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Abstract

The motivation for this thesis stems from the interest to address the computational time

complexity of evolutionary computation techniques. Investigations into parallel com-

puting concepts through digital hardware-based designs are carried out for improving

computation run-time and meeting constraints of highly automated aircraft systems.

Evolutionary algorithm (EA) is an effective evolutionary computation technique

that is widely used in many fields of research and development. Fundamentally, EA is a

generic population-based metaheuristic optimisation algorithm that employs features

inspired by biological evolution. The practical applications of EAs are limited by the

heavy computational overhead that arises from the complexity of real-world scenarios,

especially when applied to aerospace optimisation problems. EAs are therefore rarely

used as an on-board optimisation method for unmanned aerial vehicles (UAVs) or highly

automated aircraft systems where flight computer processor power is limited. A few of

the common ways to address this issue is to simplify the optimisation problem, run an

EA offline or use a compromised algorithm in place of an EA.

The key to realising the full potential of EAs lies in addressing the algorithm

design from a lower level. Although EAs were originally designed and intended

to run sequentially, they opportunistically have inherent parallelism potentials that

are attributed to their population-based characteristics and the low dependency of

iii
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individuals in the population. One method for exploiting parallelism of an algorithm

is by re-designing it for a hardware circuit implementation. Field programmable gate

array (FPGA) is an integrated circuit device that is reprogrammable and allows for

concurrent data processing. FPGA technology offers efficient extraction of parallelism

through the flexibility of reconfigurable logic resources. Additionally, being compact

in size, light in weight, and low in power consumption, FPGAs are ideal computing

platforms for UAVs and highly automated aircraft systems where flight computers and

processors have to adhere to strict size, weight, and power constraints.

The primary aim of this thesis is to provide knowledge that contributes to the design

methodologies and architectures needed to directly map EAs on an FPGA hardware

device. Furthermore, the knowledge discovered offers a greater degree of confidence

concerning the effectiveness of developing and implementing FPGA-based EAs. One

of the key challenges in designing an efficient FPGA-based architecture is the need

to directly map the EA onto a hardware design without compromising the original

algorithmic integrity, which is not straightforward. The outcomes of this research have

produced design methodologies and architectures of hardware-based EAs for solving

aerospace optimisation problems on FPGAs. This research investigation encompasses

both FPGA-based single-objective and multi-objective EAs. The robustness and ef-

fectiveness of FPGA-based EAs have been demonstrated via evaluation across several

practical aerospace optimisation applications, which exhibits different problem charac-

teristics, such as path planning, travelling salesman problem, and multi-objective test

function. Overall, the proposed FPGA-based EAs offer advantages including meeting

physical constraints in aerospace applications and performance speedups without com-

promising the integrity of the evolutionary technique. This research is a step forward

towards the advancement of efficient UAVs and highly automated aircraft systems.
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Chapter 1

Introduction

1.1 Background

The motivation for this research stems from the interest to address the computational

time complexity of evolutionary computation techniques that are effectual but can be

computationally intensive. Evolutionary computation techniques such as evolution-

ary algorithms (EAs) are capable of solving for optimality and are often used to find

excellent solutions within acceptable time [1]. EA is a class of population-based meta-

heuristic optimisation algorithm that uses principles inspired by biological evolution.

EAs have been proposed for solving aerospace optimisation problems, which recently

include missile guidance control [2], missile fire distribution [3], airline route networks

management [4], airline boarding process [5], flight control systems [6], flight naviga-

tion planning [7], compound helicopter design [8], aerofoil design [9], and cooperative

unmanned aerial vehicles tasking [10].

The theoretical framework of EAs, specifically the genetic algorithm (GA), was for-

malised and popularised through the early works of John Holland [11]. His pioneering

1
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theory was supported with theoretical and experimental results [12]. It was not until the

late 1980s that dramatic increase in CPU computational power allowed for the practical

application of this new evolutionary computation technique on desktop computers [13].

The subsequent decades of improved computational power opened the door to further

research and establishment of EAs by many others, such as David B. Fogel, David E.

Goldberg, Zbigniew Michalewicz, Melanie Mitchell and David J. Schaefer who are

now significant contributors to the academic community. The success of EAs is evident

in the ever-growing number of EA-based software solvers, academic courses, journals,

conferences, books and applications [14]. Today, a simple search of scholarly materials

on the Internet using Google’s search engine with the terms “evolutionary algorithms”

returns over 3,000,000 results.

The solving of complex modelled problems using software-based EAs can result

in a time consuming process as the computation process is executed sequentially.

Hence, the application of EAs on optimisation models of real-world problems can be

computationally intensive. Although EAs were originally designed and intended to

run sequentially, they opportunistically have inherent parallelism potentials that are

attributed to the population-based characteristics and the low dependency of individuals

in the population [15]. The parallelism potentials of EAs allow for the reduction of

computational time by means of parallel processing through hardware implementation

methods [16].

Although not a new parallel computing concept, recent advancements in field-

programmable gate array (FPGA) technology have made it an increasingly attractive

means to implement complex digital computations [17]. Unlike an application-specific

integrated circuit that is manufactured for a particular use, an FPGA is a reprogrammable

integrated circuit device that is manufactured to be reconfigurable for general-purpose
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uses [18]. The recent increase in FPGA density, capabilities and speed have allowed for

the implementation of larger functions and even full system on chips in which can be

advantageous within the aerospace industry. Additionally, FPGAs being compact in

size, light in weight and low in power consumption, are well suited for unmanned aerial

vehicles (UAVs) applications and highly automated systems where flight computers and

processors have to adhere to strict size, weight and power constraints [19].

1.2 Research Problem

The implementation of EAs and other algorithms on FPGA is an active area of research

(see Section2.2.3). Past design methodologies and architectures of EAs on FPGA were

traditionally approached by the proposal of reengineered EA architectures to suit FPGA

logic level implementations. This reengineering methodology was appropriate then,

as the logic density of FPGAs in the past did not allow for an entire EA to be directly

mapped onto them. However, the notion of reengineering methodology for the hardware

implementation of EAs does not genuinely represent the effective building blocks of

EAs.

Past FPGA-based implementations of EAs may share some common EA features,

but the differences from the original algorithmic structure can have a significant impact

on the effectiveness that has been asserted by original EA literature. Most of past

implementations with respect to FPGA-based EAs were vague, inconclusive and lacking

in detail, as will be discussed in the literature review (see Chapter 2). The integrity

of previous works is questionable and hence may exhibit behavioural uncertainty

when such designs are applied to larger and more complex real-world applications.

Furthermore, without clear and strong foundations of FPGA-based EA literature, the
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degree by which current and future researchers can extend and build upon in the area

of FPGA-based EAs is limited. This thesis investigates the efficient mapping of EA

type of algorithms onto reconfigurable hardware platforms to optimise performance and

hardware cost.

1.3 Aims and Objectives

The effectiveness of EAs is well recognised in the fields of both single-objective and

multi-objective optimisation [20]. In recent years, advancements in FPGA technology

have enabled the manufacturing of high-density FPGAs allowing its use for hardware

accelerating EAs. The population-based characteristic of EAs allows potential levels

of parallelism that FPGA technology can exploit for concurrent processing. How-

ever, the mapping of complex software algorithms, such as EAs, to hardware is not

straightforward [21].

The primary aim of this thesis is to provide knowledge that contributes to the theory

and application of effective FPGA-based EA architectures. The knowledge discovered

offers a greater degree of confidence concerning the effectiveness of developing and

implementing EAs on FPGA hardware devices. In this thesis, FPGA implementation

methods of single and multiple objective EAs for different types of optimisation prob-

lems from aerospace applications are investigated. In particular, the consideration of

preserving algorithmic integrity of the original EA is taken into account. To achieve

this aim, five objectives are identified as follows:

1. To design and develop FPGA-based EA architectures for solving

(a) single objective optimisation, and
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(b) multi-objective optimisation.

2. To investigate the hardware implications of different EA parameters.

3. To implement the proposed design methodologies and architectures on aerospace

optimisation applications, namely,

(a) path planning problem,

(b) the travelling salesman problem, and

(c) multi-objective test function.

4. To evaluate the performance of hardware implementations over software counter-

parts.

1.4 Scope

This thesis explores the hardware implementation of EAs using FPGA technology. The

type of EAs being investigated are limited to the GA and its variations, such as the micro-

GA and NSGA-II, because of its simplistic yet effective evolution strategy [22]. The

assessments of problems are scoped to encompass only single-objective path planning,

single-objective TSP, and multi-objective test function. The hardware programming

is coded using VHDL (VHSIC Hardware Description Language). The FPGA devices

used for development are limited to those manufactured by Xilinx 1. The Xilinx

ISE design environment was used for simulation and synthesis of the FPGA designs.

The experiments were limited to PC and hardware-in-the-loop simulations. Care was

taken to provide fair comparisons between hardware and software implementations.
1Xilinx company website: www.xilinx.com
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No program optimisation (e.g., multi-threading) was done to modify the hardware or

software implementations to make any of them work more efficiently.

1.5 Significance

Proof of the significance of this research is the publication of produced research papers

by peer-reviewed high impact factor journals and international conferences. The FPGA-

based EA design methodologies and architectures generated from this research not

only speedup the EA optimisation process but also assert higher confidence in their

application to real-world problems.

In the aerospace community, UAVs and highly autonomous flight systems are

increasing being deployed for applications where land-based approach may be unsafe,

unviable or uneconomical, such as infrastructure survey, disaster assessment, and high-

precision terrain mapping. The global UAV market alone is estimated to worth just over

USD$89 billion in the next ten years [23]. The on-board flight systems are often faced

with high processing needs that are limited by the computing capabilities of their on-

board computer. The physical attributes of FPGAs being compact in size, light in weight,

and low in power consumption, along with reconfigurable and real-time processing

capabilities make FPGA technology well suited for these applications. Thus, design

methodologies and architectures for FPGA-based solutions will significantly contribute

to the knowledge field and effective deployment of FPGA-based flight systems.

This research is also significant to the high-stakes industry of finance and economics,

where EAs are used to rapidly analyse and evaluate large quantity of market data [24].

The development of FPGA-based EAs that are significantly faster than its original

software equivalent will play a significant role in stock market trading where money
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is made and lost in milliseconds. In the academic and scientific community, this

investigation also provides researchers and operators with useful design and evaluation

insights in the overlapping fields of hardware design, metaheuristics, and optimisation

problems.

1.6 Account of Research Progress

This section details the list of research papers authored during the PhD candidature

period and describes the linkage between them. Individual research papers are presented

in the body of this thesis as standalone chapters and are included “as submitted or pub-

lished” without editing as per QUT thesis by published papers guidelines. All research

papers are formatted as that of a data paper containing an introduction, methodology,

results, and discussion sections.

1.6.1 Linkage of Research Papers

The linkage of research papers in this thesis is illustrated in Figure 1.1. The account of

research progress is divided into two studies: single-objective and multi-objective opti-

misations. For both studies, the effectiveness of evolutionary algorithms is established

and assessments of FPGA applications to optimisation problems are evaluated. The

FPGA implementation methodologies proposed are built upon the basic fundamentals

of the EA algorithmic framework. Hence, evaluating the applications of implementing

EAs on FPGAs are the common topics throughout the research papers.

The first study, which involves single-objective optimisation, investigates the effec-

tiveness of FPGA-based EAs for solving the path planning problem and TSP. Chapter 3

and Chapter 4 propose two novel hardware implementation methods of a modified
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Figure 1.1: Linkage of research papers.

EA for three-dimensional flight path planning. The initially proposed architecture

is presented in Chapter 3 and an improved architecture is subsequently presented in

Chapter 4. Results from the first architecture showed that the proposed FPGA-based

EA achieved speedup of up to 52,000 times faster than its software equivalent. Results

from the second architecture demonstrated the performance of the FPGA-based EA to

meet the 10 Hz update frequency of a typical autopilot system.

Chapter 5 investigates the effects population sizes of EA have on FPGA resource

utilisation and solution quality for solving the TSPs. Results indicated that a GA with

small population size is sufficient to obtain quality solutions, thereby permitting relative

resource efficient hardware implementations on FPGAs. With the findings, the FPGA

implementation of micro-GA for solving the TSP is proposed in Chapter 6. New

hardware-based implementations of two popular genetic operators for combinatorial

problems are also proposed. Results show that the FPGA-based approach achieved

speedups averaging 70 times faster when compared to an equivalent software version
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and 26 times faster when compared to the powerful Concorde TSP solver.

The second study, which involves multi-objective optimisation, investigates the

effectiveness of FPGA-based multi-objective EAs on multi-objective engineering prob-

lems. FPGA implementation methodologies of the widely used NSGA-II [25] for

engineering problems are presented in Chapter 7 and an improved architecture with

pipelining features is presented later in Chapter 8. Results from both architectures

showed that the FPGA-based implementations achieved speedup of approximately

1,300 times and 1,987 times faster than the software versions, respectively.

Table 1.1 illustrates the summary of objectives (see Section 1.3) met with respect to

each body chapter of this thesis.

Table 1.1: Summary of objectives met with respect to each body chapter of this thesis,
where each chapter consist of a single published or submitted research paper.

Research Chapter (research paper) in which respective objectives are met
objectives 3 4 5 6 7 8

1. (a) X X X X
1. (b) X X
2. X
3. (a) X X
3. (b) X X
3. (c) X X
4. X X X X X

1.6.2 List of Research Papers

The full citation details of the research papers contributed by this thesis are listed in

Table 1.2.
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Table 1.2: List of research papers.

Chapter Citation

Chapter 3 J. Kok, L. F. Gonzalez, R. A. Walker, T. Gurnett, and N. A.

Kelson, “A synthesizable hardware evolutionary algorithm de-

sign for unmanned aerial system real-time path planning,” in

Proceedings of the 2010 Australasian Conference on Robotics

and Automation (ACRA 2010), 2010, pp. 1–8.

Chapter 4 J. Kok, L. F. Gonzalez, and N. A. Kelson, “FPGA implemen-

tation of an evolutionary algorithm for autonomous unmanned

aerial vehicle on-board path planning,” IEEE Transactions on

Evolutionary Computation 1, vol. 17, no.2, pp. 272–281, April

2013.

Chapter 5 J. Kok, N. A. Kelson, L. F. Gonzalez, and T. S. Brugge-

mann, “Computational experiments involving population size

for FPGA-based implementation of a GA for the TSP,” in Pro-

ceedings of the 4th International Conference on Computational

Methods (ICCM 2012), 2012, pp. 1–6.

Chapter 6 J. Kok, T. S. Bruggemann, L. F. Gonzalez, and N. A. Kelson,

“FPGA implementation of a micro-genetic algorithm for solv-

ing the travelling salesman problem,” IEEE Transactions on

Circuits and Systems I: Regular Papers 2 , 2013 (Submitted).

Continued on next page

1JCR impact factor = 4.81, EigenfactorTMscore = 0.00837, Article InfluenceTMscore = 1.768
2JCR impact factor = 2.24, EigenfactorTMscore = 0.0254, Article InfluenceTMscore = 1.074
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Table 1.2 – continued from previous page

Chapter Citation

Chapter 7 J. Kok, L. F. Gonzalez, N. A. Kelson, and J. Periaux, “An FPGA-

based approach to multi-objective evolutionary algorithm for

multi-disciplinary design optimisation,” in Proceedings of the

2011 Evolutionary and Deterministic Methods for Design, Op-

timization and Control (Eurogen 2011), 2011, pp. 1–10.

Chapter 8 J. Kok, L. F. Gonzalez, and N. A. Kelson, “Multi-objective evo-

lutionary algorithm using FPGA-based pipelining and parallel

architecture: design, test, and analysis,” IEEE Transactions on

Systems, Man, and Cybernetics, Part B: Cybernetics 1, 2013

(Submitted).

1JCR impact factor = 3.236, EigenfactorTMscore = 0.01749, Article InfluenceTMscore = 1.446



This page intentionally left blank.



Chapter 2

Literature Review

This thesis evaluates the application of FPGA-based EAs over single-objective and

multi-objective optimisation problems. This chapter provides a critical review of

relevant literature and highlights the knowledge gaps being addressed. Furthermore, a

self-contained literature review relative to each investigation is included as part of each

respective research paper.

2.1 Optimisation Theory

Optimisation is implicitly considered in decision making everywhere; human nature is

subtly inclined to covet for the best result with the least amount of effort. In an industrial

context, the need for optimisation becomes explicit, where optimal solutions can result

in minimum fabrication cost, maximum profit margin, and other benefits. Significant

outcomes from optimal solutions elevate the importance of optimisation algorithms

across many domains, such as science, engineering, management and business.

The general formulation of an optimisation problem can be represented in the

13
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following form:

Minimise/Maximise f(x),

subjected to g

j

(x), j = 1, 2, . . . , J ;

x

(L)
n

 x

n

 x

(U)
n

, n = 1, 2, . . . , N.

9
>>>>>=

>>>>>;

(2.1)

where f , are the objective functions to be minimised or maximised, x = (x
n

, . . . , x

N

),

n 2 {1, . . . , N}, is the “optimisation vector” of N design variables that are individually

restricted by lower x(L)
n

and upper x(U)
n

bounds, and g

j

, j 2 {1, . . . , J}, are constraint

functions.

Optimisation problems can be categorised into two classes: single-objective optimi-

sation, and multi-objective optimisation. The former relates to optimisation problems

involving only one objective function, whereas the latter to more than one objective

function. It is noteworthy that most real-world optimisation problems are generally

subjected to multiple objectives. The steps commonly involved in an optimisation pro-

cess for a given optimisation problem is shown in Figure 2.1. The typical optimisation

process for a given problem is described as follows: a problem formulation defines the

selection of decision variables, objectives, and constraints into an optimisation model in

which is processed by an optimisation algorithm to obtain a set of optimised solutions.

A breakdown of the optimisation model and optimisation algorithm are described in the

following sub-subsections.
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Figure 2.1: The optimisation process in obtaining a set of optimised solutions.

2.1.1 Optimisation Model

The different families of optimisation models that are typically used for problem

formulation are illustrated in Figure 2.2. This partitioning is not exclusive and different

classes can be possibly overlapping. Mathematical programming models problems

using mathematical concepts and languages [26]. Combinatorial optimisation is class

of optimisation problems characterised by discrete decision variables bounded by a

finite search space, although discreteness is not obligatory for the objective functions

and constraints [27]. One of the most popular combinatorial optimisation problem

is the travelling salesman problem (TSP) [28]. Constraint programming is a generic

class of optimisation problems approached by mathematically constraining the decision

variables [29]. The three aforementioned optimisation models are analytical, this means

that an explicit mathematical formulation is derivable from the given optimisation

problem. In cases when the optimisation problem is non-analytical, the evaluation will

depend on physical or simulation models [30].
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Figure 2.2: The different families of optimisation models that optimisation problems
can be formulated by.

2.1.2 Optimisation Algorithm

One classification of optimisation algorithms for solving optimisation problems is

depicted in Figure 2.3. Iterative algorithms explore attractive regions of the search

space by mathematical procedures that gradually improve the solutions, such examples

include sequential quadratic programming [31], Jacobi method [32], conjugate gradient

methods [33], and generalised minimal residual method [34]. Heuristic algorithms

effectively approach large and complex optimisation problems by means of iterative

experience-based improvement techniques, however optimality of solutions are without

guarantee. Heuristic algorithms can be divided into two families: problem-specific

heuristic and metaheuristic. Problem-specific heuristics are customised for a specific

problem case, whereas metaheuristics are tailored for general-purpose application.

One of the many classifications for metaheuristics is individual-based metaheuris-

tics versus population-based metaheuristics. Individual-based metaheuristics (e.g.,

local search [35], simulated annealing [36], tabu search [37]) intensify a single solu-
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Figure 2.3: The different classifications of optimisation algorithms for solving optimisa-
tion problems.

tion during the optimisation process while in population-based metaheuristics (e.g.,

evolutionary algorithms [38], ant colony optimisation [39], particle swarm optimisa-

tion [40]) a population of solutions is maintained for exploration and exploitation. This

research particularly considers the application of the widely used EA population-based

metaheuristics.

2.2 FPGA Technology

An FPGA is a reprogrammable semiconductor device that is designed to be recon-

figurable after development by the system designer or consumer. FPGA technology

continues to gain momentum since its invention by Xilinx in 1984; from initially utilised

as simple glue logic to modern applications for high performance embedded computing.
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The success of FPGA technology is attributable to technological capabilities and advan-

tages, such as pipelining, parallelism, dynamic reconfigurability, and rapid prototyping

development cycle.

The basic FPGA architecture is depicted in Figure 2.4. The matrix of configurable

logic blocks (CLBs) can be individually configured as a set and reset latch (SRL),

random access memory (RAM), or lookup table (LUT). The input/output banks (IOBs)

provide an interface bridge into the internal system. The design software, such as the

Xilinx Vivado Design Suite, interconnects signals between CLBs and IOBs to create

a custom designed system on the FPGA device. The number of logic gates in FPGAs

has been increasing since the 1980s, from thousands, to ten thousands, to hundred

thousands, and now millions. It is currently possible to implement larger and more

complex algorithms onto FPGAs, such as fast Fourier transforms [41].

Figure 2.4: A basic FPGA device architecture.
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2.2.1 FPGA Design Flow

The standard FPGA design flow, as shown in Figure 2.5, comprises the following steps:

design entry, design synthesis, design implementation, and download to FPGA device.

Design verification techniques are carried out across different stages of the design

flow. This techniques include functional simulation, timing analysis, and in circuit

verification.

Figure 2.5: The standard FPGA design flow.
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Design Entry and Synthesis: A complete description of the intended behaviour of

the system to be developed is created by using a vendor-supported schematic editor, a

hardware description language (HDL), or both. This design entry must be synthesized

for the targeted FPGA device. The synthesis process translates behavioural information

and user constraints into a structural netlist for the specified FPGA device. The function-

ality is verified through simulation before the design is implemented. The simulation

environment is not running in real-time rather the behaviour of internal signals over

each time period are computed and simulated.

