for server speedup which is
represented by variable F. F is the factor for computation
offloading based on whether to save energy or to save
execution time.

Rather than directly dealing with minimizing execution
time and energy usage, contributing factors such as maxi-
mizing throughput and data size reduction are also addressed.
Yang et al. aim to maximize throughput as it determines the
accuracy of many mobile data stream applications. Through-

put is the number of units of input data the dataflow is able
to process per second [12].

Meanwhile, the impact of data size on computation of-
floading performance has been studied in [28] and [29]. Only
essential heap objects are transferred to reduce size. The
characteristics of essential heap objects are: being referenced
in the migrated thread, live and clean (not modified) [28].
CloneCloud also reduces the amount of data to send by using
DEFLATE compression algorithm [13]. Reducing amount of
data to be offloaded could affect the effectiveness of exe-
cution offloading and consequently improves mobile cloud
computing performance as indicated in last part of Eq. 3 as
follows.

D
E=Px i 3)

In the equation, % formulates the time needed to transmit
and receive the data. In effect, by reducing the data size,
communication time and communication energy can also be
reduced [27]. Similar to [28], an approach named Energy
Efficient Task Scheduling (EETS) aims to reduce the amount
of data transmission. The identification of suitable tasks
for offloading is based on a tasks input/output data size
and storage path. An energy usage model for each task
is constructed for offloading decision to take place. EETS
decides what type of task with particular size of data to be
migrated to the cloud with respect to different input/output
storage location [29].

Apart from achieving high throughput of processing the
streaming data, scalability issues are also addressed [12]. To
serve increasing number of users, computation instances on
the cloud are able to be shared by multiple application or
tenants. This sharing concept is also adopted in [30] by taking
advantage of the scenario where the same code components
which can be accessed by different users running the same
or different applications could also be reused and shared
data can be cached on the remote platform. Data mining
techniques are suggested to detect potential data sharing
across multiple applications as well as to construct suitable
scheduling algorithms for this type of sharing. Even though
sharing among multiple applications may enhance offloading
performance, security concerns need to be anticipated if
multiple users are involved. Users need to have control and
awareness of what happens to their personal data which is
stored in their mobile devices. Users permission is a must
for sharing private data [2].

Kosta et al. also focus on scalability as in [12] by im-
plementing parallel execution. This parallelization approach
considers interval of input values for offloaded tasks distri-
bution execution. In fact, energy consumption and execution
time can be reduced as well [19]. Instead of making indi-
vidual offloading decision for each method, [15] finds the
offloading and integrating points for the whole program with
all methods. This approach is based on the observation that
when a method is offloaded, the subsequent calls will be
offloaded with a high chance. It aims to achieve partition

TABLE I
ENERGY SAVING EQUATION PARAMETERS

Parameter Detail
C Number of instructions required by computation
S Speed of cloud server (instructions per second)
M Speed of mobile system (instructions per second)
D Data (bytes)
B Network bandwidth
Pc Power consumed by mobile system for computing (watts)
Pi Idle power consumption (watts)
Pt Power consumed for sending and receiving data (watts)

accuracy and fast decision making by largely reducing the
partitioning computation on cloud. Addressing the same
issue but with regards to multiple sites, Sinha and Kulkarni
specified the requirement that all allocation sites that refer
to the same variable be offloaded as a single unit. This
reduces the number of variations of the code to the number
of offloading sites (since a particular variable will always be
offloaded to a known site) [16].

Another crucial offloading factor particularly for real-time
applications is the latency for link between client and cloud.
As shown in equation (2), network latency is affected by
network bandwidth. The issue of Wide Area Network (WAN)
latency in accessing the cloud by deploying cloudlet is specif-
ically addressed in[31], [32]. The term cloudlet is introduced
by [31]. A cloudlet can be defined as trusted, resource-rich
computer or cluster of computers thats well-connected to
the Internet and available for use by nearby mobile devices.
Rather than relying on a distant cloud, a mobile devices
resource poverty can be catered via a nearby resource-rich
cloudlet. In effect, the offloading communication time can
be reduced. The cloudlet architecture used in [32] is shown
in Fig. 2.

corporate
private cloudlet
amazon

F /?j// (E y =
< - webservices g
T
t

home cloudle Windows Azure
/(g @)
>
@

g A°

infrastructure integrated in
mobile access network

traditional
cloud infrastructure

. va
7
«Eﬁ

augmented Wi-Fi

hotspot in airport ad-hoc mobile cloud

Fig. 2. Cloudlet architecture

Other than energy and execution time, Wu, Wang and
Wolter also list price and storage as cost criteria for offload-
ing decision. However, storage is not a major concern for
offloading and price is not the scope of our study. Perfor-
mance and robustness can also be enhanced through suitable

offloading criteria with respect to types of application [11].