Design Implementation and Download: This step maps the logical design to the

targeted FPGA device. The mapped circuit design is subsequently placed and routed. A

configuration bitstream (a binary file with .BIT extension), is generated for the FPGA

device configuration using the placed and routed information. The generated BIT

file can either be downloaded into a FPGA device or formatted into a programmable

read-only memory (PROM) file for storage on non-volatile memory.

2.2.2 Properties for Efficient FPGA Implementations

The design of an efficient dedicated hardware computing architecture, such as an

FPGA, requires the forethought of three implementation properties: parallelisation,

parameterisation, and communication. These implementation properties are presented

in Figure 2.6.

Parallelisation: Parallelisation can be extended to a optimisation algorithm level,

which includes multiple optimisation algorithms processing independently or coopera-

tively; an iteration level, which handles the population of solutions concurrently; and
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Figure 2.6: Properties for efficient implementation of hardware designs.

functional level, which synchronises the execution of partitioned functions and data.

Parameterisation: Finite resources on a given FPGA device limits the allowed vari-

able bits for the setting of parameters in both the problem and algorithm. In regards to

designing FPGA-based EAs for optimisation problems, the parameters that depend on

the problem include decision variables and boundaries of each variable while parameters

for the EAs include population size and solution resolution.

Communication: The communication level determines the pipelining throughput of

the overall system. Sharing of information (e.g., elites, convergence rate, extremes) and

operations between internal modules can be either one stage at a time or multiple stages

occurring simultaneously, asynchronous or synchronous respectively [17]. Synchronous

communication produces higher throughput but at the expense of design complexity.

Algorithm design for an FPGA implementation starts with the deliberate consideration

of such implementation properties. The justification of utilising different sets of proper-

ties is dependent on the overall system requirement for the given application, such as

algorithm complexity, problem constraints, and resource available.
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2.2.3 Algorithm acceleration using FPGAs

The notion of exploiting advantages of FPGA technology for algorithm acceleration

is not new. In fact, FPGA technology has matured to the point where they can be

effectively applied to complex processing tasks. A list of recently proposed FPGA-

based algorithms and their corresponding researchers is shown in Table 2.1. This list

is not claimed to be complete but rather illustrates the different varieties of applied

research on algorithm acceleration using FPGA technology over the recent five years

(2009 to 2013). The list also highlights that FPGA technology has been and still is an

active area of ongoing research for algorithm design and development.

Table 2.1: A list of proposed FPGA accelerated algorithms.

Year Researcher(s) Algorithm Reference

2013 K. Anumandla et al. Differential evolution algorithm [42]

2013 C. Grigorios et al. Classification and regression tree

algorithm

[43]

2013 S. Pan et al. Artificial neural network [44]

2013 S. Cruz et al. Extended kalman filter algorithm [45]

2013 X. Liuet al. Multi-target tracking algorithm [46]

2012 S. Li et al. Ant colony optimisation

algorithm

[47]

2012 K. Rahimunnisa et al. Advanced encryption standard

algorithm

[48]

Continued on next page
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Table 2.1 – continued from previous page

Year Researcher(s) Algorithm Reference

2012 G. Mingas et al. Scan-matching genetic

simultaneous localisation and

mapping algorithm

[49]

2012 C. Gonzalez et al. N-finder algorithm [50]

2012 C. Gonzalez et al. Hyperspectral image processing

algorithm

[51]

2011 C. Le Lann et al. Krawczyk algorithm [52]

2011 N. G.

Johnson-Williams et al.

Three dimensional positioning

algorithm

[53]

2011 B. Abhishek et al. Image watermarking algorithm [54]

2011 S. Dikmese et al. Beamforming algorithm [55]

2011 Z. Ding et al. Parallel transitive closure

algorithm

[56]

2010 Z. Xinyi Modified Goertzel algorithm [57]

2010 Y. Wang et al. MD5 hash algorithm [58]

2010 A. Dinu et al. Direct neural-network [59]

2010 A. Annovi and M. Beretta Clustering algorithm [60]

2009 A. Jain et al. Protein structure prediction

algorithm

[61]

2009 M. A.

Ibarra-Manzano et al.

Stereo vision algorithm [62]

Continued on next page
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Table 2.1 – continued from previous page

Year Researcher(s) Algorithm Reference

2009 C. Claus et al. Corner detection algorithm [63]

2009 R. Maes et al. Helper data algorithm [64]

2009 J. Cho et al. Face detection algorithm [65]

2.3 Single-Objective Optimisation

Single-objective optimisation problem is straightforward where there is only one objec-

tive function to optimise with only one optimal solution to be obtained.

2.3.1 EA for Single-Objective Optimisation

In artificial intelligence, EA is a generic population-based metaheuristic optimisation

algorithm associated to the field of evolutionary computation. The fundamentals of

EA use mechanisms inspired by biological evolution: selection, reproduction, and

replacement. A pseudo code describing the working principle of an EA is illustrated in

Figure 2.7. A brief description of each operational step through the evolution process

of an EA is as follows.

Initialise Population: A population refers to a set of candidate solutions. The first

generation of population is initialised randomly as the generality of EAs does not require

a priori knowledge of the optimisation problem.
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Figure 2.7: Pseudo code of an evolutionary algorithm.

Selection: The objective of the selection operator is to institute a selection pressure

in which fitter solutions in a population have better chance of survival as evolution

progresses. Some reputable methods include tournament selection, roulette wheel

selection, ranking selection, and truncation selection [66, 67].

Reproduction: The objective of the reproduction operator is to genetically improve

the population of solutions through exploitation and exploration of the search space

by means of crossover operation and mutation operation, respectively. The crossover

operation exchanges portions of information to create possibly better solutions from

shared traits, whereas the mutation operation randomly alters portions of a candidate

solution to investigate other regions of the search space. A range of reproduction

operators can be found in [68].

Replacement: The objective of the replacement operator is to establish an update

scheme for the offspring population with the parent population. There are three funda-

mental replacement schemes commonly employed: generational replacement, in which

offspring population overwrites all of parent population; environmental replacement, in

which worst solutions are deleted incrementally until population reaches a predefined

minimum size; and elitist replacement, in which best parent solutions are preserved [69].
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Termination: The evolution process is repeated until termination criteria are met.

Common criteria used are maximum generation, desired solution, maximum computa-

tional run-time, convergence plateau, or any combinations of the above. The generation

count is incremented each time the termination does its check.

These biological mechanisms of evolution are the fundamental building blocks for EAs.

The candidate solutions of an EA population are rendered independently within the

evolution processes, which allows for the exploitation of iteration level parallelism.

The underlying binary nature of the evolution-based mechanisms is complementary for

implementing fast primitive bitwise operations. These two key advantageous features of

EAs make them well suited for hardware-based algorithm implementations via FPGA

technology.

2.3.2 FPGA-based EA

It is noteworthy to mention that it is important not to associate the methodological use

of FPGAs to develop efficient EAs with the research field of evolvable hardware where

EAs are used for evolving a combinational circuit on an FPGA to efficiently configure

specialised architectures without manual engineering [70]. Implementation of EAs on

FPGAs have been studied by a number of researchers, including [71–82]. Their works

proposed generic FPGA-based EAs highlighting the effectiveness of hardware designed

EAs, however they cannot be directly used for path planning or TSP applications. The

following sub-subsections present a review of literature with regards to FPGA-based

implementations for path planning and TSP applications. The main findings of the

literatures reviewed are also outlined.
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2.3.2.1 Path Planning

Path planning can be defined as the framework employed to determine the discrete

motions for a vehicle traversing from one location to another [83]. Influence of FPGA

technology in path planning applications is recent and limited [84–91].

Girau et al. [84] used an FPGA implementation to compute approximated harmonic

control functions [92] for making robot navigation decisions. The use of harmonic

functions ensures that generated trajectories avoid local optima in cluttered and concaved

environments [93]. They argued that the main advantage of their work was not the

speedup, as real-time computational speed can be easily reached by software coded

harmonic control functions. Instead, they highlighted the potential of embedding FPGAs

for online processing needs on low powered mobile robots.

Vacariu et al. [85] proposed an FPGA implementation of a simple breadth-first

search (BFS) algorithm [94] applied on a static two-dimensional discrete environment.

The BFS technique, which has two degrees of freedom, is based on maintaining a queue

of all accessible neighbours, whereby a sequence of directions leading to the goal point

is acquired. This search algorithm is complete, that is to say it will find a solution if one

exists, but does not guarantee any level of optimality or feasibility. Their results show

execution times sped up by factors of hundreds.

Sudha and Mohan [86] designed an FPGA-accelerated path planner based on the

Euclidean distance transform [95] of a captured image from an overhead camera.

Priya et al. [87] customised an FPGA architecture for path planning based on revised

simplex method [96] applied on a pre-constructed visibility graph [97]. Sudha and Mo-

han argued that their path planning solution is complete as contrasted to Priya et al.work,

as a raw binary image of the environment is directly processed in the hardware rather
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than a meta-modelled nodes-and-edges visibility graph. On the other hand, results from

Priya et al.were in factors of microseconds as compared to milliseconds shown in the

results from Sudha and Mohan. The time response were of relative importance as the

work by Priya et al.was focused on ballistic missile application, whereas the work by

Sudha and Mohan was directed towards ground-based robot navigation.

Hachour [88] proposed an FPGA-based path planning GA for ground-based mobile

robots. However, the path planning GA concept and the actual hardware implementation

were not described in any detail. Moreover, the results and validated functionality were

not reported.

Alliare et al. [89] demonstrated that the possibility of increased UAV navigation

autonomy can be achieved by instantaneous on-the-fly replanning via the implementa-

tion of a path planning GA on an FPGA for algorithm acceleration. They argued that

GA produces higher quality solutions as compared to deterministic algorithms but are

disadvantaged due to their extensive computational overhead that is inevitably inher-

ited by the GA’s population-based metaheuristics optimisation approach. Their path

planning GA implementation details were partially set according to Cocaud’s [98] work

involving a customised GA specifically for UAV task allocation and path generation.

Their results indicate that some mechanisms of the GA running on an FPGA can be

sped up by factors of thousands. However, their research was limited to co-simulation

between a computer and an FPGA running simultaneously and exchanging information

in a collaborative manner.

Huang et al. [90] proposed a hardware/software co-designed parallel elite genetic

algorithm (PEGA) for ground mobile robot path planning in a static environment.

Their FPGA-based PEGA architecture consists of two path planning GAs [99] of

which the evolutionary-influenced selection, crossover, and mutation modules operate
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concurrently. Elitism is preserved via a migration module that periodically exchanges

the corresponding two best members into the selection pool after a predefined number

of generations. However, the computationally dominant fitness evaluation function was

executed sequentially on an embedded processor.

Schmidt and Fey [91] implemented marching pixels algorithm [100] applied to

a skeleton map [101] on an FPGA device for path planning. The marching pixels

algorithm is akin to artificial ants behaving as modelled by cellular automata, where

one pixel of an image is represented by a two-dimensional coordinate on the map. Their

results show computational effectiveness in factors of milliseconds for image resolutions

up to 1024 ⇥ 800. However, their approach inherits the two main disadvantages from

the nature of skeleton map sampling: the resulting path solution is non-optimal and

sharp turning edges are likely to occur.

2.3.2.2 TSP

In the field of combinatorial optimisation, the TSP has been intensively investigated [102].

The TSP has its uses in a wide range of practical applications, such as manufactur-

ing of microchips [103], cold rolling scheduling [104], automation of disassembly

system [105], and routing of shop floor logistics [106]. TSP type problems are com-

mon in aerospace optimisation, such examples include the design of global navigation

satellite system survey networks and optimal routing of unmanned aerial vehicle appli-

cations [107]. Formally stated, the objective of the TSP is to find the Hamiltonian cycle

with the least weight in a complete weighted graph (where vertices, edges and weights

represent cities, roads and distance of roads, respectively).

In terms of computational complexity theory, the TSP belongs to the class of NP-

complete problems such that an optimal solution for even moderate sized problems can
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be intractable to solve [108]. Hence, heuristics have been proposed for yielding good

solutions within reasonable time. Heuristics such as EAs explore and exploit random

regions of the search space for increasingly better solutions instead of performing an

extensive analysis on all possible solutions. A comprehensive survey of the TSP in

conjunction with exact algorithms and heuristics for solving it can be found in [109],

while a detailed literature review of chromosome representation and genetic operators

for EAs can be found in [110]. A type of EA known as GA has been argued to be

one of the best available heuristics for solving the TSP [111]. In view of the potential

advantages, several studies have explored the application of GAs for solving the TSP

problem using FPGAs [112–118].

Very early work by Graham and Nelson [112] attempted a hardware implementation

of a GA for solving the TSP on the Splash reconfigurable computing platform. However,

due to the limited reconfigurable logic resources on FPGAs at that time, separate

GA operations had to be distributed amongst four FPGAs for execution. Note that

subsequent advances in FPGA technology now feasibly allow for an entire GA system,

such as a micro-GA, to be implemented entirely on a single FPGA, as is undertaken in

this research. Later work by Skliarova and Ferrari [113] presented and implemented a

GA crossover operator on FPGA for solving the TSP.

Vega et al. [114] developed alternative versions of a GA for FPGA implementation

using Handel-C (a high level C like programming language that targets low-level

hardware instantiation). However, in contrast to this research, no hardware-based

architecture was actually proposed, as the focus of that study was on development

efforts aimed at improving the Handel-C encoding.

Tachibana et al. [115] proposed a basic island GA architecture suitable for hard-

ware implementation which includes management, crossover, mutation, and evaluation
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modules. Parallel implementation of the individual modules was not considered and an

immigration module was included to oversee periodic exchange of individuals between

separate concurrently running GAs. Their approach also involved implicit handling of

selection and update phases through an incorporated management module, as opposed

to this research in which explicitly considers distinct selection and update phases to

allow for greater modularity.

Deliparaschos et al. [116] proposed the design and hardware implementation of

a parameterised GA on an FPGA was proposed and evaluated on the TSP. A control

module was implemented to manage each operation asynchronously, which limits the

effective throughput of the system. Contrary to that, this research aims to develop on

possible pipelining aspects from FPGA-based EA architecture.

Although insufficient design details were provided, two more recent proposals for

the TSP using a steady-state GA on FPGA by Santos and Alves [117] and a pipelining

structure for GA on FPGA by Zhou et al. [118] can also be mentioned.

2.4 Multi-Objective Optimisation

This subsection highlights the main concepts for multi-objective optimisation. In multi-

objective optimisation scenarios, some objectives might prove to be conflictive. This

is normally addressed by assigning some parameters to distribute preferences across

the objectives, which forms a single composite function. Multi-objective optimisation

can thereby be handled as single-objective optimisation. However, this transformation

essentially creates a degenerate case of multi-objective optimisation, of which miscon-

ceptions and drawbacks are ignored [20]. With respect to all objectives and without

additional information, no single solution can be said to be of paramount optimality.
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Hence, the main goal of multi-objective optimisation is to obtain the set of optimal

solutions that pertains to the trade-offs arising between conflicting objectives.

A multi-objective analytical optimisation model can be formulated as follows:

Minimise/Maximise f

m

(x), m = 1, 2, . . . ,M ;

subjected to g

j

(x), j = 1, 2, . . . , J ;

x

(L)
i

 x

i

 x

(U)
i

, i = 1, 2, . . . , n.

9
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>>>>>;
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Where M is the number of objective functions, f
m

,m 2 {1, . . . ,M}, that are

to be minimised or maximised subject to J constraints, g
j

, j 2 {1, . . . , J}. x =

(x
i

, . . . , x

n

), i 2 {1, . . . , n}, is the “optimisation vector” of n decision variables that

are individually restricted by lower x(L)
i

and upper x(U)
i

bounds. The decision space is

the feasible region where the candidate solution, x, is considered as subjected by the

boundaries of the decision variables. In contrast with single-objective optimisation, the

objective functions in multi-objective optimisation constitute a multi-dimensional space

called the search space. The mapping between each solution x in the decision space

and its specific point in the search space is denoted by f(x) = z = (z1, . . . , zM), as

portrayed in Figure 2.8.

Multi-objective optimisation algorithms use the concept of dominance to distinguish

if one candidate solution is better than another. That is, solution x(1) is said to dominate

solution x(2) (denoted by x(1) � x(2)), if x(1) is no worse than x(2) in all objectives

and x(1) is strictly better than x(2) in at least one objective. Thereby, a solution is

considered Pareto optimal if it is not dominated by any other solution, as illustrated in

Figure 2.9. Note that there exists levels of dominance such as weak dominance, strict
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Figure 2.8: Representation of the decision space and the corresponding search space in
a multi-objective problem.

dominance, and ✏-dominance [119]. The set of Pareto optimal solutions generated by

the multi-objective optimisation algorithm is called the Pareto front.

Figure 2.9: An illustration of Pareto optimal (or non-dominated) solutions and domi-
nated solutions in the search space for a two-objective minimisation problem.

The ideal goal of multi-objective optimisation is to obtain the exact Pareto front of

a given multi-objective problem, but this is not possible since the exact Pareto front

contains an infinite number of points. Therefore, obtaining a good approximation
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of the Pareto front from a finite set of Pareto optimal solutions, which exhibit exact

convergence and uniform diversity are its two practical goals [20]. The exact Pareto

front can be described as convex or non-convex, continuous or discontinuous, uni-

modal or multi-modal. Figure 2.10 illustrates an example of a Pareto front obtained

after the multi-objective optimisation process of a welded beam design problem for

which formulation can be found in [120]. It shows two extreme optimal solutions and

one of the possible tradeoffs in between, in which a designer will make a preferred

design selection from. As mentioned earlier, any preference made from the Pareto front

are part of a non-dominated solution set, hence optimality is not compromised from the

decision making.

Figure 2.10: An example of the Pareto front solutions for a welded beam design
problem.
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2.4.1 Multi-Objective EA for Multi-Objective Optimisation

Unlike single-objective EA, where all individuals in the population converge to a single

optimal solution, a multi-objective EA has to evolve and obtain an entire population

of Pareto optimal solutions. Hence, at the end of the multi-objective optimisation

process, any solution of the multi-objective EA’s population is an optimal solution

with respect to all of the objectives. Although multi-objective EA are fundamentally

based on EA mechanisms as well, it still require a few additional components to handle

multi-objective problems effectively. This subsection describes the three main search

components required in multi-objective EAs to efficiently guide the population towards

the two goals of exact convergence and uniform diversity: fitness assignment, diversity

preservation, and elitism.

Fitness Assignment: The objective of the fitness assignment is to translate the vector

of evaluated objective functions for a given solution into a single qualitative value, which

promotes convergence of the Pareto front. Pareto-based schemes [20] use the concept

of dominance to guide the optimisation process, while indicator-based schemes [121]

rely on a specified quality measure for performance.

Diversity Preservation: The objective of the diversity preservation is to maintain and

diversify the population of solutions. Sharing schemes [122] strongly rely on a priori

knowledge to specify a threshold parameter for measuring a distance metric between

two solutions. Contrary to that, crowding schemes [123] quantify the crowding metric

of a set of neighbouring solutions independently.
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Elitism: The objective of elitism is to prevent the loss of beneficial solutions during

the evolutionary process. This concept is achieved by maintaining an archive of non-

dominated or preferred solutions, which were discovered earlier, for introduction back

into the evolutionary process.

From this set of search components, different multi-objective EAs are designed and

implemented by the combination of relevant features. For instance, the NSGA-II

incorporates non-dominance sorting, crowding distance assignment and elitism se-

lection process [25]; the strength Pareto evolutionary algorithm 2 (SPEA2) employs

fine-grained non-dominance fitness assignment, nearest neighbour density estimation,

and archive truncation method [124]; and the archive-based micro-genetic algorithm 2

(AMGA2) integrates non-dominance sorting, modified crowding distance assignment

and external archiving [125]. Multi-objective optimisation using NSGA-II, SPEA2,

AMGA2 and other multi-objective EA methods have been applied to many aerospace

optimisation problems. For instance, Arias-Montano et al. [126] presents a compre-

hensive review of applications where multi-objective EAs are employed for solving

multi-objective optimisation problems in aerospace.

2.4.2 FPGA-based Multi-Objective EAs

Research on multi-objective EA-based FPGAs is limited. To the author’s knowledge,

there are only two works in literature that attempt to develop multi-objective EAs on

FPGAs: Tachibana et al. [127], and Bonissone and Subbu [128].

Tachibana et al. [127] developed and implemented a multi-objective EA on FPGA

based on a modified selection and overlap rejection components into a minimal genera-
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tion gap model [129], for aiding convergence and diversity respectively. The selection

operation compares the fitness value of the objectives between two solutions for supe-

riority, in which the better solution subsequently replaces the worst one. The overlap

rejection operation compares the fitness of a given solution against the fitness of all

solutions in the population and removes ones with identical fitness. Their experiment

compared a simulation of the FPGA implementation with its software version, which

resulted in a significant speed improvement from 43 seconds to 10 milliseconds. How-

ever, their work has some theoretical drawbacks, firstly the selection operation does not

take into account dominance across the entire population, rather it only compares two

randomly selected individuals. Thereby, the notion of Pareto optimality is not applied.

Secondly the overlap rejection that is aimed at removing solutions with similar fitness

implicitly makes the assumption that many-to-one mapping between the decision space

and the objective space do not occur, which may not always be the case.

Bonissone and Subbu [128] presented an implementation of a basic multi-objective

EA on an FPGA. They proposed the use of a dominance filter to segregate an archive of

non-dominated solutions, in which a comparison of each solution against every other

solution is carried out. Their experiment compared the FPGA design with its software

version, which showed significant speedup by two orders of magnitude. However, there

was no analysis or verification conducted on the overall multi-objective EAs behaviour

without the fitness assignment and diversity preservation features. Thereby, the imple-

mentation could be theoretically flawed and unstable. One other limitation from both

Tachibana et al. [127] and Bonissone and Subbu [128] is that they inadequately justified

conclusions of efficiency by using only one test problem experiment rather than against

a variety of test problem with known solutions.
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2.5 Summary

The key findings of the literature review are as follows:

Through the years there has been strong evidence of research interest around the

notion of algorithm acceleration using FPGA technology. FPGA-based algorithm

implementations offer benefits stemming from both its physical attributes of being

compact in size and its delivered performance of significantly reducing computational

time. However, the architecture design itself is not a straightforward process with

proposed FPGA-based algorithms having to be scaled down or reengineered. FPGA

design methodologies for EAs have been continuously proposed since the past 20 years

but low in frequency and quality, which indicates that it is not a dead-ended research

direction and there are undeveloped areas where there is room for investigating new

concepts.

In robotics navigation, path planning is a complex task where navigating across an

environment requires a number of considerations within the path planning algorithm,

including environment, vehicle, and mission profiles. Although prior research works

have established the concept of FPGA implementations for speeding up different

computationally intensive path planning algorithms, this research instead contributes

a completely embedded path planning system based on EA optimisation algorithms.

This is considered in Chapter 3 and Chapter 4 where the proposed FPGA-based EA

architectures consider the inclusion of constraints from UAV, environment, and mission

profiles. Note that for this research, the UAV was the designated robotic platform but

this is not expected to be restrictive.

In the field of combinatorial optimisation, the TSP is an NP-complete problem

that has been intensively investigated, which is rightly appropriate with its uses in a
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wide range of practical applications. Several studies have explored specialised FPGA-

based EA architectures for solving the TSP. The hardware and solution implications

of different EA parameters are studied in Chapter 5. A thorough investigation of

implementing an efficient FPGA-based EA architecture for solving the TSP is conducted

in Chapter 6.

Multi-objective optimisation is complex from the problem and optimisation algo-

rithm perspectives. It has its application in many real-world problems, which requires

computationally intensive optimisation algorithms to obtain an effective Pareto front.

Multi-objective EAs have a well-established reputation for addressing multi-objective

optimisation. This is mainly attributed to their population-based nature that allows for

information of candidate solutions to be handled and shared effectively within the EAs,

which in return produces increasingly better solutions. However, research in FPGA-

based multi-objective EA is limited and does not provide conclusive evidence supporting

the interesting combination of coupling multi-objective EA with FPGA technology.

Investigations presented in Chapter 7 and Chapter 8 address the explicit preservation of

algorithm integrity by adapting the original multi-objective EAs functional behaviour

into the proposed architectures.
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Chapter 3

A Synthesizable Hardware

Evolutionary Algorithm Design for

Unmanned Aerial System Real-Time

Path Planning

In this chapter, the design flow and FPGA-based EA architecture for on-board path

planning is investigated. The development of a feasible FPGA-based GA to determine

flight path plan for UAVs navigating terrain with obstacle boundaries is detailed. The

design architecture includes the hardware implementation of terrain data and EA popu-

lation memories within the hardware architecture. Simulation results show significant

speedup with an average of 52,000 times faster than its software version, suggesting

that the present approach is well suited for UAV real-time path planning applications.

With respect to the aforementioned research objectives as outlined in Section 1.3, this

research paper addresses objectives 1.(a), 3.(a) and 4.
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Abstract 
The main objective of this paper is to detail the 
development of a feasible hardware design based on 
Evolutionary Algorithms (EAs) to determine flight 
path planning for Unmanned Aerial Vehicles 
(UAVs) navigating terrain with obstacle 
boundaries. The design architecture includes the 
hardware implementation of Light Detection And 
Ranging (LiDAR) terrain and EA population 
memories within the hardware, as well as the EA 
search and evaluation algorithms used in the 
optimizing stage of path planning. A synthesisable 
Very-high-speed integrated circuit Hardware 
Description Language (VHDL) implementation of 
the design was developed, for realisation on a Field 
Programmable Gate Array (FPGA) platform. 
Simulation results show significant speedup 
compared with an equivalent software 
implementation written in C++, suggesting that the 
present approach is well suited for UAV real-time 
path planning applications. 

1 Introduction 
Unmanned Aerial Vehicles (UAVs) are widely used in 
military and civilian contexts. Military missions could 
involve target and decoy, reconnaissance, combat and 
logistics operations. In the civilian context, UAVs are being 
developed for environmental and agricultural purposes such 
as weather forecasting, storm and bush fire detection, farm 
field seeding and aerobiological sampling. All these 
scenarios involve a common task, which currently is 
determined by a human operator: Path Planning.  

One of the main objectives in path planning is to 
develop optimization techniques which are effective and 
efficient in terms of computational cost and solution quality 
[Deb, 2001], [Lee et al., 2008]. Traditionally, optimal path 
plans are found using deterministic optimizers. However, 
many approaches have a tendency to become trapped in local 
minima [Zheng et al., 2003]. Instead, evolutionary 
algorithms (EAs) are preferable as the most viable search 
algorithms for a real-time UAV path planner [Allaire et al., 
2009]. These are more robust and allow them to find global 
solutions, but at a large computational expense. Hence of 
interest is a computationally efficient hardware 
implementation of a path planning algorithm based on EA 
running on an FPGA platform. The drawback of having a 
population based algorithm manipulated sequentially, which 
is a computationally intensive process, is overcome by 
exploiting the parallelism processing capability of the FPGA. 
Earlier work involving partial FPGA implementation of EAs 
for UAV real-time path planning [Allaire et al., 2009] 
considered EA modules running on an FPGA platform, while 
the evaluation and simulation phases were performed on a 
PC. Results indicated that partial FPGA implementation 
could provide orders of magnitude speedups over 
software-only execution.  

The main objective of this paper is to detail the 
development of a feasible hardware EA-based design to 
determine flight path planning for Unmanned Aerial System 
(UAS) navigating terrain with obstacle boundaries. The 
design architecture can provide UAS with autonomous 
real-time path planning capability using an EA entirely 
implemented on an FPGA platform, and includes hardware 
implementations of Light Detection And Ranging (LiDAR) 
source terrain data and EA population memories, as well as 



 

 

the EA search and evaluation algorithms used in the 
optimizing stage of path planning. The design will be herein 
referred to as Hardware-EA. As will be shown subsequently, 
simulation results for the Hardware-EA show significant 
speedup compared with an equivalent software 
implementation written in C++, suggesting that the present 
approach is well suited for UAS real-time path planning 
applications. 

This paper is organized as follows. Section 2 gives a 
brief description of related work and the main difference in 
our approach. Section 3 describes in detail the architecture of 
the Hardware-EA. Section 4 describes an example of the 
Hardware-EA design implementation and its details. Section 
5 discusses the computation time results of the PC-based EA 
and the Hardware-EA, and elaborates on the efficiency of the 
Hardware-EA. Section 6 presents a real world application. 
Section 7 concludes with a brief summary and possible 
enhancements for future work. 

2 Background and Related Work 
Although route planning has been widely researched, less 
attention has been given to UAV applications [Zheng et al., 
2003]. Both [Zheng et al., 2003] and [Allaire et al., 2009] 
elaborate on the importance of path planning, describe 
various types of path planning techniques, and argue why 
Evolutionary Algorithms are preferred as the most viable 
search algorithms for a real-time UAV path planner. 
[Lavelle, 2006] also presents a good summary of path 
planning algorithms, while the theory of circuit design using 
VHDL and FPGAs is extensive, and can be found in e.g. 
[Pedroni, 2004].  

Previous work into path planning algorithms on 
hardware is limited but is now being considered by a number 
of researchers. Implementation of an EA on FPGAs has been 
explored in studies including those by [Allaire et al., 2009], 
[Aporntewan and Chongstitvatana, 2001], and [Fernando et 
al., 2010], and have shown promising results. [Allaire et al., 
2009] concluded that FPGA implementation of EA for UAV 
real-time path planning inherits   the   EA’s   optimal   search  
advantage   and   overcomes   the   EA’s   computational  
disadvantage. However, they did not implement a fully 
synthesizable hardware design. [Aporntewan and 
Chongstitvatana, 2001] showed that their hardware Compact 
Genetic Algorithm (CGA) implementation implemented on 
an FPGA ran about 1,000 times faster than the software 
execution of their original code. [Fernando et al., 2010] 
illustrated the use of hardware implementation of EA as an 
efficient optimization engine for evolvable hardware, having 
speedup of 5 times over an analogous software 
implementation. Their research focused mainly on the 
general theory of EAs being implemented on an FPGA. 
[Bonissone and Subbu, 2007] proposed a multi-objective EA 
architecture, but due to the simulator constraint, their 
research was limited to simulation without synthesizing their 
design. Their simulation results show a speedup of 328 times 
over its software counterpart. [Gallagher et al., 2004] 
compares and contrasts a family of CGAs implementations 
on an FPGA. Their research concluded with 
recommendations to redesign the dataflow and to introduce 
systolic array methods to improve efficiency without 
increasing implementation cost.  

The main difference with the approach used here 
and earlier work is the focus on an EA-based design 
architecture that is fully synthesizable and implementable on 
a single FPGA device, with reference to benefits and 
difficulties of practical application aspects (i.e. UAS path 
planning). The basic hardware design flow which this 
research aims to encapsulate is shown in Figure 1. To 
demonstrate implementation of the design in synthesisable 
VHDL, a modified version of the [Cocaud, 2006] EA search 
algorithm for UAV path planning has been used. More 
complex algorithms such as those given in [Lee et al., 2008] 
could also be implemented and are being considered. 
Synthesis is important because it involves producing a netlist 
from VHDL that can be subsequently mapped onto an FPGA; 
from low level description to an even lower level description. 

 
 

 
Figure 1: Basic hardware design flow  

3 Hardware-Evolutionary Algorithm Design 

3.1 The Architecture  
The design architecture for the Hardware-EA proposed here 
is illustrated in Figure 2 and detailed in Figure 3 in the next 
subsection. The design is intended to fit into a single FPGA 
module, and includes units corresponding to typical EA tasks 
(such as selection, crossover, mutation, fitness evaluation, 
and so forth [Goldberg, 1989; Michalewicz, 1996]) where the 
functionality of each unit can be set according to the 
algorithmic requirements of the specific EA under 
consideration.  

The driving component of the Hardware-EA is the 
Sort/Termination Unit (STU). The STU provides a memory 
interface, sorting algorithm, population update mechanism, 
and monitors the termination criterion of the evolutionary 
algorithm. In doing so, it acts as the main control unit of the 
Hardware-EA throughout the entire operation and is the 
Hardware-EA’s  sole output interface.  

Additionally, a Terrain Memory (TM) unit is 
included where terrain information is stored (e.g. terrain data 



 

 

from LiDAR source stored in a single FPGA Block RAM). 
The initial and subsequent populations are then evolved 
based on this data, where each population member represents 
one possible path-solution for the UAV to traverse the terrain 
between designated initial and terminal waypoints. 
 

 
Figure 2: Overview of the Hardware-EA architecture 

The design also includes an on-module Population Memory 
(PM) unit. This initially stores the   “parent”   population   of  
path-solutions (e.g. stored in another FPGA Block RAM 
location) generated by the Initial Population Unit (IPU), but 
is also reused at each step of the EA iterative procedure to 
store the offspring population. Typically, each path-solution 
within a population is a bit stream consisting of a binary-code 
scheme representing the fitness, number of nodes and its 
transitional waypoints. A simple encoder/decoder is used to 
convert between this bit stream format and its decimal 
representation.  
 The two inputs which drive the Hardware-EA are 
the clock signal and the activation signal. The clock signal is 
connected to the embedded global clock of the FPGA, and 
the activation signal is connected to an input from the outside 
world. 

 Although not illustrated in Figure 2, the design 
includes an input line for initial transfer of terrain data to the 
TM unit, or subsequent data refresh of the TM unit from an 
external source to account for changed conditions such as 
UAV location. There is also an STU signal line where the 
optimal flight path computed by the module is output to the 
UAV for subsequent processing. 

3.2 Operation 
In this section, the flow of execution and communication 
between the individual units of the Hardware-EA is 
described and illustrated in Figure 3. Note that during the 
evolution phases, control is distributed; all units operate 
autonomously and asynchronously.  

To begin the Hardware-EA process, an activation 
signal is received, initiating transfer and storage of externally 

generated terrain data into the TM unit. The TM unit 
interfaces with the IPU via two connections, an incoming 
address channel and an outgoing data channel. These 
channels allow the IPU to receive terrain information from 
the TM unit and generate, influenced by flight parameters 
such as minimum and maximum UAV elevation, a set of 
random path-solutions that are to be stored in the PM unit. 
These solutions are evaluated by the EU, sorted by the STU 
and then stored into the PM unit. This completes the initial 
setup of the Hardware-EA.   
 

 
Figure 3: Detailed data path of the Hardware-EA architecture 

To commence the first iteration of the Hardware-EA process, 
the STU notifies the Crossover Unit (CU) and Selection Unit 
(SU) that the Hardware-EA is ready to begin execution. The 
task of the SU is to generate random addresses to be used for 
the CU and population update for the STU. When the CU 
receives addresses from the SU, it requests these members 
from the PM unit and starts the crossover operation, creating 
new members. A selection of the new crossovered members 
is then passed to the Mutation Unit (MU) to be mutated. Once 
completed, the mutated members are sent to the Evaluation 
Unit (EU) for evaluation. The EU determines the fitness of 
new members generated by the CU and MU. Upon 
completion, the EU sends the evaluated members to the STU. 
Finally, the STU writes the new members and their new 
fitness values into the PM unit.  

The above iterative step is repeated until the STU 
determines that the current Hardware-EA run is finished 
when the stopping criteria or convergence criterion is 
satisfied. It then transmits out the optimised flight 
path-solution, which is the best member decided through the 
fitness sorting algorithm. 

4 Example of Hardware-EA Design 
Implementation 

To explore the feasibility of the proposed design architecture, 
an implementation of the proposed Hardware-EA in 



 

 

synthesisable VHDL was undertaken. To facilitate 
comparison with previous work, the EA used by [Cocaud, 
2006] for flight path planning was employed. Additionally, a 
development platform containing a Xilinx Virtex 4 LX200 
FPGA processor was available. This platform was used to 
explore implementation issues such as the population 
characteristics and extent of parallelism possible within the 
design, subject to various constraints including the 
programmable logic resources available on the FPGA. 
Implementation details of the various elements and the EA 
population characteristics are briefly described below. 

4.1 EA Population Characteristics 
The implementation of the Hardware-EA requires 
specification of the EA population characteristics and 
operations. The operations of selection, crossover, mutation 
and evaluation are involved in the iterative EA process, as 
shown in Figure 4, and require specification. Selection 
involves identification of those members to undergo 
crossover from the current   “parent”   population   of  
path-solutions. 

 

 
Figure 4: Pseudo code of EA 

For crossover of the selected path-solutions, all transitional 
waypoints after the middle of the path are truncated and 
swapped between the two selected parent path-solutions. The 
resultants are the offspring (see Figure 5).  

Two selected offspring are further subjected to an 
insert mutation and a delete mutation to promote speed-up of 
convergence (as illustrated in Figure 6 and Figure 7). The 
insert and delete mutation takes into consideration the 
minimum and maximum number of transitional waypoints 
allowed, hence the population member is not corrupted with 
an invalid number of transitional waypoints. No swap 
mutation was considered as the algorithm is optimising a 
single objective function and the swap mechanism 
recommended by [Cocaud, 2006] is mainly for 
multi-objective functions. 

The population is then updated using a semi-elitist 
approach, where a selection of the best path-solutions from 
the old population is retained and the remaining more inferior 
members are randomly overwritten by the offspring. Finally, 
the fitness of each member of the updated population is 
assessed based on feasibility and shortest distance. The 
iterative steps just described are repeated until a stopping 
criterion chosen for this implementation of sixty (60) 
generations has been completed. 

Following a slightly modified [Cocaud, 2006] 
recommendation, the offspring from the new population is 
set to 70% of the old parent population. All of the offspring 
are bred from crossover, and 10% of the crossovered 
offspring are further subjected to mutation. Thereafter, a 

population update is performed where 5% of the best 
path-solutions from the old parent population are retained, 
and each of the offspring has replaced 70% of the remaining 
95% of the old population.  

 

 
Figure 5: Example of crossover 

 
Figure 6: Examples of insert mutation 

 
Figure 7: Examples of delete mutation 

4.2 Implementation Details 
Encoding of EA parameters: One of the first design decisions 
is determining the encoding of the parameters as this will 
enhance or hinder the computational time. Here, population 
members were chosen to correspond to single path-solutions 



 

 

comprising a minimum of two and a maximum of five 
transitional waypoints in addition to the starting and ending 
waypoints. Each transitional waypoint is characterized by its 
three spatial coordinates. The population size and 
starting/ending waypoints for all path-solutions are not 
subjected to change during the entire EA process. The bits 
encoding for the parameters of each member is depicted in 
Table 1.  

Table 1 
Encoding of EA parameters 

 
Parameter 

 
Number of bits 

 
Integer range 
 

 
Fitness 

 
7 bits 

 
[0,127] 
 

Number of 
Transitional 
Waypoints 
(Excluding 
starting and 
ending 
waypoints) 

2 bits [0,3] ;  
where  
002 = 2 waypoints 
012 = 3 waypoints 
102 = 4 waypoints 
112 = 5 waypoints 
 
 

Transitional  
Waypoint 1 

27 bits = (X+Y+Z) ; 
where  
X = Y = Z = 9 bits 

X = Y = Z = [0,511] ;  
where  
X = longitude  
Y = latitude  
Z = altitude 
 

Transitional  
Waypoint 2 

Same as Transitional 
Waypoint 1 
 

Same as Transitional 
Waypoint 1 
 

Transitional  
Waypoint 3 

Same as Transitional 
Waypoint 1 
 

Same as Transitional 
Waypoint 1 
 

Transitional  
Waypoint 4 

Same as Transitional 
Waypoint 1 
 

Same as Transitional 
Waypoint 1 
 

Transitional  
Waypoint 5 

Same as Transitional 
Waypoint 1 
 

Same as Transitional 
Waypoint 1 
 

 
Total Number 
of bits 
 

 
144 bits 
 

 
Terrain Memory unit (TM): For the example Hardware-EA 
implementation, sample terrain data to be used for path 
planning was gathered from a Light Detection And Ranging 
(LiDAR) source (see Figure 8) and converted, by a in house 
C++ application, into a bit stream represented by an array of 
latitude, longitude and altitude coordinates. Subsequently, 
this bit stream is stored in one of the  FPGA’s  Block RAM 
modules. The testing environment map is large and consists 
of 55,556 points. Information for a point includes latitude, 
longitude, altitude, intensity and classification. The entire 
terrain is equivalent to 600 KB of data. 
 
Selection Unit (SU): Within one clock cycle, the SU 
generates 19 different random addresses (11 for the CU and 8 

for population update), which change only when instructed 
by the STU through the incoming control signal connection. 

 

 
Figure 8: Two-dimensional view of testing environment 

Population Memory (PM) & Initial Population Unit (IPU): 
The PM unit, like TM unit, is implemented using available 
FPGA Block RAM. As such, there is no shared memory 
external to the Hardware-EA system. Due to size limitations, 
the PM unit was fixed to store 32 population members (i.e. 
path-solutions). Initially, the IPU generates 32 random 
path-solutions, where each member includes 2 random 
transitional waypoints, the number of nodes, and the fitness. 
   
Sort / Termination Unit (STU): The STU interface to the PM 
unit allows for the STU to read, in a single cycle, the entire 
list of path-solutions, sort them, and overwrite the original 
contents of the underlying Block RAM with the list of 
path-solutions now sorted by their individual fitness values. 



 

 

The STU also interfaces with the EU to receive 22 offspring 
path-solutions (i.e. ~70% of the population size of 32) from 
the EU, and is responsible for storing them back in the PM 
unit using the previously mentioned semi-elitist approach. To 
these ends, the implementation of the STU interface to the 
PM unit includes both a data read and data write operation, 
however all control of this data transfer is initiated from the 
STU via a read/write control signal. The STU has two 
outgoing control signals (to the CU and SU) as well as two 
incoming control signals (from the IPU and EU). These 
signals determine the current operational state of the 
evolutionary algorithm. For a given iterative step of the EA 
process, the internal generation-counter within the STU is 
incremented if the termination criterion of 60 generations is 
not met, the SU is notified to generate a new set of random 
addresses, and the CU is notified to continue the evolution.  
Otherwise, the path-solution at the top of the PM unit is 
delivered externally from the FPGA module as the most 
optimised path-solution.  
 
Crossover Unit (CU): The CU is composed of 11 identical 
processing modules. Notably, all crossover operations for a 
single generation are done in parallel. In one clock cycle, the 
CU utilizes the 11 addresses provided by the SU twice, 
generating a variety of parental combinations to produce 22 
offspring path-solutions (i.e. ~70% of the population size of 
32).  
 
Mutation Unit (MU): The MU selects 2 of the offspring 
path-solutions (i.e. ~10% of the offspring size) from the 
crossover unit for mutation. One for insert mutation and the 
other for delete mutation. All of the mutation modules 
operate in parallel.  
 
Evaluation Unit (EU): The EU evaluates the feasibility of the 
22 new path-solutions (19 offspring and 2 mutated offspring) 
and generates a new fitness value for each. Equation (1) is 
used to calculate the fitness value, based on the feasible 
distance travelled;  
 

∑ (𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) + (𝑧 − 𝑧 )  (1) 
 
where N is the total number of transitional waypoints and x, y 
and z are the latitude, longitude and altitude, respectively. 
Once again, these operations are all done in parallel.  