Whereas, a computation offloading framework named
Cuckoo which specifically targets Android platform is pro-
posed by [25]. Realizing the need for additional effort and
skills by application developers to conduct computation of-
floading, Cuckoo provides very simple programming model
that aims to tackle disconnection, support local and remote
execution as well as packaging all code. Instead of focusing
on Android platform, rich mobile applications are the target
for Cloud framework in [33]. The main issues tackled in
mobile cloud applications are complexity of application
development and offline usability.

Meanwhile, instead of getting involved with computation
offloading techniques, some researches indirectly address
supporting mechanisms for offloading such as synchroniza-
tion, multiple criteria decision analysis, software composition
and real life scenarios implementation [34], [35], [36]. Even
though the works assist in improving efficiency and perfor-
mance of computation offloading in mobile cloud computing,
the offloading techniques have not been directly addressed.
Some works assumed that partitioning and outsourcing have
been successfully conducted thus reducing the possibility of
ensuring efficiency as a whole.

III. GRANULARITY

Computation offloading methods can be categorized into
many ways, either in term of portion being offloaded or its
granularity. In most cases, finer grained techniques involve
partitioning meanwhile coarse grained techniques perform
full migration. Fine-grained computation offloading tech-
niques aim to reduce portion of data transmission and
consequently able to save energy. However, partitioning
process either conducted by programmer or remote execution
manager may lead to additional overhead. Therefore, coarse-
grained computation offloading approaches deal with this
issue as well as reducing burden on programmer, yet still
unable to resolve energy consumption concern [37].

A. Coarse-Grained

Virtual machine (VM) technology is utilized by mobile
users to perform rapid instantiation of customized service
software on a nearby cloudlet and then use that service
over a wireless LAN. Specifically, dynamic VM synthesis

works by delivering a small VM overlay to the cloudlet
infrastructure that already has base VM from which the
overlay was derived. The infrastructure applies the overlay
to the base to derive the launch VM, which starts executing
in the precise state in which it was suspended [31].

Crisp interactive response, which is essential for seamless
augmentation of human cognition, is easily achieved in this
architecture because of the cloudlet’s physical proximity and
one-hop network latency. Using a cloudlet gives advantages
in terms of energy and bandwidth usage. Though mobile
devices manage to function as thin clients thus reducing
computation offloading and battery usage on their side,
substantial amount of time is needed to synthesize VM. This
work has been the basis and reference for VM and cloudlet
related researches later on. Nevertheless, it is a complete VM
migration that requires a lot of state transfer which could
cause more computation to be performed locally [38].

B. Fine-Grained

Instead of moving a complete virtual machine as done
in [31] from the cloud to the cloudlet, a finer grained cloudlet
concept that manages applications on a component level
is outlined. These application components can be allocated
among the cloudlets. The cloudlets can be formed with
any LAN device with available resources dynamically. Due
to its dynamic infrastructure, devices can join and leave
the cloudlet at runtime [32]. Rather than running complete
clone, an approach called Cuckoo executes a temporary clone
restricted to only the service used by application. As a result,
the cost of mobile device synchronization with an application
clone in the cloud can be avoided [25].

However the issue of fine-grained offloading is already
addressed before the concept of cloud computing and visual-
ization comes into picture. Back in procedural programming
paradigm era, the application granularity for offloading is
procedure or function-level [23], [29]. When object-oriented
paradigm emerged, class level is the initial choice for fine
grained offloading [40] [41] and this granularity is still used
recently [11] . Then, the granularity is refined to object level
for more precision [42]. Wang and Franz develop an object
relation graph (ORG) partitioning by employing the combi-
nation of static analysis and offline profiling techniques. Two-
layer graph modelling is proposed to achieve unified strategy
for different partitioning goals [42]. Object-level is also the
choice of [16] [21] [24] [33] [41], [42]. Consequently with
the development of cloud computing, method and threads
level also became the choices for fine-grained offloading.

Cuervo et al. proposed and implemented a system called
MAUI that offloads portions of a single application rather
than as a whole. Profiling information of offloaded method
is gathered after offloading to better predict whether future
invocations should be outsourced or not. The decision op-
timization problem is determined by network connectivity
to infrastructure, bandwidth and latency which are measured
continuously to adapt to change. Based on the optimization,
developer decides which application method to be offloaded.
The remote server will invoke the method for offloading [14].

CloneCloud is another approach employing method-level
offloading. Estimation of portion of the process to be ex-
ecuted is done through offline static analysis of different
running conditions [14]. The granularity level used by MAUI
and CloneCloud offloading framework have become main
references for many works. Other works that use method-
level approach are [13] [15] [19].