4.3 Synthesize Details 
The setup of the design synthesis is as follows. The design 
was synthesized with the Xilinx Virtex 4 XC4VLX200 
FPGA as the target device, and the design goal was set to 
“balanced”. A   “balanced”   design   implies   that   no  
optimization for speed or utilization of resources was 
considered. Once the design was synthesized successfully, it 
was the compiled and built for implementation, as shown 
earlier in Figure 1. This process consists of translating, 
mapping, placing and routing of the signals. For the design 
implementation process, no partition was specified and the 
design was translated and mapped successfully. All signals 
were placed and routed successfully as well, and all timing 
constraints were met. Table 2 shows the device utilization 
summary.  

Table 2 
Device utilization summary 

 
Logic 
Utilization 
 

 
Used 

 
Available 
 

 
Utilization 

Number of 
Slices 

18,415 89,088 20% 

Number of Slice 
Flip Flops 

9,051 178,176 5% 

Number of 4 
input LUTs 

32,831 178,176 18% 

Number of 18 
Kb Block RAM 

45 336 13% 

Number of 
Bonded IOBs 

146 960 15% 

Number of 
GCLKs 

1 32 3% 

5 Preliminary Experiments and Results 

5.1 Computation Time Comparison 
Five experiments were conducted with the C++ executable of 
the EA and the average timing was recorded. The 
experiments  were  run  on  an  Intel®  Core™  2  Duo  Core  CPU  
2.66GHz. The Hardware-EA experiments were run on a 
FPGA simulator via Xilinx ISE 12.3. The entire terrain 
consisting 600 KB of data was used. Results for each EA 
phase are exhibited in Table 3.  
 

Table 3 
Timing results per EA cycle 

 
EA phase 

 
PC-based 
EA 

 
Hardware
-EA 
 

 
Speed 
improvement 
 

Crossover 4 ms 375 ns 10,000 
Mutation 1 ms 1250 ns 800 
Evaluation 1,370 ms 1,000 ns 1,370,000 
Selection + 
Population Update 

0.501 ms 23,750 ns 20 

Totala  1,376 ms 26,375 ns 52,000 
The tabulated time values are averages of the multiple runs. 
aThe total time is in reference to one complete EA generation.  

5.2 Discussion 
From Table 3, it can be seen that the hardware 
implementation provides significant speed improvement for 
all of the EA phases. The EA with a convergence criterion of 
sixty (60) generations results in a computational time 
improvement from 82 seconds to 0.3 milliseconds. This is 
mainly due to the fact that the PC-based EA had to run 
sequentially and the processing speed is CPU dependent. In 
the Hardware-EA design, parallelism incorporated by 
duplicating modules, and the Selection Unit generating a set 
of random numbers for the crossover in a single clock cycle, 
resulted in the significant speed improvement.  



 

 

6 A Real World Application 

6.1 Overview 
The concept of having significantly fast algorithms is to 
realise real-time application. In a potential practical 
application, the Unmanned Aerial Vehicle (UAV) is flying at 
low level avoiding terrain while conducting an air sampling 
mission (see Figure 9). The UAV has to be able to fly the 
shortest path between certain points, while avoiding 
obstacles that are present at low altitudes. An external 
processor or device could be used to generate the TM unit 
directly from a LiDAR sensor.  

Queensland University of Technology (QUT), in 
conjunction with the Cooperative Research Centre (CRC) for 
Plant Bio-security, Department of Agriculture and Food, 
Western   Australia’s   Murdoch   University,   Queensland  
Department of Primary Industries and Fisheries, is currently 
involved in a project to develop an UAV to monitor 
inaccessible cultivation areas and sample air and look for 
either unwanted spores or other plant pathogens. An UAV 
fitted with such data collection system and air sampling 
device flying an optimal path can monitor and reduce the risk 
of pest introduction from international trade and, at the same 
time, will capture a wide range of plant health information in 
a cost-effective way so as to cover international and domestic 
market demands.  
 

 
Figure 9: Practical operation scenario: low level  

flight air sampling mission 

6.2 Implementation 
The implementation process is best described as a flowchart 
depicted in Figure 10. The first step is to convert the LAS file 
format, generated by the LiDAR, to a text file. The second 
step is to process the points in the text file so that the EA can 
be applied. Next, the start and end waypoint positions are 
defined (step 3) and the optimal path is obtained using the EA 
(step 4). In Step 5, the LIDAR map will be loaded as an 
image or Digital Elevation Model (DEM) in the UAV ground 
station software. Step 6 will load the optimal waypoints to 
the autopilot ground station and simulate the mission. 
Finally, in Step 7, the mission is executed.  

The LiDAR map was converted to a text file, an 
optimal path was found and subsequently the DEM was 
loaded to the UAV ground station. Figure 11 shows the three 
dimensional view of the optimal flight path mission mapped 
out in MATLAB.  

Figure 12 shows the simulation environment of the 
mission running on Horizon™  MicroPilot   flight   simulator. 
Figure 12 also shows that a UAV helicopter is capable of 
navigating through the terrain via the shortest route and 

avoiding obstacles (large trees, vegetation, buildings) along 
the way. 

 

 
Figure 10: Flowchart of the implementation process 

 
 

 
Figure 11: Three dimensional view from MATLAB optimal 

flight path simulation  

7 Conclusion 
This research has shown an enhancement in the computation 
speed of an EA hardware-based UAS path-planner. With this 
enhanced computation time, the system could be 
implemented and be used as an on-board path planner, 
re-computing flight plans in real-time. This implies the 
possibility of using it in a dynamic environment.  

One development difficulty encountered was that 
the development time for the Hardware-EA using a low level 
hardware description language (HDL) such as VHDL is very 



 

 

time consuming. Future work will explore utilizing a high 
level HDL such as Mitrion-C, Handel-C or Impulse C. 
Additionally, designing a framework or interface between 
the TM unit and the outside world would bring the platform 
one step closer to hardware application implementation.  
 

 
Figure 12: Top-down view from Horizon™  MicroPilot flight 

simulation of a flight path-solution  
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Chapter 4

FPGA Implementation of an

Evolutionary Algorithm for

Autonomous Unmanned Aerial Vehicle

On-Board Path Planning

In this chapter, an improved FPGA-based path planning architecture for UAV adaptation

is proposed. The hardware design architecture consists of EA modules, population

storage resources, and three-dimensional terrain information necessary to the path

planning process, subject to constraints accounted for separately via UAV, environment,

and mission profiles. Results obtained from case studies for a small UAV helicopter with

environment data verify the effectiveness of the proposed FPGA-based path planner,

and demonstrated convergence at rates above the typical 10 Hz update frequency of an

autopilot system. With respect to the aforementioned research objectives as outlined in

Section 1.3, this research paper addresses objectives 1.(a), 3.(a) and 4.
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Chapter 5

Computational Experiments Involving

Population Size for FPGA-Based

Implementation of a GA for the TSP

In this chapter, the feasibility of using an in-hardware implementation of a GA to

solve the computationally expensive TSP is explored, particularly in regard to hardware

resource requirements for problem and population sizes. We investigate via numerical

experiments whether a small population size might prove sufficient to obtain reasonable

quality solutions for the TSP, thereby permitting relatively resource efficient hardware

implementation on FPGAs. Experiments were used to explore the extent to which

population size can be reduced without compromising solution quality, and results show

that a GA allowed to run for a large number of generations with a smaller population size

can yield solutions of comparable quality to those obtained using a larger population.

With respect to the aforementioned research objectives as outlined in Section 1.3, this

research paper addresses objectives 1.(a), 2. and 3.(b).
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Abstract 
The feasibility of using an in-hardware implementation of a genetic algorithm (GA) to solve the 
computationally expensive travelling salesman problem (TSP) is explored, especially in regard to 
hardware resource requirements for problem and population sizes. We investigate via numerical 
experiments whether a small population size might prove sufficient to obtain reasonable quality 
solutions for the TSP, thereby permitting relatively resource efficient hardware implementation on 
field programmable gate arrays (FPGAs). Software experiments on two TSP benchmarks involving 
48 and 532 cities were used to explore the extent to which population size can be reduced without 
compromising solution quality, and results show that a GA allowed to run for a large number of 
generations with a smaller population size can yield solutions of comparable quality to those 
obtained using a larger population. This finding is then used to investigate feasible problem sizes on 
a targeted Virtex-7 vx485T-2 FPGA platform via exploration of hardware resource requirements for 
memory and data flow operations. 
 
Keywords: Combinatorial optimisation, field programmable gate array, genetic algorithm, hardware 
acceleration, travelling salesman problem.  
 

Introduction 
In the field of combinatorial optimisation, the travelling salesman problem (TSP) is a popular NP-
hard and intensively investigated optimisation problem. Formally, the objective of the TSP is to find 
the Hamiltonian cycle with the least weight in a complete weighted graph (where vertices, edges 
and weights represent cities, roads and distance of that road, respectively). Applications of the TSP 
span across diverse fields, from more obvious applications in scheduling, planning and logistics, to 
more obscure ones such as DNA sequencing and manufacturing of microchips. A comprehensive 
review of the TSP can be found in the work by Applegate et al. (2006).  
 
Optimisation methods for the TSP fall into two categories of exact and heuristic algorithms. Exact 
algorithms, such as brute force search and branch-and-cut algorithms, consider all possible ordered 
combination of cities and find the one solution with the least distance. The running time for such 
algorithms lies within a polynomial factor of O(n!), where n is the number of cities. For example, a 
20 cities problem would have almost 2×1018 possible solutions for the algorithm to search through, 
which can lead to a CPU time consuming process. In view of this, exact algorithms are usually 
practical only for small problem sizes.  
 
Various heuristic algorithms, such as ant colony optimisation and genetic algorithm (GA), have 
been devised to find good solutions for larger problem sizes within a reasonable time. Instead of 



searching through all possible solutions in the large search space, heuristic algorithms iteratively 
explore and exploit random regions to search for increasingly better solutions. However, heuristic 
algorithms that are executed on CPUs may still incur substantial computational run-time due to the 
sequential processing nature of CPUs. Therefore, hardware implementations of GA for TSP have 
been proposed in previous works by several authors (Graham and Nelson, 1995; Skliarova and 
Ferrari, 2002; Vega-Rodriguez et al., 2005; Tachibana et al., 2006; Zhou et al., 2011).  
 
The above works are focused on introducing various implementations of GA features and are 
limited on the justification of parameters utilised, including population size and problem size, which 
hinders the extent to which their works may be built upon theoretically and empirically. They also 
lack in highlighting and describing the growth in resource requirements for accommodating the 
population size when the problem size is increased. In contrast, this work aims to investigate the 
relationships between (1) population size and solution quality; and (2) problem size and FPGA 
resource requirements. The results show that a GA with a smaller population size allowed to run for 
a large number of generations could obtain solutions of comparable quality to one with a larger 
population size. This finding allows for relatively resource efficient hardware implementation on 
FPGAs as a small population size is sufficient to obtain reasonable quality solutions for the TSP.  
 

Genetic algorithm  
Evolutionary computation approaches have also been used in the complex field of aerospace for 
path planning (Gonzalez, 2004) and aerodynamic design (Lee, 2009). GA is a population-based 
metaheuristic optimisation method built from the principles of biological evolution involving 
inherited features such as selection, crossover, and mutation (Goldberg, 1989). The fundamental 
procedure of a GA is illustrated in Fig. 1. The algorithm commences by initialising a parent 
population with random variables. During each generation, individuals from the parent population 
are subjected to a selection technique for reproduction. Selected individuals undergo genetic 
permutation which produces an offspring population. Subsequently, fitness of the offspring 
population is evaluated. Finally, fitter individuals of the offspring population are introduced back 
into the parent population. This evolutionary process is repeated until a specified termination 
criterion is met.   
 

 
Figure 1.  Pseudo code of genetic algorithm. 

 

Hardware implementation of genetic algorithm for the travelling salesman problem 
The GA used for this study is adapted from previous work by Kirk (2007). Each individual in the 
population is a candidate solution represented by the vertices of a Hamiltonian path (sequence of 
cities) and its distance. The following experiments are conducted with the ultimate view of 
hardware implementation, and to this end certain key parameters are chosen as power of two, 
resources are limited to a given device, and speedup is achievable from parallelism and pipelining 
design.  
 

Genetic Algorithm  
 

Initialise parent population 
WHILE (Termination criteria NOT SATISFIED) 
 Selection of individuals from parent population for reproduction  
 Genetic permutation of individuals to produce offspring population 
 Evaluation of offspring population 

Introduction of fitter offspring into parent population 
END-WHILE 

 



Population size and solution quality  
The main purpose of this experiment is to study the effects of population size on solution quality. 
The GA is executed on two benchmark TSPs known as TSP att48 (48 cities) and TSP att532 (532 
cities), which can be found in previous work by Reinelt (1991). The population sizes of the GA for 
each TSP experiment is set to 2n, n {8 ,... ,1} א. Fig. 2 and Fig. 3 show the convergence plot of the 
GA for TSP att48 and TSP att532, respectively. From the plots, two regions of interest (ROI) with 
notable characteristics are observed. ROI 1 shows that generally a GA with larger population size 
converges faster than one with smaller population size. On the other hand, ROI 2 shows that a GA 
even with a small population size when allowed to run for a large number of generations could 
obtain solutions comparable to one with a larger population size. This finding is noteworthy, given 
that hardware implementation allows for more generations to be executed within the same time 
period as its software counterpart. Additionally, a small population size is resource efficient for 
hardware implementations on FPGAs. 
 

 
Figure 2.  GA convergence result on TSP att48 across different population sizes. ROI 1 shows 

the early converging characteristics and ROI 2 shows the converged results after a large 
number of generations. 

 



 
Figure 3.  GA convergence result on TSP att532 across different population sizes. ROI 1 
shows the early converging characteristics and ROI 2 shows the converged results after a 

large number of generations. 
 

Problem size and FPGA resource requirements 
The representation of individuals within the population of a GA is shown in Fig. 4. Each individual 
consists of a candidate solution represented by a sequence of cities and its fitness. Note that the 
encoding size needed for each individual is proportional to the problem size.  
 

 
Figure 4.  Representation of individuals. C1 to Cn represents the sequence of cities for a 

problem size of n cities. 

 
 
The aim of this experiment is to investigate and estimate the maximum problem size implementable 
for a given GA population size and FPGA architecture. Based on the above results, the population 
size of 2n, n {6 ,... ,3} א and problem size of 2m, m {9 ,... ,4} א was chosen. Having access to a 
Virtex-7 FPGA VC 707 evaluation kit, the FPGA model of Virtex-7 VX485T-2 was chosen. The 
hardware implementation of a GA on FPGA architecture based on previous work by Kok et al. 
(2012) was chosen. All internal operators were not implemented; only memory and data flow of the 
GA population were implemented. Note that speedup and effectiveness of implementing a GA on 
FPGAs have already been proven by previous authors (Graham and Nelson, 1995; Skliarova and 
Ferrari, 2002; Vega-Rodriguez et al., 2005; Tachibana et al., 2006; Zhou et al., 2011), and therefore 

C1 C2 ... ... Individual: Fitness Cn-1 Cn 



the intent of this work is not to reproduce a proven concept but rather investigate the issues related 
to the implementation of population-based metaheuristics on a fixed-architecture. Parameters were 
synthesised with Xilinx ISE 14.1. The parameters and synthesis results are tabulated in Table 1 
below. From the results, a population size of above 64 will not be an ideal choice for hardware 
implementation on FPGAs as the maximum problem size it can address would be too small to be 
practical. 
 

Table 1.  Synthesis results of implementing a GA population size of 16 for different problem 
sizes. 

Population size  
(number of candidate 
solutions in the GA) 

Problem size  
(maximum number 

of cities) 

Estimated resource requirements 
(Percentage of  
device utilised) 

23 =     8 24 =   16     2% 
23 =     8 25 =   32     6% 
23 =     8 26 =   64   12% 
23 =     8 27 = 128   30% 
23 =     8 28 = 256   75% 
23 =     8 29 = 512 164% 
24 =   16 24 =   16     5% 
24 =   16 25 =   32   12% 
24 =   16 26 =   64   26% 
24 =   16 27 = 128   61% 
24 =   16 28 = 256 154% 
24 =   16 29 = 512 >> 100 % 
25 =   32 24 =   16 11% 
25 =   32 25 =   32 24% 
25 =   32 26 =   64 55% 
25 =   32 27 = 128 122% 
25 =   32 28 = 256 >> 100 % 
25 =   32 29 = 512 >> 100 % 
26 =   64 24 =   16 22% 
26 =   64 25 =   32 49% 
26 =   64 26 =   64 109% 
26 =   64 27 = 128 >> 100 % 
26 =   64 28 = 256 >> 100 % 
26 =   64 29 = 512 >> 100 % 

 
 

Conclusions 
Implementing a population-based metaheuristics on a fixed-architecture, such as a GA on FPGA, 
has been proven to be a viable concept. However, limitations associated with the population size 
have not been addressed explicitly in literature. In this work, the relationships between (1) 
population size and solution quality; and (2) problem size and FPGA resource requirements are 
investigated. From the results and with the ultimate aim of a fixed-architecture implementation 
(specifically the Virtex-7 FPGA), a small population size is shown to be sufficient to obtain 
reasonable quality solutions for the TSP, thereby permitting relatively resource efficient hardware 
implementations on FPGAs. Also, population sizes of above 64 will not be practical as they can 
only accommodate to small problem sizes of below 16, which is not ideal in the real-world where 



problem sizes are large by nature. Future work will explore avenues to address larger problem sizes 
of above 1,000 cities for hardware implementation on FPGAs. 
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Chapter 6

FPGA Implementation of a

Micro-Genetic Algorithm for Solving

the Travelling Salesman Problem

In this chapter, an FPGA-based micro-GA for solving the TSP adaptation is proposed

and described. The micro-GA is a well-suited optimisation algorithm for parallel execu-

tion via hardware implementation, mainly due to the low resource requirements from

its small population size and the independent operation of its individuals during the

evolution process. The proposed architecture aims to solve TSPs at a faster rate than

software algorithms using a micro-GA implemented entirely on an FPGA device. The

architecture of the proposed design is simple and modular for modifications and exten-

sions to suit the preference of a given application. Results obtained from experiments

with benchmark TSPs verify the effectiveness of the proposed FPGA-based TSP solver.

With respect to the aforementioned research objectives as outlined in Section 1.3, this

research paper addresses objectives 1.(a), 3.(b) and 4.
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FPGA Implementation of a Micro-Genetic
Algorithm for Solving the Travelling Salesman

Problem
Jonathan Kok, Member, IEEE, Troy Bruggemann, Felipe Gonzalez, and Neil Kelson

Abstract—In this paper, a hardware-based micro-genetic al-
gorithm (micro-GA) architecture for the travelling salesman
problem (TSP) adaptation is proposed and described. The micro-
GA is a well-suited optimisation algorithm for parallel execution
via industrial hardware electronics implementation, mainly due
to the low resource requirements from its small population size
and the independent operation of its individuals during the
evolution process. The proposed architecture aims to solve TSPs
at a faster rate than software algorithms using a micro-GA
implemented entirely on a field programmable gate array (FPGA)
device. The architecture of the proposed design is simple and
modular for modifications and extensions to suit the preference of
a given application. The design has been successfully synthesised
and implemented on a Xilinx Virtex-7 FPGA device with very low
device utilisation allowing opportunities for algorithm extensions.
Results obtained from experiments with benchmark TSPs verify
the effectiveness of the proposed FPGA-based TSP solver and
demonstrated an average speedup of 70 times faster when
compared to an equivalent software-based micro-GA TSP solver
and 26 times faster when compared to the powerful Concorde
TSP solver.

Index Terms—Field programmable gate array, heuristics,
micro-genetic algorithm, travelling salesman problem.

I. INTRODUCTION

IN the field of combinatorial optimisation, the travelling sales-
man problem (TSP) has been intensively investigated [1].

The TSP has its use in a wide range of practical applications,
such as manufacturing of microchips [2], testing of printed
circuit boards [3], cold rolling scheduling [4], automation of
disassembly system [5], and routing of shop floor logistics [6].
Formally stated, the objective of the TSP is to find the
Hamiltonian cycle with the least weight in a complete weighted
graph (where vertices, edges and weights represent cities, roads
and distance of roads, respectively).

In terms of computational complexity theory, the TSP
belongs to the class of NP-complete problems such that
an optimal solution for even moderate size problem can be
intractable to solve [7]. Hence, heuristics have been proposed
for yielding good solutions within reasonable time. Heuristics
such as genetic algorithms (GAs) explore and exploit random
regions of the search space for increasingly better solutions

J. Kok, T. Bruggemann and F. Gonzalez are with the Cooperative Research
Centre for Spatial Information and the Australian Research Centre for
Aerospace Automation, Brisbane Airport, Queensland 4007 Australia (e-mail:
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instead of performing an extensive analysis on all possible
solutions. A comprehensive survey of the TSP in conjunction
with exact algorithms and heuristics for solving it can be
found in [8], while a detailed literature review of chromosome
representation and genetic operators for GAs can be found
in [9].

As effective as heuristics are, they still require considerable
computational run-time for software-based execution. There-
fore, hardware implementations on field programmable gate
arrays (FPGAs) of heuristics such as ant colony optimisa-
tion [10], particle swarm optimisation [11], neural network
algorithm [12], [13], DNA algorithm [14], and GA [15], [16]
have been proposed. On interest here is the GA which is
potentially well suited for hardware implementation as its
population-based nature and independent genetic operations
allows for individuals to be handled concurrently. Moreover, it
is noteworthy that the GA has also been argued to be one of
the best available heuristics for solving the TSP [17].

In view of the potential advantages, a few studies have
explored the application of GAs for solving the TSP problem
using FPGAs [18]–[24]. Very early work [18] attempted a
hardware implementation of a GA for solving the TSP on the
Splash reconfigurable computing platform. However, due to
the limited reconfigurable logic resources on FPGAs at that
time, separate GA operations had to be distributed amongst
four FPGAs for execution. Note that subsequent advances
in FPGA technology now feasibly allow for an entire GA
system, such as a micro-GA, to be implemented entirely
on a single FPGA, as is undertaken here. Later work [19]
presented and implemented a crossover operator on FPGA
for solving the TSP. In [20], alternative versions of a GA
for FPGA implementation were developed using Handel-C (a
high level C like programming language that targets low-level
hardware instantiation). However, in contrast to the present
work, no hardware-based architecture was actually proposed,
as the focus of that study was on development efforts aimed at
improving the Handel-C encoding. In [21], a basic island GA
architecture suitable for hardware implementation including
management, crossover, mutation, and evaluation modules was
proposed. Parallel implementation of the individual modules
was not considered and instead sought via the inclusion of an
immigration module to oversee periodic exchange of individuals
between separate concurrently running GAs. Their approach
also involved implicit handling of selection and update phases
through a management module, as opposed to the present
approach which explicitly considers distinct selection and
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update phases to allow for greater modularity. In [22], the
design and hardware implementation of a parameterised GA
on an FPGA was proposed. A control module was implemented
to synchronise operations rather than developing on possible
parallelism aspects of the hardware implementation. Although
insufficient design details were provided, two more recent
proposals for a steady-state GA on FPGA [23] and a pipelining
structure for GA [24] can also be mentioned.

In contrast to the previously noted GA-based studies, a
framework for FPGA implementation of a micro-GA for
solving the TSP is proposed in this work. While functionally
similar to a traditional GA, the micro-GA acts on a smaller
population size and re-initialises the population when some
level of convergence is reached [25]. Micro-GAs have been
shown to be as effective as a conventional GA with a large
population size [26]. Also, the small population size feature
of the micro-GA is beneficial for hardware implementation
as it uses comparatively less hardware device resources than
a conventional GA, thereby allowing for e.g. a relatively
greater amount of unused FPGA logic resources to be instead
employed for future extensions or updates to an existing
architecture. In the present approach, the input parameters
of the micro-GA include a problem-specific cost matrix instead
of a fitness module as used in the previous GA-based studies
mentioned above - a potentially desirable feature in the FPGA
implementation as it allows the core design to be reusable
for different problem types without the need to re-design and
re-synthesise the cost function within the evaluation module
on the FPGA. Regarding parallelism, modules are designed
and implemented such that individuals within each module are
processed concurrently whenever possible to reduce processing
time. Genetic operators, namely the partially mapped crossover
(PMX) [27] and the simple inversion mutation (SIM) [28] are
proposed here along with new hardware suitable arithmetic
logic structures for each that are amenable to parallel processing.
Note that the SIM, when applied with the survival of the
fittest scheme within the overview of the micro-GA, creates
a phenomenon similar to that of the widely used 2-opt local
search algorithm [29]. Therefore, the proposed SIM design and
implementation allows for the coupling of the 2-opt. Finally,
the overall micro-GA design architecture adopts a modular
approach throughout to facilitate ease of integration with other
customised function modules to suit the preference of a given
application.

The novel contributions of this paper are as follows:
1) A new FPGA implementation method for a micro-GA

is proposed and applied for solving the TSP, speeding
up the computation process. The proposed design is
modular which allows for implementation and testing
of different choices for each of the genetic operators
or even a repository of the micro-GA solvers for
related applications.

2) New hardware suitable arithmetic logic structures
for the PMX and SIM are developed and deployed.
The operators are designed with parallel processing
attributes. The SIM is implemented to allow for
the coupling of the widely used 2-opt local search
algorithm.

3) A new cost matrix input parameter approach to an
FPGA-based TSP solver is proposed, allowing the
solver to handle different TSP types without the need
for re-designing and re-synthesising of the FPGA.

The rest of the paper is organised as follows. Section II
presents the TSP problem formulation. Section III gives a
description of the features necessary for a micro-GA to
effectively handle the combinatorial characteristics of the
TSP. Section IV describes in detail the proposed micro-GA
architecture and the FPGA implementation aspects of each
module. Section V reports on the simulations and experiments
conducted. Finally, Section VI concludes with a brief summary
and future work.

II. THE TRAVELLING SALESMAN PROBLEM

The travelling salesman problem can be formulated in terms
of graph theory as a complete graph G = (V,E), where the
set of vertices V = {1, ..., n} represent the cities and the set
of edges e

ij

2 E represents the cost between cities i and j.
Given this problem statement, the goal of the TSP is to find a
Hamiltonian cycle (i.e., each vertex is visited exactly once) with
the least cost in the graph G. Any algorithm solving the TSP has
to search through and compare all (n � 1)! possible solutions
which can result in a computationally intensive process. For
example, a 20-city TSP would have to consider almost 2⇥1018

possible solutions.

III. MICRO-GENETIC ALGORITHM FOR TSP

As earlier noted, the Micro-GA is a population-based
metaheuristic optimisation algorithm using techniques inspired
by the principles of biological evolution, such as selection,
crossover, mutation, and reproduction [30]. The fundamental
procedure of a micro-GA is illustrated in Fig. 1 and can be
described as follows. The algorithm commences by initialising
a parent population with random variables. During each
generation, individuals from the parent population are subjected
to a selection technique for reproduction. Selected individuals
undergo genetic permutation which produces an offspring
population. Subsequently, fitness of the offspring population is
evaluated. Finally, fitter individuals of the offspring population
are introduced back into the parent population. This evolution-
ary process is repeated until a specified termination criterion
is met.

The following subsections describe the representation of
individuals and the genetic operators used in the proposed
micro-GA design for the TSP problem being considered here.

A. Representation of Individuals
An individual refers to a candidate TSP path solution

within the micro-GA which is stored and permutated by the
evolutionary process, and for which an encoding is needed
to represent properties of a feasible solution. Of the various
different representations such as binary, adjacency, ordinal,
matrix, and path which have been proposed to solve the
TSP [17], the real path representation has been used here. For
this representation, cities are indexed as a list and the encoding
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Fig. 1. Pseudo code of proposed micro-genetic algorithm.

for each individual is in the form of a vector representing a
sequence of cities to visit. For example, the vector [1 17 3]
represents the path where cities with corresponding indexes 1,
17 and 3 are visited in the order given. Note that real rather
than binary encoding has been employed here, as the latter
requires special procedures and additional repair functionality
for Hamiltonian cycle validation and genetic operators which
have been argued to produce poor performance [31].

B. Genetic Operators
The micro-GA utilises two types of genetic operators, namely,

crossover and mutation. In principle, the crossover operator
takes two parent path solutions and exchanges characteristics
between them, resulting in two new offspring path solutions
with shared traits. In contrast, the mutation operator acts on a
single parent path solution by inducing a small permutation and
creating one new offspring path solution with minor variations.
Note that the genetic operators are dependent on the application
and the representation used. For the TSP problem, the operators
must be specifically designed to e.g. maintain the path solution
validity of a Hamiltonian cycle.

1) Partially-Mapped Crossover: As a suitable crossover
operator for the TSP, the partially mapped crossover (PMX)
operator [27] was chosen, whereby ordering and value informa-
tion from parent path solutions are passed on to offspring path
solutions. This is achieved by mapping a portion of one parent
onto a portion of the other and exchanging the remaining value
information.

As an illustration of the PMX, consider the following path
solutions

parent 1: [1 2 3 4 5 6 7 8] and
parent 2: [2 4 6 8 1 3 5 7]

where initially the portion for mapping is randomly selected
to be between the fourth and sixth elements of both parent
solutions. This would define the bidirectional mapping 4 $ 8,
5 $ 1, 6 $ 3. The mapping portions of the parent are then
copied into the offspring solutions, resulting in

offspring 1: [ ⇤ ⇤ ⇤ |4 5 6| ⇤ ⇤ ⇤] and
offspring 2: [ ⇤ ⇤ ⇤ |8 1 3| ⇤ ⇤ ⇤].

Subsequently, offspring 1 is consecutively filled up with
elements copied from parent 2 and vice versa. If an element

Fig. 2. Example of 2-opt operation.

that is to be copied over is already present in the offspring, then
it is replaced according to the mapping mentioned above. In
this example, the first and eighth elements of offspring 1, values
2 and 7, are copied directly from parent 2 as they are absent in
offspring 1. However, the second, third and seventh elements
of parent 2 are already present in offspring 1, therefore by
referring to the mapping specified above, the second, third and
seventh elements to be copied onto offspring 1, values 4, 6 and
5, are replaced with values 8, 3 and 1, respectively. Finally,
applying the same principles to offspring 2 results in

offspring 1: [2 8 3 |4 5 6| 1 7] and
offspring 2: [5 2 6 |8 1 3| 7 4].

Note that the absolute ordering of some elements in both
parents is passed on to the offspring solutions.

2) 2-Opt: As a suitable mutation operator for the TSP, the
2-opt search algorithm [28] was chosen for implementation.
The aim of this operation is to unknot two sub-tours within
a path solution into a single shorter tour (see Fig 2). This is
achieved by randomly selecting a portion of the path solution
and reversing its order.

As an example of the 2-opt operator, consider the parent
path solution

parent: [1 2 6 5 4 3 7 8],

where the randomly selection portion between elements three
and six is chosen. After reversal, this results in

offspring: [1 2 4 5 6 7 8].
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Fig. 3. Schematic of the proposed micro-GA architecture.

IV. MICRO-GA HARDWARE IMPLEMENTATION DETAILS

A. Architecture

The proposed FPGA hardware-based micro-GA architecture
is depicted in Fig 3. The inputs are the clock, reset, number
of cities, cost matrix of the problem, maximum number of
generations, and micro-GA start signals. Upon satisfaction of
the termination criteria, the system outputs a done flag and
the TSP solution. In addition to these, the proposed archi-
tecture utilises six operational modules (initialise, selection,
genetic, evaluation, update, and termination) along with two
multiplexers used to alter the data flow for the purpose of re-
initialisation. Each module is controlled by a Mealy finite-state
machine [32] which manages the data and parallel execution
of internal operations. All modules except the termination
module have the same process flow (i.e. read input, parallelised
operations, and write output), and all include memory resources
that receive, transmit and store the entire micro-GA population
made up of equal sized parent and offspring populations. Note
that a random number generator (RNG) is used in the initialise,
selection and genetic modules, and for this purpose the 32-
bits Mersenne Twister RNG is implemented as recommended
by Matsumoto and Nishimura [33]. The chosen RNG has a
uniform distribution and a large prime period of 219937 � 1,
which effectively results in long pseudo-random sequences
with no repetition. The following subsections describe further
each of the modules.

B. Termination Module

The termination module, which runs after the update module
has completed, is the core module that controls the overall
process flow of the micro-GA by monitoring the status of
the termination and convergence criteria. The termination
criterion used here terminates the algorithm when a user defined
maximum generation count has been reached, and to this end
the module uses an internal counter for the current generation
count to compare with the maximum generation count at every
generation. A terminate flag is triggered when the termination

criterion is satisfied, whereby the micro-GA stops and the
best individual in its current population is output. In contrast,
the micro-GA does not terminate but instead re-initialises the
offspring population when the convergence criterion is satisfied.
Here convergence is met when both parent and offspring have
the same fitness score, indicating no further improvements
can be made in its current state. When convergence occurs, a
re-initialise flag is triggered which is connected to the selector
input of the multiplexers, causing the algorithm to proceed
with the initialise module instead of the usual continuation
with the selection module. The overall process flow of the
termination module is illustrated in Fig 4.

C. Initialise Module

The initialise module only runs when triggered after the
termination module has completed. It re-initialises all individ-
uals of the offspring population when convergence is satisfied.
The only inputs are the start flag and number of cities, which
when triggered cause the module to generate and output a new
random sequence of cities for each individual in the offspring
population.

D. Selection Module

The selection module runs after the termination module has
completed with re-initialise flag not triggered. The module
implements the effective tournament selection technique [34]
in which pairs of individuals throughout the entire popula-
tion are randomly chosen for their respective fitness to be
compared against. The random numbers used for selecting
the individuals are generated by an internal RNG, as noted
earlier. Subsequently, the better individuals (the ones with
smaller cost association) are copied and stored onto the output
offspring population. The selection operation thereby promotes
reproduction from fitter individuals through which useful
information is preserved and exploited.
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Fig. 4. Process flow of the termination module controlling the micro-GA.

E. Genetic Module

The genetic module outputs permuted offspring individuals
to discover possible better solutions. It runs after the selection
module has completed. Half of the input offspring are desig-
nated for PMX and the other half for 2-opt. As mentioned
above, the objective of the PMX is to share and exchange useful
sequence of cities from two individuals, whereas the objective
of the 2-opt is to unknot an individuals path solution that
crosses over itself. To the authors’ knowledge, synthesisable
hardware descriptions of these arithmetic logic structures have
not been previously reported, and therefore new proposals for
hardware implementation of the PMX and 2-opt have been
developed for this work, as detailed below.

1) Partially-Mapped Crossover: The algorithmic description
of the PMX operation suitable for FPGA hardware based
implementation is illustrated in Fig 5. The overall PMX process
is controlled by a Mealy finite-state machine where each step
representing each state is executed in a single clock cycle, as
follows. Steps 1 & 2 randomly select and order two numbers
between 1 and the maximum number of cities to be used as
the portion for mapping. Step 3 initialises a counter to keep
track of mapped states, Step 4 copies the portions for mapping
across the two solutions, and Step 5 checks and maps the
appropriate portions. Finally, Step 6 ensures that all mapping
within the selected portion is executed. Effectively, the for loop
in hardware is executed concurrently, hence a minimum of six
clock cycles up to a maximum of six plus the number of cities
clock cycles are required to complete this operation.

Fig. 5. Steps for the PMX operation.

2) SIM: The steps for the SIM operation are shown in Fig 6.
The overall SIM process is controlled by a Mealy finite-state
machine akin to that of the PMX operation. The steps carried
out by the SIM are as follows. Steps 1 & 2 randomly select and
order two numbers between 1 and the maximum number of
cities to be used as the portion for swapping. Step 3 swaps the
positions of cities within the portions for swapping. The total
clock cycles required to complete this operation is always four.
Functioning in conjunction with the update module, which
ensures the survival of the fittest individual, the SIM forms the
basis for a 2-opt local search process within the micro-GA.

F. Evaluation Module
The evaluation module runs either after the initialise module

or the genetic module is completed, as determined by the
selector input triggered by the convergence criteria. This
module uses the cost matrix input to the TSP, which stores
the cost associated with every possible pair of cities (i.e. for
a problem with N cities, the cost matrix is of size NxN).
The module calculates and stores the fitness of the genetically
permutated offspring population by accumulating the total cost
associated with a given solution. The steps performed by the
evaluation module are illustrated in Fig 7. Note that the total
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Fig. 6. Steps for the SIM operation.

Fig. 7. Steps for the evaluation operation.

clock cycles required to complete the evaluation is always three
times the number of cities. Handling the evaluation process via
a cost matrix input parameter instead of the typical problem-
related cost function, allows the proposed FPGA-based micro-
GA architecture to be robust for solving different types of
TSPs without a priori knowledge and the need to update a
suitable cost function.

G. Update Module

The update module runs after the evaluation module is
completed to integrate the genetically altered offspring into
the parent population and to promote elitism. The parent and
offspring populations are concatenated into a single population
which is then sorted according to their fitness levels for later
use to ensure that fitter individuals always remain in the parent
population at the start of subsequent generation cycles. The
sorting algorithm implemented is the bubble sort which comes
with the advantages of simple coding and algorithmic structure
with only one auxiliary memory space requirement, and for a
population size n with a deterministic computational complexity
of O(n2) [35]. As the population size of the micro-GA is small,
this computational complexity does not significantly impact
on the overall evolutionary process.

V. RESULTS

A. Implementation Details
The performance of the proposed system was compared

against both its software counterpart and the Concorde TSP
solver [36] which has been argued to be one of the best and
fastest TSP solvers currently available [37]. The software
counterpart of the micro-GA TSP solver was implemented
on an Intel(R) Core(TM)2 Duo CPU E8600 @ 3.33GHz with
3.49 GB of RAM. The three main parameters to setup before
synthesising the design are the population size of the micro-
GA, the maximum possible number of generations, and the
maximum number of cities for the synthesised implementation
to consider, which are set to 24 = 16, 221 = 2, 097, 152 and
28 = 256, respectively. Both the software and hardware micro-
GA implementations used the same aforementioned algorithm
parameters.

The overall design was synthesised by the Xilinx ISE 14.3
with the Xilinx Virtex-7 XC7VX485T FPGA as the target
device. The design goal was set to “balanced, which implies
that no optimisation for speed or utilisation of FPGA resources
was considered. Once the design was synthesised successfully,
it was then compiled and built for implementation. This process
consists of translating, mapping, placing and routing of the
signals. For the design implementation process, no partition was
specified and the design was translated and mapped successfully.
All signals were placed and routed successfully as well, and
all timing constraints were met. The breakdown of the device
utilisation is as follows. 31855 slice registers (5% of available),
21353 slice LUTs (7% of available), 3145 LUT-FF pairs (3%
of available), and 13 block RAM (1% of available) of the total
resources were used. The overall FPGA design had a maximum
operating frequency of 169.436 MHz. The design has low
resource footprint allowing further opportunities for algorithm
extensions. A top level UART module was implemented as
a wrapper (see e.g., Chu [38]) for the proposed micro-GA
hardware implementation to communicate between a PC and
the FPGA device. Note that the proposed methodology should
be suitable for implementation on any other FPGA target
devices.

B. Experiments
Benchmark TSP solutions from the TSPLIB [39] were used

to evaluate the effectiveness of the proposed FPGA-based micro-
GA TSP solver. The results of both software and hardware
micro-GA implementations for each of the experiments were
averaged over 100 runs. The results include the number of
generations and the run-time it took to solve the given TSP.
Note that the TSPs are always solved to the optimum solution
by both the hardware and software micro-GA implementations.
Additionally, the TSP solutions from the Concorde TSP solver
are included.

C. Results
Table I shows the results for the experiments and the speedup

the FPGA-based implementation had over both Concorde and
the software-based micro-GA TSP solver. The results of the
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TABLE I
RESULTS OF THE PROPOSED FPGA-BASED MICRO-GA IMPLEMENTATION.

Concorde micro-GA for TSP
TSP solver Software implementation FPGA-based implementation

Generations Generations Speedup Speedup
Benchmark TSP Run-time (ms) to solve Run-time (ms) to solve Run-time (ms) over Concorde over software

burma14 20 297 193 108 1.2 16.7 160.8

ulysses16 120 656 357 289 4.1 29.3 87.1

ulysses22 290 863 442 518 11.8 24.6 37.4

ch130 650 1226 804 1036 20.13 32.0 39.6

ch150 910 1789 1126 1354 29.5 30.8 28.5

Concorde TSP solver were taken from [36]. The software
implementation of the micro-GA performed computationally
slower than the Concorde TSP solver. The proposed FPGA-
based implementation of the micro-GA was on average 70 times
faster than its software counterpart and 26 times faster than the
Concorde TSP solver. It can be seen that the computational
run-times for all the TSP solving methods were relative to the
given problem difficulty. The effectiveness of the FPGA-based
implementation remained consistent across the different TSPs.

VI. CONCLUSIONS

In this paper, a robust FPGA-based micro-GA for solving
TSPs is proposed and described. The micro-GA is a well-suited
optimisation algorithm for hardware implementation, mainly
due to its low-resource requirement to perform effectively. The
architecture of the proposed design is simple and modular
for modifications and extensions. It has been successfully
implemented and evaluated using benchmark TSPs without a
priori knowledge. The proposed FPGA-based implementation
performed on average 70 times faster when compared to an
equivalent software-based micro-GA TSP solver and 26 times
faster when compared to the powerful Concorde TSP solver.
While this work is focused on TSPs, the proposed approach has
the potential to be more widely applicable in other optimisation
applications requiring efficient and effective optimisation tech-
niques. Future work will involve the investigation of partitioning
decisions (e.g. vehicle routing problem, bin-packing) for large-
scale TSP to be split into manageable sub-problems in which
a single or multiple micro-GA, whose input is controlled by a
high-level partitioning decision maker, is able to solve large-
scale TSPs for implementation in more complex practical
applications.
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Chapter 7

An FPGA-Based Approach to

Multi-Objective Evolutionary

Algorithm for Multi-Disciplinary

Design Optimisation

In this chapter, the FPGA-based multi-objective EA approach for multi-objective opti-

misation problems is investigated. The NSGA-II has been well studied and established

for large and complex problems, such as those inherited in multi-objective optimisation

problems. The NSGA-II is implemented on an FPGA device. The performance of the

FPGA-based NSGA-II on different types of Pareto front geometry, such as convex,

concave and discontinuous, is investigated to verify the effectiveness of the proposed

design. Results show that the NSGA-II on FPGA is three orders of magnitude faster

than its software version. With respect to the aforementioned research objectives as

outlined in Section 1.3, this research paper addresses objectives 1.(b), 3.(c). and 4.
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Abstract. This paper investigates the field programmable gate array (FPGA) ap-
proach for multi-objective and multi-disciplinary design optimisation (MDO) prob-
lems. One class of optimisation method that has been well-studied and established
for large and complex problems, such as those inherited in MDO, is multi-objective
evolutionary algorithms (MOEAs). The MOEA, nondominated sorting genetic algo-
rithm II (NSGA-II), is hardware implemented on an FPGA chip. The NSGA-II on
FPGA application to multi-objective test problem suites has verified the designed
implementation e↵ectiveness. Results show that NSGA-II on FPGA is three orders
of magnitude better than the PC based counterpart.