Although this method-level provides fine grained granular-
ity in terms of control on what methods to execute remotely,
it would require significant state transfer as each method
gets called. Due to this reason, Shivarudrappa, Chen and
Bharadwaj favour thread-level offloading approach. Thread
level differs from method level in term of its execution
migration points. Instead of restricting the migration points
to entry and exit point of a method, thread level allows any
point in a method provided it satisfies the constraints and
optimization objectives [38]. Thread-level granularity is also
selected for its offloading process in [12] [28] .

Granularity terms are not restricted to method, object,
class, and function. Task is employed as partitioning gran-
ularity by [29], [39], [43], and the term component is used
in [32], [33]. Meanwhile, service, segment and module are
denoted as partitioning granularity in [25], [44], [45], [46],
[47]. Nevertheless, these terms usually refer to different
functionalities in an application.

From software perspective, to address the lack of soft-
ware composition consideration in [13] and [14], pCloud
provides a composition approach which allows configurable,
modularity and flexibility features in applications as well as
reusability of independent software components.

IV. SCHEME

As mentioned in the introduction section, most compu-
tation offloading approaches partition program before the
stages of profiling and optimization. There are two ways
of implementing partitioning either static or dynamic. Static
partitioning is done during development meanwhile dynamic
partitioning is conducted during execution [9]. Static par-
titioning is implemented by [16] [24]. On the other hand,
dynamic or automatic partitioning is employed by [12], [13],
[14], [19], [31], [32]. Dynamic partitioning incurs overhead
as it is continuously done to obtain the latest information.
The beneficial features and drawbacks of both methods are
described in [7] and summarized in Table II.

The pros and cons between static and dynamic partitioning
are also highlighted in [37]. Static partitioning could not
adapt to varying network conditions efficiently and also
places more responsibility on programmers. A partitioning
mechanism which automatically computes estimated parti-
tioning solution is more suitable. However, extra computing
cost for dynamic partitioning is still an issue. Nonetheless,
dynamic partitioning is a common method to incorporate
adaptive feature in computation offloading framework.

Intervention of programmer as implemented in [14] also
indicates that computation offloading is done manually in
contrast to automatic offloading which does not require pro-

TABLE I
STATIC PARTITIONING VS. DYNAMIC PARTITIONING

Partitioning Decision Advantage Disadvantage
Static Low overhead Beneficial only when the parameters
during execution can be accurately predicted in advance
Dynamic Adapt to different runtime conditions High overhead during execution

grammer annotation to identify methods to be offloaded [13],
[19].

V. ADAPTATION

Adaptation means to take into account or consider different
program execution contexts or instances. It will lead to
quite different optimal program partitioning decisions as
proven in [39]. Realizing this need, computation offloading
approaches tackle various adaptation scopes such as varying
bandwidth, network connectivity, workloads, deadlines of
tasks and heterogeneous architectures.

ThinkAir adapts to varying bandwidth and connectiv-
ity changes during runtime. On-demand resource allocation
based on different computational power based on workload
and deadlines for tasks is applied through VM resource
scaling. Data are collected to decide which method to be
offloaded, but if it is recognized for the first time, the quality
of connection becomes the decision factor. It also utilizes a
virtualization environment to allow the system to be deployed
where needed whether on a private or commercial cloud [19].
Adaptation to varying bandwidth is also addressed in [21],
[24].

Even though Niu, Song and Atiquzzaman did not di-
rectly address offloading techniques, three partitioning mod-
els which considers bandwidth as a variable in the mobile en-
vironment are proposed. Each model has different objective
with regards to execution time optimization, energy optimiza-
tion and combination of both [24]. Reference [21] handles
varying bandwidth by keeping track of current bandwidth
at each encountered nodes during the cost minimization
process. Critical bandwidth is set to be the threshold for
finding optimal partitioning for offloading.

MAUI runs application profiling continuously to get up to
date cost estimation of each method. It is able to execute
the same code in different CPU architectures. Since mobile
users may move in and out of MAUTI’s server range, opti-
mization problem is resolved periodically to adapt to network
changes [14].

CloneCloud adapts application partitioning to different
environments [13]. Yang et al. handle adaptation at both
mobile device and the cloud. First, on the mobile side, it
needs to handle the wide variations and dynamic changes in
network conditions and local resource availability. In order
to achieve high performance, the decision of which units of
computation should be moved to the cloud has to be made
adaptive to the changes in mobile environments. Second, the
cloud side needs to handle the unpredictable and varying load
from multiple mobile clients of the application [12].