Key words: Field programmable gate array (FPGA), multi-disciplinary design
optimisation (MDO), multi-objective evolutionary algorithm (MOEA)

1 INTRODUCTION

Multi-disciplinary design optimisation (MDO) has been and is actively applied
for solving design problems in aerospace, mechanical and electrical engineering. The
aim of MDO is to generate superior designs by the simultaneous exploitation of
incorporated interactions between disciplines1. However, the inclusion of interacting
subsystems increases the problem complexity and resource requirements, where the
search space is larger and the associated objective functions are computationally and
memory intensive. Therefore, robust and e�cient optimisation methods that are also
practical in terms of computational run-time are indispensable in the field of MDO.
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One class of optimisation method that has been well-studied and established for
large and complex problems, such as those inherited in MDO, is Multi-Objective Evo-
lutionary Algorithms (MOEAs)2,3,4. MOEAs belong to a class of generic population-
based metaheuristic optimisation methods built from the principles of biological
evolution. MOEA simultaneously optimises a set of candidate design solutions
through genetic operations that explore and exploit interesting regions of the search
space without a priori knowledge, thus o↵ering exceptional search adaptability for
finding Pareto fronts on large and complex unknown problem domains. MOEAs have
been suggested primarily because of their ability to emphasise the search towards
the true Pareto optimal region and obtain a set of Pareto optimal design solutions
in one simulation run. The nature of MOEAs being population-based metaheuristics
makes them well suited for solving MDO problems2, as the fundamental evolutionary
process deals simultaneously with a population of candidate design solutions which
are iteratively improved after each generation. Hence, constantly maintaining and
producing a population of optimised design solutions that relates to a particular
Pareto front. MOEA techniques di↵er in three implementation details — namely,
fitness assignment, diversity preservation, and elitism.

One approach to speed up the runtime of MOEAs and MDO methods is to imple-
ment its behaviour on an FPGA device, where true parallel execution and hardware
dedication is possible. An FPGA device is made up a finite number of programmable
logic components to be configured for performing complex combinational functions.
FPGA technology benefits from faster response times and customised functionality to
accurately meet application requirements, which is contributed by the capability of
controlling the design from the hardware level. With this, MDO methods that take
several hours to run could be executed in factors of seconds, impacting significantly
on the development cycle and cost of a project. Furthermore, the nature of MOEAs
being population-based in which individuals optimises independently, makes them
well suited for the adoption of true hardware parallelism on FPGA. Theory on FPGA
programming and features can be found in Chu5.

This paper describes the extension of previous work by Kok et al.6 on coupling
FPGA to MDO search algorithms. Our proposed hardware design adopts main
features from the popular nondominated sorting genetic algorithm II (NSGA-II)7,
such as crowding distance assignment8 and domination-based Pareto front ranking9.

The rest of the paper is organised as follows: Section 2 presents the methodology
for the NSGA-II and its FPGA mapping aspects. Section 3 shows validation and
comparison of the NSGA-II and NSGA-II on FPGA by solving multi-objective
mathematical test. Finally, Section 4 presents the conclusions.

2 METHODOLOGY

In multi-objective optimisation, all relevant disciplines are associated with one or
several optimisation objectives, there is no single design solution that is uniquely
optimum as compared to every other possible design solution with respect to all
objectives, given that its optimality is subjected to the compromise arising from
other conflicting objectives. Thereby, the goal of MOEA is to obtain a set of design
solutions in which no other solutions are superior to those in its set when all objectives
are considered. This non-dominated set of solutions, also known as the Pareto front,
provides decision makers with the baseline for making an educated compromised
choice from amongst the many.
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In the following subsection, the evolutionary optimisation methods, the NSGA-II
and NSGA-II implemented on FPGA are presented.

2.1 NSGA-II

In the instance of the NSGA-II, it incorporates fast nondominated sorting, crowding
distance assignment, and elitism selection process7.

The NSGA-II algorithm (see Figure 1) is a well known algorithm7 but its descrip-
tion is repeated here as to provide background for the NSGA-II on FPGA. It starts by
initialising the parent population, P0, randomly, upon which each of the M objectives
value, V

m

,m 2 {1, . . . ,M}, is evaluated as accordingly. The population is made up
of N individuals that are represented by a vector consisting of a candidate solution,
x, its objective values, {V1, . . . , VM

}, the overall fitness value, F , and neighbourhood
diversity value, D. Beginning of each generation, t, an o↵spring population, Q

t

, which
has the same chromosome structure as P

t

, is selected for the evolutionary process
with the selection pressure focusing on the elites which have better F and D values.
Q

t

then undergoes genetic operations involving simulated binary crossover (SBX)
and polynomial mutation. The permutated Q

t

is then evaluated for each of the M

objectives value, V
m

,m 2 {1, . . . ,M}. Next, the concatenated R

t

= P

t

S
Q

t

is fast
nondominated sorted, where F of each chromosome is assigned a rank value according
to the nondominated front it lies on with respect to every other chromosome in R

t

.
A generation cycle is completed with the assignment of D for each individual in
R

t

, which is a diversity value according to the crowding distance it constitutes with
respect to the adjacent chromosomes on its nondominated front rank. The NSGA-II
algorithm executes iteratively until a specified stopping criteria such as maximum
number of generations, t

max

, has been met.

Figure 1: Pseudocode for NSGA-II.

2.2 NSGA-II on FPGA

The theoretical foundations of the evolutionary algorithms rely on a binary coded
representation, where genetic operators produce the best outcome due to the binary-
chained nature by which biological evolution is handled10. This binary coded aspect
is complimentary when mapping MOEA on FPGA, where hardware circuits operate
on a binary logic level. Using modern FPGA design softwares, such as Xilinx ISE
design suite, circuits can be easily designed and implemented for rapid prototyping
on hardware, thereby avoiding the long fabrication processing of application specific
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integrated circuit (ASIC) design. After configuring a predefined circuit on an FPGA,
system developers are allowed to make design changes or functional enhancements
as necessary without requiring the time and cost involved in ASIC redesign, hence
o↵ering viable long-term maintainability. In operational mode, the parallelism and
pipelining design capabilities of FPGAs contribute to the significant speedup over
instruction stream processors.

2.2.1 Overview

The proposed algorithmic architecture of the NSGA-II on FPGA, which exploits
parallelism on an iteration level, is depicted below in Figure 2. The algorithm
incorporates the key features, fixed-point representation, random number generator,
crossover, mutation, Pareto front ranking, crowding distance assignment, selection,
and evaluation, which are needed for securing diverse Pareto-optimal fronts. The
population, consisting of candidate design solutions, is stored on the dedicated block
RAM onboard the FPGA. Tournament selection is randomly carried out across
the population, determining better candidate design solutions to be genetically
altered, which produces the preceding o↵spring population. After the o↵spring have
been crossovered, mutated and evaluated, they are concatenated with the parent
population to undergo Pareto front ranking and crowding distance assignment. The
higher ranking and wider spread solutions are updated back into the population
block RAM. It should be noted that the data flow arrow in Figure 2 denotes parallel
processing.

Figure 2: Architecture of the FPGA-based NSGA-II algorithm.

2.2.2 Representation

The representation of candidate design solutions can be coded in real-coded
binary, floating-point or fixed-point numbers. Michalewicz10 experimented and
concluded that floating-point and fixed-point representation is faster, more consistent
and higher in precision than real-coded representation. Since the complexity of
floating-point arithmetic consumes a larger logic footprint and is not as e�cient
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as fixed-point arithmetic, representation of the candidate parameters is therefore
encoded in fixed-point format.

2.2.3 Random number generator

Randomness and periodicity are two main factors to consider when implementing
a logic level random number generator (RNG) for an FPGA. Matsumoto and
Nishimura11 proposed a pseudo RNG called Mersenne Twister, which was argued to
be as fast and random as the standard ANSI-C ”rand()”. The Mersenne Twister is
essentially a uniformly distributed pseudo RNG based on a matrix linear recurrence
over a large finite binary field. Another advantage of FPGA implementation of a
Mersenne Twister is its low resource consumption and its ability to generate new
random sequences at every clock cycle.

2.2.4 Population module

The Population module, which is implemented as a block RAM, contains the
population matrix comprising n chromosomes of candidate solution, x, objective
values, V, fitness value, F , and diversity value, D, (see Figure 3). The Population
module is responsible for broadcasting selected chromosomes for the evolutionary
process. At the end of each generation, it receives the evaluated o↵spring and updates
them into the Population module.

Figure 3: Design of Population module.

2.2.5 Crossover/mutation

An SBX operation and a polynomial mutation proposed by Deb and Agarwal12 are
implemented. The intention of a crossover operation is to exchange useful information
between two candidate solutions, whereas a mutation operation is aimed to slightly
alter a candidate solution. Thus, crossover and mutation can be seen as exploitation
and exploration respectively. A balance between them is applied to guide a search
algorithm.

2.2.6 Evaluation

The evaluation module consists of the analysis functions to be optimised for the
specific MDO application.

2.2.7 Pareto front ranking

Pareto front ranking is based on the non-dominance feature of a candidate solution9.
Design solution A is said to dominate design solution B if all of design solution A’s
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fitness is better than design solution B’s, else design solution B is non-dominated.
Non-dominated design solutions are allocated higher rank than dominated ones,
hence ensuring the preservation of Pareto optimal design solutions.

2.2.8 Crowding distance assignment

A technique proposed by Deb9 known as crowding distance assignment is im-
plemented to maintain the diversity of the Pareto fronts. The advantage of this
technique lies in the nature by which it operates, whereby it does not require any
performance dependent parameter.

2.2.9 Selection

Tournament selection based on the Pareto front rank and crowding distance is
used as a competition winning criteria for the next generation of o↵spring. Higher
ranking solutions wins over lower ranking solutions. If two solutions are of the same
rank, the solution with higher crowding distance wins. This method ensures the
survival of the fittest.

2.3 NSGA-II on FPGA Implementation

The NSGA-II features described above are translated into very-high-speed inte-
grated circuits hardware description language (VHDL), which is a hardware descrip-
tion language used to describe logic circuitry for FPGAs.

3 EXPERIMENTS AND RESULTS

3.1 Test Problems

The general formulation of a multi-objective optimisation problem can be repre-
sented in the following form:

Minimise/Maximise f

m

(x), m = 1, 2, . . . ,M ;

subjected to g

j

(x), j = 1, 2, . . . , J ;

x

(L)
n

 x

n

 x

(U)
n

, n = 1, 2, . . . , N.

9
>=

>;
(1)

where f
m

,m 2 {1, . . . ,M}, are the objective functions to be minimised or maximised,
x = (x

n

, . . . , x

N

), n 2 {1, . . . , N}, is the “optimisation vector” of N design

variables that are individually restricted by lower x(L)
n

and upper x(U)
n

bounds, and
g

j

, j 2 {1, . . . , J}, are constraint functions.
Four multi-objective mathematical test problems are used to validate the perfor-

mance of NSGA-II on FPGA. The first two test problems are SCH13 and FON14

where the true Pareto fronts are convex and concave, respectively. The subsequent
two test problems are POL15 and KUR16 where both true Pareto fronts are di�cult,
discontinuous and concave. These test problems are described in Table 1. Note that
concave problems pose di�culties for classical weighted sum approaches9.

3.2 Algorithm Parameters

The software version of the NSGA-II is implemented on an Intel(R) Core(TM)2
Duo CPU E8600 @ 3.33GHz, 3.49 GB of RAM, whereas the proposed NSGA-II on
FPGA was implemented and simulated on a Xilinx Virtex 4 (xc4vlx200-11↵1513).
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The parameters used for both algorithms and all the test problems are set according
to Deb9 recommendations:

- population size = 100,
- number of generations = 250,
- crossover rate = 90%,
- mutation rate = 10%.

Test Objective functions Pareto optimal
problem front geometry

SCH f1(x) = x

2 Convex
f2(x) = (x � 2)2

FON f1(x) = 1 � exp(�
P3

i=1(xi

� 1p
3
)) Concave

f2(x) = 1 � exp(�
P3

i=1(xi

+ 1p
3
))

POL f1(x) = [1 + (A1 � B1)2 + (A2 � B2)2] Discontinuous,
f2(x) = [(x1 + 3)2 + (x2 + 1)2] concave
A1 = 0.5 sin 1 � 2 cos 1 + sin 2 � 1.5 cos 2
A2 = 1.5 sin 1 � cos 1 + 2 sin 2 � 0.5 cos 2
B1 = 0.5 sin x1 � 2 cos x1 + sin x2 � 1.5 cos x2

B2 = 1.5 sin x1 � cos x1 + 2 sin x2 � 1.5 cos x2

KUR f1(x) =
P2

i

(�10 exp(�0.2
p

x

2
i

+ x

2
i+1)) Discontinuous,

f2(x) =
P3

i=1 |x
i

|0.8 + 5 sin x3
i

concave

Table 1: Test problems used in this study.

3.3 Experimental Results

Five simulation runs are experimented for each SCH, FON, POL, and KUR test
problems to test the e↵ectiveness of NSGA-II on FPGA. Figure 4 and Figure 5
show one of the results comparing the Pareto front obtained by the NSGA-II and
NSGA-II on FPGA for the test problems. It can be seen that good solution quality
was achieved for each test problem. The computational runtime results are shown in
Table 2.

Figure 4: Comparison of Pareto front obtained by the NSGA-II and NSGA-II on FPGA for (a)
SCH and (b) FON.
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Figure 5: Comparison of Pareto front obtained by the NSGA-II and NSGA-II on FPGA for (a)
POL and (b) KUR.

Test Computational run-time (ms) Speed
problem NSGA-II NSGA-II on FPGA improvement

SCH 6 902.4 6.25 ⇥ 1 104
FON 7 981.2 6.42 ⇥ 1 243
POL 4 341.0 7.14 ⇥ 608
KUR 9 535.8 6.70 ⇥ 1 423

Table 2: Computational run-time results averaged over five simulation runs.

Size and execution speed analysis of the designed NSGA-II on FPGA is as follows.
There is a total 178 000 configurable logic blocks utilised on the FPGA, which
is equivalent to 5% of the overall resources available on a Xilinx Virtex 4 FPGA
chip. The maximum working frequency is 32 MHz. The selection module takes
two clock cycles to compare two random candidate design solutions. The crossover
and mutation modules each takes one clock cycle to perform genetic operation on
each candidate design solution. The Pareto front ranking and crowding distance
assignment modules each takes 100 clock cycles to compare the entire population.
Since the objective is to verify the NSGA-II on FPGA e↵ectiveness, the evaluation
module is implemented as lookup tables, in which takes one clock cycle to assign the
appropriate objective values.

4 CONCLUSION

The hardware implementation of the NSGA-II algorithm for MDO problems is
proposed in this paper. The NSGA-II is e↵ective without a priori problem knowledge
and capable of simultaneously optimising the design problem in a single simulation run.
The proposed NSGA-II on FPGA performance is demonstrated from four examples
and comparisons. The simulation results indicate that the solutions obtained from
the NSGA-II on FPGA are comparable to its software counterpart. The hardware
NSGA-II implementation achieved a speed up of approximately 1 300 times over the
software implementation, which is attractive for practical multi-objective and MDO
applications.
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Chapter 8

Multi-Objective Evolutionary

Algorithm using FPGA-Based

Pipelining and Parallel Architecture:

Design, Test, and Analysis

In this chapter, an improved FPGA-based multi-objective EA which utilises instruction-

level parallelism and ring dataflow pipelining architecture for generating a very high

throughput system is proposed. The FPGA-based design of the NSGA-II is described

in relation to both the overall pipeline ring topology and the processing elements

architecture. The proposed methodology is evaluated using test problems with known

solutions. Analysis of results demonstrate that very high performance can be achieved

with the hardware parallelising of processing elements in an MOEA over a pipeline

ring architecture. With respect to the aforementioned research objectives as outlined in

Section 1.3, this research paper addresses objectives 1.(b), 3.(c). and 4.
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Multi-Objective Evolutionary Algorithm using
FPGA-Based Pipelining and Parallel Architecture:

Design, Test, and Analysis
Jonathan Kok, Member, IEEE, Felipe Gonzalez, and Neil Kelson

Abstract—In this paper, a hardware implementation of a multi-
objective evolutionary algorithm (MOEA) on field programmable
gate array (FPGA) for multi-objective optimisation is proposed.
MOEAs are generic population-based metaheuristics that mimic
the behaviour of biological evolution. The MOEAs population
consists of candidate solutions that are rendered independently
within the evolution process allowing for the exploitation of
instruction-level parallelism and ring dataflow pipelining. The
underlying binary nature of the evolutionary stages is com-
plementary for the hardware implementation of fast primitive
bitwise operations. These two main advantageous features of
MOEAs make them well suited for FPGA-based implementations.
The FPGA-based design of the NSGA-II, a widely used MOEA,
is described in relation to both the overall pipeline ring topology
and the processing elements architecture. The proposed method-
ology is tested using known test problems. Analysis of results
demonstrate that very high performance can be achieved with
the hardware parallelising of processing elements in an MOEA
over a pipeline ring architecture.

Index Terms—Evolutionary computation, field programmable
gate array, multi-objective evolutionary algorithms, parallelism,
pipeline.

I. INTRODUCTION

REAL-WORLD multi-objective optimisation problems are
often NP-hard, complex, and time consuming [1]. One

optimisation method to address these types of optimisation
problems is through the use of population-based metaheuris-
tics, such as evolutionary algorithms (EAs) [2], [3]. In prin-
ciple, EAs simulates the behaviour dynamics of a biological
evolution process, by which guides the quality of solutions
towards a level of optimality [4]. During the evolution process,
a population of candidate solutions is iteratively evolved from
generation to generation by the interactions of two main
mechanisms: selection and reproduction. The quality of each
candidate solution is associated with a relative fitness value
assigned by an evaluation function. Based on these fitness
values, the selection operator (e.g., tournament, roulette wheel,
ranking, truncation [5]) is instituted to pressure the evolution
process towards domination. The reproduction operator (e.g.,
mutation, crossover [6]) probabilistically applies variation on
selected candidate solutions, by which heuristically steers the

J. Kok and F. Gonzalez are with the Australian Research Cen-
tre for Aerospace Automation (ARCAA), Queensland University of
Technology, Brisbane 4000 Australia (e-mail: j.kok@qut.edu.au; fe-
lipe.gonzalez@qut.edu.au).

N. Kelson is with the High Performance Computing and Research Support
Group, Division of TILS, Queensland University of Technology, Brisbane
4000 Australia (e-mail: n.kelson@qut.edu.au).

search towards solutions of diverse quality. The generic nature
of EAs allows them to adapt and perform well across a diverse
range of optimisation problems, including aerospace engineer-
ing [7], civil engineering [8], economics [9], robotics [10], and
structural design [11].

Since the 1950s, metaheuristics were introduced to address
optimisation problems involving very large search spaces, in
which exact algorithms might not be feasible due to the
required computational expenses. However, modern problems
have become increasingly complex such that even applying
metaheuristics for these problems nowadays can be com-
putationally intensive. The main computational overhead is
induced by the sequential computation of candidate solutions
recurring throughout the evolution process. The computational
burden is especially evident when candidate solution involves
long data width and/or large population size [12]. Fortunately,
executions of evolutionary operations on candidate solutions
are independent of each other, which makes the computational
process on candidate solutions of the population essentially an
“embarrassingly parallel” task [13].

Concepts and technologies adopted from the field of parallel
computation, such as reconfigurable computing with field
programmable gate arrays (FPGAs), have been proposed to
enhance the performance of EAs [14]–[25]. Most of these
works used FPGAs to gain computational speedup by process-
ing operations in parallel and are scoped for single objective
EAs [14]–[22]. More interesting works scoped towards multi-
objective approaches have been studied in only two other
works [23]–[25]. Tachibana et al. [23] proposed a multi-
objective evolutionary algorithm (MOEA) on FPGA based on
a modified selection and overlap rejection components into a
minimal generation gap GA model [26]. Their experiments
compared a simulation of the FPGA implementation with its
software counterpart, which resulted in a significant speed im-
provement from 43 seconds to 10 milliseconds. Bonissone and
Subbu [24] proposed an implementation of a simple MOEA on
an FPGA. They used a dominance filter to isolate an archive
of non-dominated solutions, in which a comparison of each
solution against every other solution is executed concurrently.
Their experiment compared the FPGA design with its software
counterpart, which showed significant speedup of 2 orders
of magnitude. Note that it is important not to confuse the
methodological use of FPGAs to develop efficient EAs with
the field of evolvable hardware, in which EAs are used for
evolving a combinational circuit on an FPGA to efficiently
configure specialised architectures [27].
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In this paper, the FPGA implementation of a widely used
MOEA known as non-dominated sorting genetic algorithm II
(NSGA-II) is designed, tested, and analysed. The MOEAs
population consists of candidate solutions that are rendered
independently within the evolutionary stages allowing for the
exploitation of instruction-level parallelism and ring dataflow
pipelining. The underlying binary nature of the evolutionary
stages is complementary for the hardware implementation of
fast primitive bitwise operations. These two main advanta-
geous features of MOEAs make them well suited for FPGA-
based implementations. The modularity of the proposed design
allows the system to be extended or updated with other
MOEAs and applications. The goals of this work are threefold.
Firstly, to propose and describe an FPGA-based architecture
design of an MOEA implementation that exploits parallelism
and pipelining for achieving significant speedups. Secondly,
to test the FPGA-based NSGA-II prototype on test problems
with known solutions for demonstrating the feasibility of an
FPGA-based MOEA implementation. Thirdly, to analyse the
effectiveness for achieving very high performance with the
hardware parallelising of processing elements over a pipeline
ring architecture.

This paper is organised as follows. Section II provides the
basic concepts of multi-objective optimisation. Section III de-
scribes the working principles of an MOEA. Section IV gives
a brief introduction to FPGAs and describes the advantages
of mapping an MOEA to FPGA. Section V describes the
pipelining and parallel design architecture of the proposed
FPGA-based NSGA-II. Section VI presents the performance
analysis of the FPGA-based design against test problems.
Finally, Section VII outlines the conclusions of this work.

II. MULTI-OBJECTIVE OPTIMISATION

In this section, multi-objective optimisation is introduced
using an example problem. Next, the mathematical formulation
for multi-objective optimisation problems is presented.