Another way to adapt to changing environment is through
prediction as done in [20], [48]. By extending CloneCloud
offloading framework, Shi et al. address the challenge of
mapping computations onto nodes with an assurance that
the necessary code and data can be delivered and the results
received in time due to varying connectivity. The allocation
algorithms are designed to cater three types of intermittent
connectivity: predictable connectivity with control channel,
predictable connectivity without control channel, and un-
predictable connectivity [20]. These algorithms can also be
customized for energy optimization objective. This work is
further extended in [48] by catering the needs of different
application requirement by setting different thresholds based
on their properties.

VI. DISTRIBUTED EXECUTION

Computation offloading which involves a mobile device to
a single server in the cloud is not a realistic cloud computing
scenario [21]. It is more common for an application to
be distributed among several sites. Besides, data is usually
located in the clouds in distributed manner. For instance,
an application needs to compare set of images from one
server with set of images with another server. To perform
this task, the mobile application might first retrieve all
images from a server and extract appropriate features from
the images. Then, by using pattern matching technique the
photos are compared with set of photos which resides in
another server [16].

Offloading to multiple servers could also increase server
speedup by parallelizing the application computation [27].
This is illustrated in the equation below which is modified
from Eq. 1 with assumption that the server is F times faster:

C D
Fxi '*B ¥

Ou, Yang and Liotta paved the way for multiple sites
offloading in [41] and its framework is referred by [16].
Sinha and Kulkarni also argued that there is emerging need
for application accesses to be distributed among several
servers in contrast to previous works which concentrated
on single mobile device offloading computation to a single
server. Some challenges need to be addressed in term of
partitioning algorithm development. The algorithm should be
able to divide a program between multiple possible execution
sites and takes into account distinct functionalities from
site to site. Furthermore, the computation offloading should
be conducted at the object level for allowing objects of
the same class to be offloaded to different servers [16].

C
PCXM_PiX

To reduce energy consumption, Energy-Efficient Multisite
Offloading Algorithm (EMSO) also offloads part of com-
putation to multiple remote servers or destinations [21].
Moreover, differentiated sites is also considered as in [16].
However, EMSO does not perform comparison study with
virtualization methods. The general visualization of multiple
sites offloading is depicted in Fig. 3.

s1, s2, s3, s4 = offloading sites

Application Graph
at Mobile Device

Cloud

a,b,c,d=
computations

> ion between i
_ — - — > Offloading allocation

Fig. 3. Computation offloading with multiple sites

Another aspect for distributed execution involves multiple
users as well as handled by [12], [19], [30], [43]. ThinkAir
automatically splits and distributes tasks to multiple virtual
machines. A framework is designed to facilitate the partition-
ing and execution of mobile data stream applications which
requires parallel execution of different approaches onto the
streaming data. To address growing number of mobile users,
it also supports efficient utilization of cloud resources [19].

On the other hand, by utilizing mobile agent, a dynamic
performance optimization framework for mobile cloud com-
puting is proposed in [50]. The framework consists of an
execution manager which is responsible for making the
decision on where to execute the application partitions. A
list of most promising cloud hosts (VM instances) is obtained
from cloud directory service. A cost model which is based
on execution time is utilized by the execution manager to
make offloading decisions for each offloadable partition.

Cloud resources constraint is also another concern related
to multiple sites offloading. The literatures which consider
the cloud resources are constrained characterize the con-
straints in various aspects such as number of available
servers, number of resources and number of cloud racks [49],
[51], [52].

Parallelization is also an issue which is related to multiple
destinations offloading. Kosta et al. also provide method-level
computation offloading and enhances the capability of mobile
cloud computing by parallelizing method execution in the
cloud through multiple VM images. Scalability is expected to
be enhanced by parallelizing the offloaded services as well as
providing automatic partitioning on mobile applications [19].
This feature is also desired and mentioned in [32] where
Verbelen et al. consider multiple places for remote execution

either within the cloudlet or in other cloudlets for future
work.

Another issue pertaining to parallel execution is the task
distribution. Soyata et al. address task distribution through
parallelism upon multiple cloud servers given heteroge-
neous communication latencies and compute powers of cloud
servers at various locations [53]. To achieve energy effi-
ciency, Yao et al. present a task allocation algorithm which is
based on a tasks input/output datas size and storage path [29].
However, Soyata et al. argue that the task distribution algo-
rithms for different cloud servers should be more generic thus
able to cater the constraints of the mobile devices, cloudlets
and the servers. The order of modules invocations involving
multiple destinations is also a concern [5].

VII. COMMUNICATION

Computation offloading to the cloud definitely requires
communication between client and cloud. As a result, com-
munication cost incurred must be included in offloading
decision. Sinha and Kulkarni associate communication cost
with movement of data and necessary messages in case parts
of the application reside on different hosts varies depending
on the hosts. Since offloading to multiple servers are applied,
there are two types of communication involved; namely client
to server and server to server. Communication between two
cloud-resident servers is assumed to be faster than commu-
nication between the mobile device and the cloud [16].

Among parameters considered in evaluating communica-
tion cost are transmission delay, energy and network band-
width. Zhang et al. consider delay in transferring time estima-
tion [15]. Delay and energy are the concern for transmission
cost in [24] and network latency is given attention in [31],
[32].

High amount of offloaded data also affects the communi-
cation cost. This motivates [28] and [29] to reduce data size
for offloading and leads to [16] devising strategy of moving
computation to the data instead of transmitting the data over
the network.

The network characteristics can be estimated through
network profiling [44]. This approach is utilized by MAUI
and CloneCloud [13], [14]. Profiler is also used in [12] to
continuously monitor wireless network bandwidth. Latency
and bandwidth characteristics are estimated in MAUI and
CloneCloud to decide for future offloading. Optimization
problem is also resolved periodically based on the net-
work changes. MAUI approach is incorporated in [19] and
CloneCloud method is adopted by [20] [28]. Meanwhile,
EMSO model considers bandwidth changes of wireless net-
work to estimate the communication cost [21].

VIII. OPEN ISSUES

Having reviewed various existing computation offloading
methods and strategies, this section identifies some emerging
computation offloading issues in mobile cloud computing.
Heterogeneity of offloading sites: Computation offloading

TABLE III
SUMMARY OF EXISTING COMPUTATION OFFLOADING METHODS

Method | Objective Granularity | Scheme Distributed | Adaptive
[39] N/A Task Automatic | No Yes
[41] To relieve memory, CPU usage and bandwidth Class Automatic | Yes Yes

constraints
[40] Minimize overall response time Class Automatic | Yes Yes
[42] Minimize energy consumption and execution time Object Automatic | No No
[31] Minimize network latency N/A Automatic | N/A No
[48] Address heterogeneous environment Module Automatic | No Yes
[13] Minimize energy Thread Automatic | No Yes
[15] High partition accuracy Method N/A N/A N/A
[16] Minimize computation time Object Manual Yes Yes
Minimize local storage needs
Minimize battery usage
[33] Energy optimization Component | Automatic | Yes Yes
[11] Reduce time and save energy N/A Automatic | No Yes
[12] Maximum speed or throughput Method Automatic | Yes Yes
[19] Reduce execution time and energy consumption Method Automatic | Yes Yes
through parallel execution
[20] Speedup computing and conserve energy Thread Automatic | No Yes
under intermittent connectivity scenarios
[25] Reduce energy consumption and increase the speed Service Manual Yes Yes
of computation-intensive operations
[30] Utilize relation among multiple applications N/A N/A Yes No
[32] minimize network latency Component | Automatic | No Yes
[47] Minimize overall response time N/A Automatic | Yes Yes
[49] Improve performance and reduce energy consumption | Service Automatic | No Yes
[50] Better performance and longer battery life Service Automatic | No No
[51] Decrease response time and energy consumptions Segment Automatic | No No
[21] Minimize energy consumption as the network Object Automatic | Yes Yes
bandwidth changes
[24] Reduce execution time and energy consumption Object Automatic | Yes Yes
[28] Reduce transferred data size Method Automatic | No Yes
[29] Reduce transferred data size Task Automatic | Yes Yes
[44] Minimize energy consumption and execution time N/A Automatic | Yes Yes
[46] Achieve high performance while preserving fairness Task Automatic | Yes Yes
[43] Reduce energy consumption and minimize average N/A Automatic | Yes Yes
application delay

with multiple users and destinations may incur load balanc-
ing and scheduling problem [12]. A more generic task distri-
bution algorithm that considers resources and requirements
of the mobile devices, cloudlets and servers is needed [5].
Different features of offloading sites can also be more
refined [16].

Optimal partitioning: To improve the efficiency of remote
execution, only the required data needs to be offloaded
and redundant data transfer should be minimized. By using
static analysis tool, to further reduce the amount of state
transferred, the variables that are actually referenced in the
remote method must be determined [14]. CloneCloud sug-
gests to further refine differentiations depending on calling
stack, methods and arguments [9]. To allow more precise

computation offloading, Sinha and Kulkarni argue that this
can be achieved by considering objects that are fully enclosed
by other objects to be part of the enclosing object rather
than requiring a separate offloading decision for them [16].
Meanwhile ThinkAir proposes combining static code analy-
sis with data caching. The former eliminates the need to send
and receive data that is not accessed by the cloud. The latter
ensures that unchanged values need not be sent, in either
direction, repeatedly. This could be further combined with
speculative execution to explore alternative execution paths
for improved caching [19].