A. Description

Most real-world optimisation problems inevitably involve
the trade-offs between two or more conflicting objectives
and are subject to given constraints. The process of solving
problems with multiple objectives is known as multi-objective
optimisation. An example of a real-world multi-objective
optimisation problem is that of aircraft design, where encom-
passing the entire vehicle as one system observes the strong
coupling between disciplines. For this example, the design
space includes variables essential to other disciplines such as
aerodynamics for airfoil and wing shape, structural analysis for
aircraft performance, propulsion for engine thermodynamics,
and economics for cost practicability. Considering the involve-
ment of conflicting objectives, such as performance and cost,
means that there will not be a candidate solution that is optimal
in all objective aspects [2]. For this reason, the aim of multi-
objective optimisation is to provide enough information for
the decision maker to select prudently from the choices of
possible candidate solutions with inherited trade-offs.

Fig. 1. An example of the Pareto front solutions for an unmanned aircraft
design problem.

The concept of dominance is often used as a comparison
metric between two possible candidate solutions. That is,
candidate solution A is said to dominate candidate solution
B if all of candidate solution A’s objectives are better than
candidate solution B’s, else candidate solution B is non-
dominated. Applying the concept of dominance across a set of
candidate solutions will distinguish the non-dominated set of
candidate solutions which resides in the decision space. This
non-dominates set when corresponded into the objective space
is known as the Pareto front. Figure 1 illustrates the Pareto
front obtained after a hypothetical multi-objective optimisation
process for an unmanned aircraft design problem with two
conflicting objectives. It shows two extreme optimal solutions
and one of the possible trade-offs in between. Note that, any
preference made from the Pareto front are part of a non-
dominated set of solutions, hence optimality is not compro-
mised from the decision making.

B. Problem Definition
A mathematical formulation of the multi-objective optimi-

sation problem can be represented in the following form:

Minimise f
m

(x), m = 1, 2, . . . ,M ;

subject to g
j

(x) � 0, j = 1, 2, . . . , J ;

h
k

(x) = 0, k = 1, 2, . . . ,K;

x(L)
n

 x
n

 x(U)
n

, n = 1, 2, . . . , N.

9
>>>=

>>>;

(1)
where f

m

,m 2 {1, . . . ,M}, are the respective objective
functions, x = (x

n

, . . . , x
N

), n 2 {1, . . . , N}, denotes a
vector of N design variables that are individually constrained
by lower x(L)

n

and upper x(U)
n

bounds, g
j

, j 2 {1, . . . , J}, are
inequality constraints, and h

k

, k 2 {1, . . . ,K}, are equality
constraints. Objective functions with maximisation properties
can be converted to a minimisation problem by multiplying
the objective values by �1. Optimisation methods ranging
from gradient-based algorithms (e.g., Newton’s method [28],
sequential quadratic programming [29], steepest descent [30])
to population-based metaheuristics (e.g., ant colony optimisa-
tion [31], evolutionary algorithms [32], particle swarm optimi-
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sation [33]), have been proposed for solving multi-objective
optimisation problems.

III. MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM

In this section, a class of population-based metaheuristic
known as multi-objective evolutionary algorithm (MOEA) is
introduced.

A. Description
MOEA is a population-based metaheuristic inspired by

biological evolution, particularly through the mechanisms of
selection pressure and reproduction operation. MOEAs were
proposed for handling multi-objective optimisation problems
effectively [2]. The working principle of an MOEA is de-
scribed as follows. A population refers to a set of candi-
date solutions and offspring population is the result of each
evolutionary generation of the preceding parent population.
The MOEA begins by randomly initialising the first par-
ent population. Subsequently, the population is exposed to
a selection pressure, such as tournament selection, roulette
wheel selection, ranking selection, or truncation selection [5],
through which fitter solutions in a population have better
chance of survival as the evolution process progresses.

An offspring population is reproduced from genetically
altering selected candidate solutions of the parent population
through the use of crossover operators and mutation operators.
The crossover operation exchanges portions of information to
create possibly better solutions from shared traits, whereas the
mutation operation randomly alters portions of a candidate so-
lution to stimulate genetic diversity [6]. The offspring popula-
tion is updated into the parent population using a replacement
scheme (such as generational replacement where offspring
population overwrites all of parent population, environmental
replacement where worst solutions are deleted incrementally
until population reaches a predefined minimum size, and elitist
replacement where best parent solutions are preserved [34]).
This generational evolution process is repeated until termina-
tion criteria are met. Commonly used criteria include, max-
imum generation, desired solution, maximum computational
run-time, convergence plateau, or any combinations of the
above.

B. Fundamental Features
Three fundamental search features are required in MOEAs

to efficiently guide the entire population towards a uniformly
diverse set of non-dominated solutions: fitness assignment,
diversity preservation, and elitism.

1) Fitness Assignment: The objective of the fitness assign-
ment is to translate the vector of values associated with each
evaluated objective functions for a given candidate solution
into a single qualitative measure. This measure is used to
promote convergence of the current Pareto front towards
the optimal Pareto front. Pareto-based schemes [35] use the
concept of dominance to guide the optimisation process,
while indicator-based schemes [36] rely on a specified quality
measure for performance.

Fig. 2. FPGA block structure.

2) Diversity Preservation: The objective of the diversity
preservation is to maintain and diversify the population of
solutions. Sharing schemes [37] strongly rely on a priori
knowledge to specify a threshold parameter for measuring
a distance metric between two solutions. Contrary to that,
crowding schemes [38] quantifies the crowding metric of a
set of candidate solutions using adjacent neighbouring in-
formation, hence are operating independent of any external
parameter specification.

3) Elitism: The objective of elitism is to prevent the
lost of beneficial solutions during the evolutionary process.
This concept is achieved by maintaining an archive of
non-dominated or preferred solutions, which were discovered
earlier, for introduction back into the evolutionary process.

From this set of search features, different MOEAs are
designed and implemented by the transformation of relevant
features. For instance, NSGA-II incorporates non-dominance
sorting, crowding distance assignment and tournament se-
lection process [39]; and SPEA2 employs fine-grained non-
dominance fitness assignment, nearest neighbour density esti-
mation, and archive truncation method [35]. The MOEA used
in this work is based on the NSGA-II.

IV. FIELD PROGRAMMABLE GATE ARRAY

In this section, an overview of field programmable gate
array technology (FPGA) is presented. Next, the advantages
of coupling an MOEA to an FPGA are discussed.

A. Description
FPGAs are semiconductor devices designed to be recon-

figurable for desired functionality even after shipping, unlike
application-specific integrated circuits (ASICs) which are cus-
tom manufactured and fixed for a designated task. An FPGA
architecture is commonly consisted of an array of configurable
logic blocks (CLBs) which are connected via programmable
interconnects and routed to input/output blocks (IOBs). This
basic block structure is depicted in Figure 2. The CLBs are
the driving components in an FPGA. Generally, every CLB
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consists of look-up tables (LUTs) and flip-flops which can be
configured by a switch matrix to perform combinatorial logic,
shift registers or random-access memory (RAM) operation.
Flexible interconnect routing routes signals between CLBs to
form complex combinatorial circuit design for computational
functions. These programmable interconnect also routes the
CLBs to and from the IOBs. The IOBs provide the interface
bridge between the internal system and input/output standards.
It is important to note that lower level details and features
may vary between manufacturers as well as individual FPGA
families.

An overview of the contrasts between FPGA and ASIC
technologies are as follows. FPGA benefits from the low non-
recurring engineering costs as compared to that of an ASIC.
In manufacturing for large quantities, ASIC is typically lower
in per unit cost. The functionality of an FPGA can be repro-
grammed in the field after development, whereas an ASIC is
permanently restricted to the specifically manufactured use.
The ability to reconfigure an FPGA allows rapid prototyping
and faster time-to-market, whereas the development of an
ASIC is tightly bounded by time-consuming floorplanning,
place and route, mask, and re-spin stages of the project to meet
strict design specifications. These and the recent development
of higher logic density FPGAs, such as the Virtex-7 FPGA
families which host up to two million logic cells [40], makes
FPGAs the compelling system-on-chip platform for mission
critical applications with reconfigurable requirements. FPGAs
have been used in a wide range of applications, including med-
ical imaging [41], robotics [42], computer vision [43], speech
recognition [44], nuclear science [45], cryptography [46], and
high performance computing applications (e.g., Fast Fourier
transform [47], convolution [48]).

B. Advantages of mapping MOEA to FPGA
The main advantage of implementing an MOEA on FPGAs

is the potential extents for which parallelism can be exploited.
Parallelism can be applied on an algorithm level, whereby
multiple MOEAs are processing independently or coopera-
tively; an instruction level, which handles the solutions of
population concurrently within an operation; and/or function
level, which synchronises the execution of functions and data.
The entire population can naturally be dealt with concurrently
due to the independent structure of individual candidate solu-
tions [49]. Although the advantages of parallelism can be seen
on many levels of the algorithm, the overall generational cycle
from each evolution process to another remains sequentially
dependent. Nevertheless, the throughput of the system can
be greatly increased by pipelining the generational cycles via
pipeline ring dataflow. Another advantage of an FPGA-based
optimisation algorithm is that the results can be continuously
streamed out allowing for the real-time analysis of current best
solutions as the algorithm runs indefinitely.

V. IMPLEMENTATION OF NSGA-II MOEA ON FPGA
In this section, a widely used MOEA known as nondomi-

nated sorting genetic algorithm II (NSGA-II) [39] is described.
Subsequently, the overview of a hardware implementation

Fig. 3. Pseudocode for NSGA-II.

Fig. 4. Data in each chromosome.

of the NSGA-II along with elaborated details of the main
modules are presented. This work is focused on the NSGA-II
MOEA, however the proposed methodology can be extended
and applied to other MOEAs as well.

A. Description of NSGA-II
The pseudocode for the NSGA-II is illustrated in Figure 3.

The fundamental features of the NSGA-II include the in-
corporation of a fast non-dominated sorting, crowding dis-
tance assignment, and tournament selection process [39]. The
NSGA-II optimisation algorithm comprise of a population of
chromosomes that undergo a series of evolution process. Each
chromosome contains information on the fitness, diversity,
objectives, and candidate solution values (see Figure 4). The
algorithm commences by initialising the parent population,
P0, with random candidate solutions and evaluating each of
their respective M objective values, V

m

,m 2 {1, . . . ,M}.
The population is made up of S chromosomes that are
each represented by a vector consisting of its overall fitness
value, F , neighbourhood diversity value, D, objective values,
{V1, . . . , VM

}, and the candidate solution, x, as depicted
in Figure 4. The chromosomes are subjected to a cyclical
evolution process where each iteration is known a generation.
In the beginning of each generation, t, an offspring population,
Q

t

, which has the same chromosome structure as P
t

, is
selected for the evolution process. The selection pressure is
focused on the elites which have better F and D values. Q

t

then undergoes reproduction involving genetic operations such
as simulated binary crossover (SBX) and polynomial mutation.
The permutated Q

t

is then evaluated for each of the M
objective values, V

m

,m 2 {1, . . . ,M}. Using the evaluated
objective values, the concatenated R

t

= P
t

S
Q

t

is fast non-
dominated sorted, where F of each chromosome is assigned a
rank value according to the non-dominated front it lies on with
respect to every other chromosome in R

t

. Subsequently, the
diversity value, D, is calculated according to the crowding
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Fig. 5. Proposed hardware design architecture of NSGA-II on FPGA and the respective modules within.

Fig. 6. Ring dataflow pipeline scheduling, where I is the Initialisation module,
E is the Evaluation module, N is the Non-dominated Sorting module, S is the
Selection module, and R is the Reproduction module.

distance the candidate solution constitutes with respect to
the adjacent chromosomes on the same non-dominated front
rank. A generation cycle is completed with the sorting of the
population ordered by fitness and diversity values. The NSGA-
II algorithm continues iteratively until a specified stopping
criteria such as maximum number of generations, t

max

, has
been met.

B. NSGA-II on FPGA Design Overview

The proposed hardware design architecture for NSGA-II
on FPGA is depicted in Figure 5. The FPGA-based NSGA-
II is designed to function as an IP core implementation
for different optimisation problems without the need to re-
synthesis the entire design. Only the Initialisation, Selection,
and Reproduction modules consists of internal random number
generator (RNG) units. Each module is controlled by a Mealy

finite-state machine [50] which manages the data and parallel
execution of internal operations. Each module also consists
of request-acknowledge handshake protocols for start and
done flags by which ensures that data is sent and received
completely before starting their respective operations. The
request-acknowledge handshake protocol also allows for a
controlled pipeline of heterogeneous modules, specifically a
ring dataflow pipelining of the Evaluation, Non-dominated
Sorting, Selection, and Reproduction modules, as illustrated
in Figure 6. Within each of the modules, instruction-level
parallelism is applied across the population of chromosomes.
The basic operation of every module is to receive a population
of chromosome from the previous module, process them and
send them to the next module. Note that the External Interface
can be an implementation that is in a different partition of the
FPGA or on a separate processing device with the appropriate
communication protocols. Each of the modules is described in
the following subsections.

C. External Interface

The External Interface functions primarily as a bridge for
sending and receiving data directly to the FPGA-based NSGA-
II. The Start NSGA-II module sends a start signal to the
Initialise module when the overall system is configured and
ready for execution. The External Evaluation module consists
of the objective functions used for evaluating the objective
values, V

m

, of candidate solutions generated by the evolution
process. The number of internal evaluation units is equal
to the number of chromosomes in the population and they
operate concurrently. The Output Results module periodically
receives the current population of chromosomes each time the
Non-dominated Sorting module has completed its operation.
As the population is being received, an internal counter is
incremented to keep track of the number of generations
that has taken place. The outputs of current population and
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Fig. 7. Dataflow diagram of the state machine in the Initialisation module.

generation counts are being continuously streamed in allowing
for the real-time analysis of solutions as the algorithm runs
indefinitely. Note that the External Interface can be imple-
mented on a different partition of the FPGA or on a separate
processing device, such as a host computer that is connected to
a network of parallel computers where the External Evaluation
is distributed for concurrent computing.

D. Initialisation Module
The aim of the Initialisation module is to generate a

population of candidate solutions with random values. The
dataflow of the state machine in the Initialisation module is
shown in Figure 7. After receiving a start signal from the Start
NSGA-II module, the RNGs are initialised with different seeds.
The RNG will be accessed concurrently, which means that if
all RNGs are initialised with the same seed, then all RNGs
will be producing the same random number output at a given
interval, which is not a desired attribute hence different seeds
are used to initialise the RNGs. The population of candidate
solutions, x, are concurrently assigned with random values
generated by the RNGs. Subsequently, the new population and
a request done signal is sent to the Evaluation module. Upon
receiving the acknowledgement signal from the Evaluation
module, the Initialisation module restarts to assign another
cluster of random values for the next set of candidate solutions
to be sent to the Evaluation module. The Initialisation module
continues to generate new random populations until the first
sent population has completed a generation cycle, hence
producing a constant throughput system.

E. Evaluation
The Evaluation module does not perform any computation

internally, rather it channels the population of candidate so-
lutions to be evaluated via the External Evaluation module
within the External Interface. The dataflow of the state ma-
chine in theEvaluation module is shown in Figure 8. Once

Fig. 8. Dataflow diagram of the state machine in the Evaluation module.

Fig. 9. Dataflow diagram of the state machine in the Non-dominated Sorting
module.

the External Evaluation module has completed evaluating the
population of candidate solutions with respect to all objective
functions, the returned results are concurrently assigned to the
objective values, V

m

, of each chromosome.

F. Non-dominated Sorting

The Non-dominated Sorting module contains the core fun-
damental features of the NSGA-II, namely, the assignment of
the Pareto front ranking and crowding distance metric. The
dataflow of the state machine in the Non-dominated Sorting
module is shown in Figure 9. The new population that is being
received is combined with the previous population, which is
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Fig. 12. Steps for calculating the crowding distance.

Fig. 10. Example illustrating the combinational logic of a non-dominance
front ranking circuit design.

stored internally, creating a temporary population of double
the original size. The Pareto front ranking is based on the
non-dominance feature of a candidate solution with respect
to every other solutions [2]. Recapping on the concept of
dominance from Section II-A – candidate solution A is said
to dominate candidate solution B if all of candidate solu-
tion A’s fitness is strictly better than candidate solution B’s,
else candidate solution B is non-dominated. Non-dominated
candidate solutions are allocated higher rank than dominated
ones, hence ensuring the survival of non-dominated candidate

Fig. 11. Flowchart illustrating the Pareto front ranking sequence.

solutions. The implementation of this module consists of a
mix of combinational logic (see Figure 10) and sequential
logic (see Figure 11) circuit designs. The figures illustrate the
gate level implementation of three candidate solutions (1, 2,
3) with two objective values (A, B). At every clock cycle,
the non-dominated solutions are assigned a rank (R) from the
rank counter which increments every clock cycle until every
solution is ranked.

The crowding distance assignment is implemented using
sequential logic representing the steps depicted in Figure 12.
Gate level implementations of subtraction and addition op-
erations are used to calculate the crowding distance of each
chromosome. The aim of this operation is to assign each
chromosome a crowding distance metric relative to adjacent
solutions [2]. A bubble sort sorting algorithm is implemented
to sort the population according to fitness value, F , then
diversity value, D. Elitism is achieved by discarding the
lower half of the sorted population, which is the worst of
the sorted population. The sorting ensures that the candidate
solutions do not worsen but either remain the same or improve.
The resulting output population is hence reduced back to the
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Fig. 13. Dataflow diagram of the state machine in the Selection module.

original size and is additionally stored internally to be used
when the module is restarted.

G. Selection
The aim of the Selection module is to apply selection pres-

sure in the pooling of a new population. The dataflow of the
state machine in the Selection module is shown in Figure 13.
Tournament selection based on the Pareto front ranking and
crowding distance is implemented as a competition winning
criteria for the next generation of solutions. Higher ranking
solutions wins over lower ranking solutions. If two solutions
are of the same rank, the solution with higher crowding
distance wins. This method is implemented using comparison
operators.

H. Reproduction
The Reproduction module uses genetic crossover and muta-

tion operators concurrently to permute the candidate solutions
of the population. The dataflow of the state machine in the
Reproduction module is shown in Figure 14.The crossover
operator implements a single-point binary crossover technique
(see Figure 15) and the mutation operator implements XOR
operations across randomly selected bits (see Figure 16). The
intention of a crossover operation is to exchange useful infor-
mation between two candidate solutions, whereas a mutation
operation is aimed to randomly alter the candidate solutions.
Thus, crossover and mutation can be seen as exploitation and
exploration, respectively. A balance between them is necessary
to guide a search algorithm effectively.

VI. EXPERIMENTAL TEST AND ANALYSIS

A. Test Environment
Test and analysis were performed on multi-objective math-

ematical test problems with known solutions to verify the
effectiveness of the proposed FPGA-based NSGA-II system.

Fig. 14. Dataflow diagram of the state machine in the Reproduction module.

Fig. 15. Example illustrating the bitwise operation of the crossover process.

Fig. 16. Example illustrating the bitwise operation of the mutation process.

The first two test problems are SCH [51] and FON [52] where
the true Pareto fronts are convex and concave, respectively.
The subsequent two test problems are POL [53] and KUR [54]
where both true Pareto fronts are difficult, discontinuous and
concave. All test problems are described in Table I.

The parameters of the FPGA-based NSGA-II used for the
tests are as follows. The population size within each module
was implemented with the size of 32. In the Reproduction
module, half of the population is crossovered and the remain-
ing half is mutated. The population solutions were captured
at 500 generations. The same parameters were used for the
software version of the NSGA-II.
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TABLE I
TEST PROBLEMS USED IN THIS STUDY

Test Objective functions Pareto
problem front geometry

SCH f1(x) = x

2 Convex
f2(x) = (x� 2)2

FON f1(x) = 1� exp(�
P3

i=1(xi � 1p
3
)) Concave

f2(x) = 1� exp(�
P3

i=1(xi +
1p
3
))

POL f1(x) = [1 + (A1 �B1)2 + (A2 �B2)2] Discontinuous, concave
f2(x) = [(x1 + 3)2 + (x2 + 1)2]

A1 = 0.5 sin 1� 2 cos 1 + sin 2� 1.5 cos 2

A2 = 1.5 sin 1� cos 1 + 2 sin 2� 0.5 cos 2

B1 = 0.5 sinx1 � 2 cosx1 + sinx2 � 1.5 cosx2

B2 = 1.5 sinx1 � cosx1 + 2 sinx2 � 1.5 cosx2

KUR f1(x) =
P2

i (�10 exp(�0.2
q

x

2
i + x

2
i+1)) Discontinuous, concave

f2(x) =
P3

i=1 |xi|0.8 + 5 sinx

3
i

TABLE II
COMPUTATIONAL RUN-TIME RESULTS AVERAGED OVER TEN SIMULATION RUNS

Test Computational run-time (ms) Speed
problem PC-based NSGA-II FPGA-based NSGA-II improvement

SCH 13,204.4 6.3 ⇥ 2,096
FON 14,812.2 6.4 ⇥ 2,002
POL 8,143.0 7.1 ⇥ 1,147
KUR 18,125.5 6.7 ⇥ 2,705

For the experiment environment involving the FPGA-based
design, a Simulink model via Xilinx System Generator 2013.2
was used to couple the External Interface and the proposed
FPGA design. In the Simulink model, HDL code of the
FPGA-based NSGA-II design was imported using the Xilinx
“blackbox block. The evaluation functions were implemented
in Vivado HLS 2013.2, which is a high-level synthesis tool
for translating C-based designs into digital hardware, and
imported into the Simulink model using the Xilinx Vivado
HLS block.

The proposed NSGA-II on FPGA design was synthesised
using Xilinx Vivado 2013.2 with the target device of a
Xilinx Virtex-7 FPGA VC707 Evaluation Kit (XC7VX485T-
2FFG1761C), and the design goal was set to “balanced”.
The software version of the NSGA-II is implemented on an
Intel(R) Core(TM)2 Duo CPU E8600 @ 3.33GHz with 3.49
GB of RAM.