Latency: On-demand resource allocation allows dynamic
control of resources but it introduces latency by resum-
ing, starting, and synchronizing among the virtual machines

(VMs) especially when the number of VMs to be resumed
concurrently is high. A user may also have different QoS
requirements (e.g. completion time) for different tasks at
different times, therefore the VM manager needs to dy-
namically allocate the number of VMs to achieve the user
anticipations [19].

Connectivity: More advanced profiler that is able to mea-
sure the network quality is needed, instead of just testing if
there’s a connection, and selecting the best server to offload
its task when multiple servers exists. It should also be capable
of adjusting its offload policy according to the overall evalua-
tion on the device, program and network profiles [38]. To our
knowledge, current implemented mechanisms to overcome
effect of connectivity loss to the cloud simply opt to resume
execution locally [13], [19], [25]. However, in the event
of intermittent connectivity, local execution may not be the
optimal measure for best performance.

Complexity: To enhance performance of computation of-
floading, processes involved such as profiling, partitioning
and solving may become more complex to implement and
could incur additional overhead. ThinkAir experiences ex-
tra synchronization overhead between primary server and
secondary server even though the architecture is much bet-
ter compared to connecting mobile device to every sin-
gle server [19]. Meanwhile, MAUI profiling process con-
sume processing power, memory and energy of the smart-
phones [14]. Therefore, mechanism of leveraging the degree
of complexity and desired performance is crucial.

Among the research questions that can be raised are:

« How to characterize the relationship of granularity level
with respect to type of requested workload by user?

« How to overcome the challenges and limitations brought
by parallelization in multi-site offloading?

Taking into account the emerging issues in computation
offloading for mobile cloud computing, the reviewed ap-
proaches are summarized in Table III above.

IX. CONCLUSION

This paper has reviewed and categorized recent researches
related to computation offloading for mobile cloud comput-
ing. The classification is based on the desired features for a
computation offloading approach. We have also described the
solutions and measures implemented by existing computation
offloading methods to achieve and enhance each feature.
The approaches are presented in taxonomy form. This tax-
onomy is beneficial in highlighting prospective areas for
further research. In addition, we have identified and discussed
emerging computation offloading issues and challenges in
mobile cloud computing.

REFERENCES

[1] M. R. Prasad, J. Gyani, and P. Murti, Mobile Cloud Computing:
Implications and Challenges, Journal of Information Engineering and
Applications, vol. 2, pp. 7-15, 2012.

[2] N. Fernando, S. W. Loke, and W. Rahayu, Mobile cloud computing:
A survey, Future Generation Computer Systems, 2012.

[3] M. Schring, Mobile cloud computing-open issues and solutions, /5th
Twente Student Conference on IT,2011.

[4]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

S. Chetan, G. Kumar, K. Dinesh, K. Mathew, and M. Abhimanyu,
Cloud computing for mobile world, National Institute of Technology,
Calicut, 2010.

T. Soyata, H. Ba, W. Heinzelman, M. Kwon, and J. Shi, Accelerating
Mobile-Cloud Computing: A Survey, in Communication Infrastruc-
tures for Cloud Computing, H. T. M. a. B. Kantarci, Ed., ed: IGI
Global, 2013, pp. 175-197.

N.-M. Peter and G. Timothy, The NIST definition of cloud computing
(draft), NIST Special Publication, pp. 800-145, 2011.

H. T. Dinh, C. Lee, D. Niyato, and P. Wang, A survey of mobile
cloud computing: architecture, applications, and approaches, Wireless
Communications and Mobile Computing, 2011.

A. Klein, C. Mannweiler, J. Schneider, and H. D. Schotten, Access
schemes for mobile cloud computing, in Proceeding of the Eleventh
International Conference on Mobile Data Management, 2010, pp. 387-
392.

K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, A Survey of Computation
Offloading for Mobile Systems, Mobile Networks and Applications,
vol. 18, pp. 129-140, 2013.

A. Khan, M. Othman, S. Madani, and S. Khan, A Survey of Mobile
Cloud Computing Application Models, Communications Surveys &
Tutorials, IEEE, vol. PP, pp. 1-21, 2013.

H. Wu, Q. Wang, and K. Wolter, Tradeoff between Performance
Improvement and Energy Saving in Mobile Cloud Offloading Sys-
tems,” in Communications Workshops (ICC), 2013 IEEE International
Conference on, 2013, pp. 728-732.

L. Yang, J. Cao, S. Tang, T. Li, and A. T. Chan, A Framework for
Partitioning and Execution of Data Stream Applications in Mobile
Cloud Computing, in Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on, 2012, pp. 794-802.

B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, Clonecloud:
elastic execution between mobile device and cloud, in Proceedings of
the sixth conference on Computer systems, 2011, pp. 301-314.

E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, et al., MAUI: making smartphones last longer with code
offload, in Proceedings of the Sth international conference on Mobile
systems, applications, and services, 2010, pp. 49-62.

Y. Zhang, H. Liu, L. Jiao, and X. Fu, To offload or not to offload: An
efficient code partition algorithm for mobile cloud computing, in Cloud
Networking (CLOUDNET), 2012 IEEE st International Conference
on, 2012, pp. 80-86.

K. Sinha and M. Kulkarni, Techniques for fine-grained, multi-site com-
putation offloading, in Cluster, Cloud and Grid Computing (CCGrid),
2011 11th IEEE/ACM International Symposium on, 2011, pp. 184-194.
P. Lam, E. Bodden, O. Lhotk, and L. Hendren, The Soot framework for
Java program analysis: a retrospective, in Cetus Users and Compiler
Infastructure Workshop (CETUS 2011), 2011.

E. Tilevich and Y. Smaragdakis, J-Orchestra: Enhancing Java programs
with distribution capabilities, ACM Transactions on Software Engi-
neering and Methodology (TOSEM), vol. 19, p. 1, 2009.

S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading, in INFOCOM, 2012 Proceedings IEEE, 2012,
pp. 945-953.

C. Shi, M. H. Ammar, E. W. Zegura, and M. Naik, Computing in cirrus
clouds: the challenge of intermittent connectivity, in Proceedings of the
first edition of the MCC workshop on Mobile cloud computing, 2012,
pp. 23-28.

Y. Liu, An Energy-Efficient Multisite Offloading Algorithm for Mobile
Devices, International Journal of Distributed Sensor Networks, vol.
2013, 2013.

Z. Yang, PowerTutor-A Power Monitor for Android-Based Mobile
Platforms, EECS, University of Michigan, retrieved September, vol.
2, 2012.

Z. Li, C. Wang, and R. Xu, Computation offloading to save energy
on handheld devices: a partition scheme, in Proceedings of the 2001
international conference on Compilers, architecture, and synthesis for
embedded systems, 2001, pp. 238-246.

J. Niu, W. Song, and M. Atiquzzaman, Bandwidth-adaptive parti-
tioning for distributed execution optimization of mobile applications,
Journal of Network and Computer Applications, 2013.

R. Kemp, N. Palmer, T. Kielmann, and H. Bal, Cuckoo: a computation
offloading framework for smartphones, Mobile Computing, Applica-
tions, and Services, pp. 59-79, 2012.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Y. Wen, W. Zhang, and H. Luo, Energy-optimal mobile application
execution: Taming resource-poor mobile devices with cloud clones, in
INFOCOM, 2012 Proceedings IEEE, 2012, pp. 2716-2720.

K. Kumar and Y.-H. Lu, Cloud computing for mobile users: Can
offloading computation save energy?, Computer, vol. 43, pp. 51-56,
2010.

S. Yang, Y. Kwon, Y. Cho, H. Yi, D. Kwon, J. Youn, et al., Fast
Dynamic Execution Offloading for Efficient Mobile Cloud Comput-
ing, in IEEE International Conference on Pervasive Computing and
Communications (PerCom), 2013, p. 22.

D. Yao, C. Yu, H. Jin, and J. Zhou, Energy Efficient Task Scheduling
in Mobile Cloud Computing, in Network and Parallel Computing, ed:
Springer, 2013, pp. 344-355.

C. Mei, D. Taylor, C. Wang, A. Chandra, and J. Weissman,
Sharing-aware Cloud-based Mobile Outsourcing, in Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference on, 2012, pp. 408-
415.

M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, The case for
vm-based cloudlets in mobile computing, Pervasive Computing, IEEE,
vol. 8, pp. 14-23, 2009.

T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, Cloudlets:
Bringing the cloud to the mobile user, in Proceedings of the third
ACM workshop on Mobile cloud computing and services, 2012, pp.
29-36.

V. March, Y. Gu, E. Leonardi, G. Goh, M. Kirchberg, and B. S.
Lee, ?Cloud: Towards a New Paradigm of Rich Mobile Applications,
Procedia Computer Science, vol. 5, pp. 618-624, 2011.

E. Lagerspetz and S. Tarkoma, Mobile search and the cloud: The
benefits of offloading, in Pervasive Computing and Communications
Workshops (PERCOM Workshops), 2011 IEEE International Confer-
ence on, 2011, pp. 117-122.

H. Wu, Q. Wang, and K. Wolter, Methods of cloud-path selection for
offloading in mobile cloud computing systems, in Cloud Computing
Technology and Science (CloudCom), 2012 IEEE 4th International
Conference on, 2012, pp. 443-448.

M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, To Offload or Not
to Offload? The Bandwidth and Energy Costs of Mobile Cloud
Computing, in Proc. of IEEE INFOCOM, 2013.

X. Ma, Y. Cui, L. Wang, and I. Stojmenovic, Energy optimizations for
mobile terminals via computation offloading, in Parallel Distributed
and Grid Computing (PDGC), 2012 2nd IEEE International Confer-
ence on, 2012, pp. 236-241.

D. Shivarudrappa, M. Chen, and S. Bharadwaj, "COFA: Automatic
and Dynamic Code Offload for Android.”

C. Wang and Z. Li, Parametric analysis for adaptive computation
offloading, ACM SIGPLAN Notices, vol. 39, 2004, pp. 119-130.

K. Yang, S. Ou, and H.-H. Chen, On effective offloading services for
resource-constrained mobile devices running heavier mobile Internet
applications, Communications Magazine, IEEE, vol. 46, 2008, pp. 56-
63.

S. Ou, K. Yang, and A. Liotta, An adaptive multi-constraint par-
titioning algorithm for offloading in pervasive systems,in Pervasive
Computing and Communications, 2006. PerCom 2006. Fourth Annual
IEEE International Conference on, 2006, pp. 10 pp.-125.

L. Wang and M. Franz, Automatic Partitioning of Object-Oriented
Programs for Resource-Constrained Mobile Devices with Multiple
Distribution Objectives, in Parallel and Distributed Systems, 2008.
ICPADS’08. 14th IEEE International Conference on, 2008, pp. 369-
376.

J.-L. Chen and F.-J. Wang, Flow Analysis of Class Relationships for
Object-Oriented Programs, Journal of Inf. Sci. Eng., vol. 16, 2000, pp.
619-647.

B.-G. Chun and P. Maniatis, Dynamically partitioning applications
between weak devices and clouds, in Proceedings of the 1st ACM
Workshop on Mobile Cloud Computing & Services: Social Networks
and Beyond, 2010, p.7.

D. Kovacheyv, Y. Tian, and R. Klamma, Adaptive Computation Offload-
ing from Mobile Devices into the Cloud, in Parallel and Distributed
Processing with Applications (ISPA), 2012 IEEE 10th International
Symposium on, 2012, pp. 784-791.

H.-Y. Chen, Y.-H. Lin, and C.-M. Cheng, COCA: Computation Of-
fload to Clouds Using AOP, in Cluster, Cloud and Grid Computing
(CCGrid), 2012 12th IEEE/ACM International Symposium on, 2012,
pp. 466-473.

[47]

(48]

[49]

[50]

(511

[52]

[53]

S. Yang, Manageable Granularity in Mobile Application Code Offload-
ing for Energy Savings, in Green Computing and Communications
(GreenCom), 2012 IEEE International Conference on, 2012, pp. 611-
614.

C. Shi, P. Pandurangan, K. Ni, J. Yang, M. Ammar, M. Naik, et al., IC-
Cloud: Computation Offloading to an Intermittently-Connected Cloud,
available at smartech.gatech.edu,2013.

L. Yang, J. Cao, and H. Cheng, Resource Constrained Multi-user
Computation Partitioning for Interactive Mobile Cloud Applications,
Technical report, Dept. of Computing, Hong Kong Polytechnic Univ.,
2013.

P. Angin and B. Bhargava, An Agent-based Optimization Framework
for Mobile-Cloud Computing, Journal of Wireless Mobile Networks,
Ubiquitous Computing, and Dependable Applications, vol. 4, 2013,
pp. 1-17.

X. Wei, J. Fan, Z. Lu, and K. Ding, Application Scheduling in
Mobile Cloud Computing with Load Balancing, available at down-
loads.hindawi.com, 2013.

P. Mousicou, C. X. Mavromoustakis, A. Bourdena, G. Mastorakis,
and E. Pallis, Performance evaluation of dynamic cloud resource
migration based on temporal and capacity-aware policy for efficient
resource sharing, in Proceedings of the 2nd ACM workshop on High
performance mobile opportunistic systems, 2013, pp. 59-66.

T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. Heinzelman,
Cloud-Vision: Real-time face recognition using a mobile-cloudlet-
cloud acceleration architecture, in Computers and Communications
(ISCC), 2012 IEEE Symposium on, 2012, pp. 59-66.