B. Analysis

Ten simulation runs were conducted for each of the test
problems to analyse the effectiveness and performance of the
proposed FPGA-based NSGA-II when compared to a PC-
based software implementation. Solution qualities equivalent
to those of the software version were attained by the FPGA-
based implementation for each of the test problems. This is
an expected result as the behaviour of both implementations
are similar when analysed from the algorithms functional
perspective. The computational run-time results are tabulated
in Table II. It can be seen that very high performance can be

achieved with pipelining and parallelism from the FPGA-based
design.

Analyses of the resource utilisation and execution speed of
the FPGA-based NSGA-II design are as follows. There were
a total of 302, 229 slice logics utilised on the FPGA, which
is equivalent to 27% of the overall resources available on
the Xilinx Virtex-7 FPGA device. The maximum operating
frequency was 100 MHz. The Initialisation module took one
clock cycle to concurrently assign the initial population with
random values. The Selection module took two clock cycles to
concurrently compare and select from two random candidate
solutions. The Reproduction modules took one clock cycle
to concurrently perform the genetic crossover and mutation
operations on each candidate solution. The Non-dominated
Sorting module took an average of 150 clock cycles for
computing the fitness and diversity values. The Evaluation
module, which was generated by Vivado HLS, took two, four,
seven, and eight clock cycles for concurrently evaluating the
SCH, FON, POL, and KUR, respectively. The number of clock
cycles to evaluate a function is dependent on the steps within
the computation tree. Hence, good problem design and coding
skill can greatly reduce the total required clock cycles. The
average speed up achieved from the FPGA-based design was
1,987 times faster than its software counterpart.

VII. CONCLUSION

In this paper, a hardware design of an NSGA-II MOEA on
FPGA for multi-objective optimisation problems is proposed.
Parallelism was naturally exploitable when dealing with the
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population-based metaheuristics as each of the individual
candidate solutions is processed independently. The cyclic
evolution process allows for the implementation of a ring
dataflow pipeline, which highly increases the throughput of
the system. The design architecture, communication and exe-
cution flow are described in detail. The FPGA-based NSGA-
II computational run-time performance was tested and anal-
ysed from mathematical test problems with known solutions.
Results of simulations demonstrate the ability of the FPGA-
based optimisation algorithm to generate solutions an average
of 1,987 times faster than its software version. The overall
design consumed only 27% of the available resources on the
Virtex-7 FPGA device. While present work is focused on
the NSGA-II MOEA, the methodology has the potential to
be widely applicable in other MOEAs that also might bene-
fit from pipelining and parallelism architecture. Accelerated
performance is beneficial for mission critical systems such
as in stock market trading, navigation systems and real-time
surveillance systems.

Future work will involve the development of an open source
EA-based VHDL library to host a variety of EA module de-
signs, so that algorithm implementation can be applied flexibly
and suitability for different applications. Another aspect of
future work will be the examination of the reconfiguration
capability of FPGA technology, which allows for different
module designs to be downloaded and implemented onto the
FPGA whilst an existing system is in operation.

ACKNOWLEDGMENT

Computational resources and services used in this work
were provided by the High Performance Computing and
Research Support Group, Division of TILS, Queensland Uni-
versity of Technology, Brisbane, Australia.

REFERENCES

[1] K. Fleszar, C. Glaber, F. Lipp, C. Reitwiebner, and M. Witek, “The
complexity of solving multiobjective optimization problems and its rela-
tion to multivalued functions,” Electronic Colloquium on Computational
Complexity (ECCC), vol. 18, pp. 1–53, 2011.

[2] K. Deb, Multi-objective optimization using evolutionary algorithms,
1st ed., ser. Wiley-Interscience series in systems and optimization. John
Wiley and Sons, 2001.

[3] C. A. Coello Coello and G. B. Lamont, Applications of multi-objective
evolutionary algorithms, ser. Advances in natural computation. World
Scientific, 2004.

[4] T. Baeck, D. B. Fogel, and Z. Michalewicz, Handbook of evolutionary
computation. Taylor and Francis, 1997.

[5] T. Blickle and L. Thiele, “A comparison of selection schemes used in
evolutionary algorithms,” Evolutionary Computation, vol. 4, no. 4, pp.
361–394, December 1996.

[6] W. M. Spears, Evolutionary algorithms: The role of mutation and
recombination, ser. Natural Computing Series. Springer, 2000.

[7] L. F. Gonzalez, J. Periaux, K. Srinivas, and E. J. Whitney, “Evolutionary
optimization tools for multi objective design in aerospace engineering:
From theory to MDO applications,” in Evolutionary Algorithms And
Intelligent Tools In Engineering Optimization, W. Annicchiarico, J. Pe-
riaux, M. Cerrolaza, and G. Winter, Eds. UK: WIT Press, 2004.

[8] Z. K. Awad, T. Aravinthan, Y. Zhuge, and F. Gonzalez, “A review of
optimization techniques used in the design of fibre composite structures
for civil engineering applications,” Materials and Design, vol. 33, pp.
534–544, January 2012.

[9] J. Branke, B. Scheckenbach, M. Stein, K. Deb, and H. Schmeck, “Port-
folio optimization with an envelope-based multi-objective evolutionary
algorithm,” European Journal of Operational Research, vol. 199, no. 3,
pp. 684–693, December 2009.

[10] Z. Li, B. Xu, L. Yang, J. Chen, and K. Li, “Quantum evolutionary
algorithm for multi-robot coalition formation,” in Proceedings of the
First ACM/SIGEVO Summit on Genetic and Evolutionary Computation,
ser. GEC ’09. New York, NY, USA: ACM, 2009, pp. 295–302.

[11] D.-S. Lee, L. Gonzalez, J. Periaux, and G. Bugeda, “Double-shock
control bump design optimization using hybridized evolutionary algo-
rithms,” Journal Of Aerospace Engineering - Part G, vol. 225, pp. 1–
181 175–1192, March 2011.

[12] P. J. Fleming and R. C. Purshouse, “Evolutionary algorithms in control
systems engineering: a survey,” Control Engineering Practice, vol. 10,
no. 11, pp. 1223–1241, 2002.

[13] E. Cantu-Paz and D. E. Goldberg, “Efficient parallel genetic algorithms:
Theory and practice,” Computer Methods in Applied Mechanics and
Engineering, vol. 186, no. 2-4, pp. 221–238, June 2000.

[14] S. D. Scott, A. Samal, and S. Seth, “HGA: A hardware-based genetic
algorithm,” in Proceedings of the FPGA’95 ACM third international
symposium on Field-programmable gate arrays. New York, NY, USA:
ACM, 1995, pp. 53–59.

[15] M. So and A. Wu, “FPGA implementation of four-step genetic search
algorithm,” in Proceedings of the 6th IEEE International Conference on
Electronics, Circuits and Systems, 1999.

[16] C. Aporntewan and P. Chongstitvatana, “A hardware implementation of
the compact genetic algorithm,” in Proceedings of the 2001 Congress
on Evolutionary Computation, vol. 1, Seoul, South Korea, May 2001,
pp. 624–629.

[17] B. Shackleford, E. Okushi, M. Yasuda, H. Koizumi, K. Seo, T. Iwamoto,
and H. Yasuura, “High-performance hardware design and implemen-
tation of genetic algorithms,” Hardware Implementation of Intelligent
Systems, vol. -, pp. 53–87, 2001.

[18] M. Hamid and S. Marshall, “FPGA realisation of the genetic algorithm
for the design of grey-scale soft morphological filters,” in Proceedings of
the International Conference on Visual Information Engineering, 2003.

[19] H. E. Mostafa, A. I. Khadragi, and Y. Y. Hanafi, “Hardware implementa-
tion of genetic algorithm on FPGA,” in Proceedings of the Twenty-First
National Radio Science Conference, March 2004, pp. 1–9.

[20] F. C. J. Allaire, M. Tarbouchi, G. Labonte, and G. Fusina, “FPGA
implementation of genetic algorithm for UAV real-time path planning,”
Journal of Intelligent and Robotic Systems, vol. 54, no. 1-3, pp. 495–
510, March 2009.

[21] P. R. Fernando, S. Katkoori, D. Keymeulen, R. Zebulum, and A. Stoica,
“Customizable FPGA IP core implementation of a general-purpose
genetic algorithm engine,” IEEE Transactions on Evolutionary Com-
putation, vol. 14, no. 1, pp. 133–149, 2010.

[22] J. Kok, L. F. Gonzalez, R. Walker, N. Kelson, and T. Gurnett, “A syn-
thesizable hardware evolutionary algorithm design for unmanned aerial
system real-time path planning,” in Proceedings of the 2010 Australasian
Conference on Robotics and Automation, Brisbane, Australia, December
2010.

[23] T. Tachibana, Y. Murata, N. Shibata, K. Yasumoto, and M. Ito, “A hard-
ware implementation method of multi-objective genetic algorithms,” in
Proceedings of the 2006 IEEE Congress on Evolutionary Computation,
2006, pp. 3153–3160.

[24] S. Bonissone and R. Subbu, “Evolutionary multiobjective optimization
on a chip,” in Proceedings of the 2007 IEEE Workshop on Evolvable
and Adaptive Hardware, 2007, pp. 61–66.

[25] J. Kok, F. Gonzalez, N. Kelson, and J. Periaux, “An FPGA-based
approach to multi-objective evolutionary algorithm for multi-disciplinary
design optimisation,” in Proceedings of the Evolutionary and Determin-
istic Methods for Design, Optimization and Control (Eurogen 2011),
C. Poloni, D. Quagliarella, J. Periaux, N. Gauger, and K. Giannakoglou,
Eds., Capua, Italy, 2011.

[26] H. Satoh, I. Ono, and S. Kobayashi, “Minimal generation gap model for
GAs considering both exploration and exploitation,” in Proceedings of
the 1996 IZZUKA, 1996.

[27] G. W. Greenwood and A. M. Tyrrell, Introduction to evolvable hard-
ware: a practical guide for designing self-adaptive systems, ser. IEEE
Series on Computational Intelligence. John Wiley and Sons, 2006.

[28] T. J. Ypma, “Historical development of the Newton-Raphson method,”
SIAM Review, vol. 37, no. 4, pp. 531–551, 1995.

[29] P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta
Numerica, vol. 4, pp. 1–51, 1995.

[30] H. B. Curry, “The method of steepest descent for non-linear minimiza-
tion problems,” Quarterly of Applied Mathematics, vol. 2, pp. 258–261,
1944.

[31] M. Dorigo and T. Stutzle, Ant colony optimization. MIT Press, 2004.
[32] J. Periaux, D. Lee, L. Gonzalez, and K. Srinivas, “Fast reconstruction

of aerodynamic shapes using evolutionary algorithms and virtual nash



IEEE TRANSACTIONS ON CYBERNETICS, VOL., NO., MONTH YEAR 11

strategies in a CFD design environment,” Journal of Computational and
Applied Mathematics, vol. 232, no. 1, pp. 61–71, 2009.

[33] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of the 1995 IEEE International Conference on Neural Networks,
vol. 4, 1995, pp. 1942–1948.

[34] A. Liefooghe, L. Jourdan, T. Legrand, J. Humeau, and E.-G. Talbi,
“ParadisEO-MOEO: A software framework for evolutionary multi-
objective optimization,” in Advances in Multi-Objective Nature Inspired
Computing, ser. Studies in Computational Intelligence, C. Coello Coello,
C. Dhaenens, and L. Jourdan, Eds. Springer Berlin / Heidelberg, 2010,
vol. 272, pp. 87–117.

[35] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength
Pareto evolutionary algorithm,” Swiss Federal Institute of Technology
(ETH), Gloriastrasse 35, CH-8092 Zurich, Switzerland, Tech. Rep. 103,
May 2007.

[36] E. Zitzler and S. Kunzli, “Indicator-based selection in multiobjective
search,” in Parallel Problem Solving from Nature - PPSN VIII, ser.
Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2004, vol. 3242, pp. 832–842.

[37] D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing
for multimodal function optimization,” in Proceedings of the Second
International Conference on Genetic Algorithms and Their Application.
Hillsdale, NJ, USA: L. Erlbaum Associates Inc., 1987, pp. 41–49.

[38] K. A. DeJong, “An analysis of the behavior of a class of genetic adaptive
systems,” Ph.D. dissertation, University of Michigan, Ann Arbor, MI,
USA, 1975.

[39] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, April 2002.

[40] M. Santarini, “Xilinx redefines state of the art with new 7 series FPGAs,”
Xcell Journal, vol. Third Quarter, no. 72, pp. 6–11, 2010.

[41] M. Leeser, S. Coric, E. Miller, H. Yu, and M. Trepanier, “Parallel-
beam backprojection: An FPGA implementation optimized for medical
imaging,” The Journal of VLSI Signal Processing, vol. 39, pp. 295–311,
2005.

[42] S. Herbrechtsmeier, U. Witkowski, and U. Ruckert, “BeBot: a modular
mobile miniature mobot platform supporting hardware reconfiguration
and multi-standard communication,” in Progress in Robotics, ser. Com-
munications in Computer and Information Science, J.-H. Kim, S. S. Ge,
P. Vadakkepat, N. Jesse, A. Al Manum, S. Puthusserypady K, U. Rckert,
J. Sitte, U. Witkowski, R. Nakatsu, T. Braunl, J. Baltes, J. Anderson, C.-
C. Wong, I. Verner, and D. Ahlgren, Eds. Springer Berlin Heidelberg,
2009, vol. 44, pp. 346–356.

[43] M. Arias-Estrada and C. Torres-Huitzil, “Real-time field programmable
gate array architecture for computer vision,” Journal Electronic Imaging,
vol. 10, no. 1, pp. 289–296, January 2001.

[44] B. Schrauwen, M. DaHaene, D. Verstraeten, and J. V. Campenhout,
“Compact hardware liquid state machines on FPGA for real-time speech
recognition,” Neural Networks, vol. 21, no. 2-3, pp. 511–523, 2008.

[45] N. G. Johnson-Williams, R. S. Miyaoka, X. Li, T. K. Lewellen, and
S. Hauck, “Design of a real time FPGA-based three dimensional
positioning algorithm,” IEEE Transactions on Nuclear Science, vol. 58,
no. 1, pp. 26–33, February 2011.

[46] W. N. Chelton and M. Benaissa, “Fast elliptic curve cryptography on
FPGA,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 16, no. 2, pp. 198–205, feb. 2008.

[47] K. S. Hemmert and K. D. Underwood, “An analysis of the double-
precision floating-point FFT on FPGAs,” in Proceedings of the Annual
IEEE Symposium on Field-Programmable Custom Computing Machines,
Los Alamitos, CA, USA, April 2005, pp. 171–180.

[48] E. Jamro and K. Wiatr, “Convolution operation implemented in FPGA
structures for real-time image processing,” in Proceedings of the 2nd
International Symposium on Image and Signal Processing and Analysis,
2001, pp. 417–422.

[49] S. F. Smith, “Flexible learning of problem solving heuristics through
adaptive search,” in Proceedings of the Eighth international joint con-
ference on Artificial intelligence - Volume 1. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1983, pp. 422–425.

[50] Z. Navabi, VHDL: Analysis and modeling of digital systems, ser.
Electrical & electronic technology series. McGraw-Hill, 1998.

[51] J. D. Schaffer, “Some experiments in machine learning using vector
evaluated genetic algorithms (artificial intelligence, optimization, adap-
tation, pattern recognition),” Ph.D. dissertation, Vanderbilt University,
Nashville, TN, USA, 1984.

[52] C. M. Fonseca and P. J. Fleming, “An overview of evolutionary
algorithms in multiobjective optimization,” Evolutionary Computation,
vol. 3, no. 1, pp. 1–16, 1995.

[53] C. Poloni, A. Giurgevich, L. Onesti, and V. Pediroda, “Hybridization
of a multi-objective genetic algorithm, a neural network and a classical
optimizer for a complex design problem in fluid dynamics,” Computer
Methods in Applied Mechanics and Engineering, vol. 186, no. 2-4, pp.
403–420, June 2000.

[54] F. Kursawe, “A variant of evolution strategies for vector optimization,”
in Parallel Problem Solving from Nature, ser. Lecture Notes in Computer
Science, H.-P. Schwefel and R. Manner, Eds. Springer Berlin /
Heidelberg, 1991, vol. 496, pp. 193–197.

Jonathan Kok is a PhD candidate affiliated with
the Australian Research Centre for Aerospace Au-
tomation (ARCAA) and the School of Engineering
Systems at Queensland University of Technology
(QUT). His research focuses on optimisation prob-
lems and algorithms in aerospace, specifically in-
volving evolutionary algorithms and FPGAs.

Luis Felipe Gonzalez is a Senior Lecturer at the
Queensland University of Technology (QUT) and the
Australian Research Centre for Aerospace Automa-
tion (ARCAA). He has a degree in Mechanical Engi-
neering. He completed his PhD on Multidisciplinary
Design Optimisation methods for UAV systems at
The University of Sydney in 2005. Felipe joined
ARCAA in 2006 and has directed his attention to
enabling technologies for optimising autonomy, path
planning, and sensor system integration for UAVs
conducting environmental tasks. He has developed

10 operational UAVs and has written 18 journal papers and more than 40 peer
reviewed papers in the topic of evolutionary algorithms and optimisation.

Neil Kelson is User Services Manager of QUT’s
HPC & Research Support Group. This role involves
extensive consultation/collaboration with researchers
and research groups regarding effective utilisation
of advanced computing tools and technologies. He
has a PhD in computational science and also holds
degrees in Mathematics, Education and Information
Technology. Neil’s technology and research interests
are focussed on engineering computational fluid
dynamics, code optimisation and parallelisation, and
the use of FPGAs for high performance embedded

and supercomputing applications.



This page intentionally left blank.



Chapter 9

Conclusions

EAs are effective evolutionary computation techniques but can be computationally

intensive to implement for complex problems. In recent years, advancements in FPGA

technology have enabled the manufacturing of high-density FPGAs allowing its use for

hardware accelerating EAs. The population-based characteristic of EAs allows potential

levels of parallelism that FPGA technology can exploit for concurrent processing.

However, the mapping of complex software algorithms, such as EAs, to hardware is not

straightforward [21].

In this thesis, design methodologies and architectures of hardware-based EAs for

solving aerospace optimisation problems on FPGAs have been proposed. The aim

of this thesis is to provide knowledge that contributes to the theory and application

of effective FPGA-based EA architectures. Parallelism was exploited by rendering

individuals of the population concurrently within each of the biological evolutionary

processes. The robustness and effectiveness was demonstrated through evaluation across

several practical aerospace optimisation applications consisting of different problem

characteristics.
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This thesis also highlights investigation and development of FPGA-based EAs that

encompasses both major fields of optimisation: single-objective and multi-objective

optimisations. Solving multi-objective optimisation problems using EAs requires the

addition of fitness assignment and diversity preservation features onto single-objective

EAs for the retention of Pareto optimal solutions. Therefore, the system architectures

of the proposed FPGA-based multi-objective EAs explicitly include fitness assignment

and diversity preservation modules to enable the convergence and storage of Pareto

optimal solutions in the population memory.

Furthermore, it is important to highlight that robustness of FPGA-based EAs has

been evaluated alongside of the path planning problem, TSP, and multi-objective test

functions, that are but a few of many possible aerospace optimisation applications.

It is anticipated that our proposed FPGA-based path planner and TSP solver may be

integrated to on-board UAVs or aircraft flight systems for civilian applications, such as

infrastructure aerial surveys, while adhering to the size, weight and power constraints

of aircraft requirements.

The results from the initial FPGA-based EA for path planning showed speed im-

provement of 52,000 times its software version (see Chapter 3). This architecture was

further developed with architecture managed by a control unit in which demonstrated

performance meeting the 10Hz update frequency of a typical autopilot system (see

Chapter 4). The investigation on hardware implications with regards to population size

and solution quality highlighted that a small population size was shown to be sufficient

for obtaining quality solutions for the TSP, thereby a large population EA implemen-

tation is not necessary as it is an inefficient use of FPGA resources (see Chapter 5).

With this findings, a small population-based EA known as micro-GA was designed

for solving the TSP in which performed on average 70 times faster when compared
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to an equivalent software version and 26 times faster when compared to the powerful

Concorde TSP solver (see Chapter 6). The results from the preliminary FPGA-based

NSGA-II multi-objective EA achieved speedup of approximately 1,300 times over its

software version (see Chapter 7). This architecture was improved to allow for pipelining

and a robust external data interface in which demonstrated performance of 1,987 times

faster than its software version (see Chapter 8). The hardware implementation of a

sorting algorithm used in the chapter 8 is based on the bubble sort algorithm [130, p. 69].

The list of FPGA devices and CPU specifications used in each chapter of this thesis is

shown in Table 9.1. A summary of the FPGA designs used is shown in Table 9.2.

Table 9.1: Summary of FPGA devices and CPU used in each chapter.
Chapter FPGA device CPU specifications

3 Xilinx Virtex 4 XC4VLX200 Intel(R) Core(TM)2 Duo Core
CPU @ 2.66 GHz

4 Xilinx Virtex-4 XC4VLX200 N/A

5 Xilinx Virtex-7 XC7VX485T N/A

6 Xilinx Virtex-7 XC7VX485T Intel(R) Core(TM)2 Duo CPU
E8600 @ 3.33 GHz

7 Xilinx Virtex-4 XC4VLX200 Intel(R) Core(TM)2 Duo CPU
E8600 @ 3.33 GHz

8 Xilinx Virtex-7 XC7VX485T Intel(R) Core(TM)2 Duo CPU
E8600 @ 3.33 GHz

There is no correlation between device utilisation and speed improvement. Each

type of optimisation application requires a substantially different FPGA-based design

solution. The amount of device utilisation is dependent on the goal of the FPGA-based

design. For instance, the multi-objective EA in chapter 8 incorporates pipelining that is

not considered in chapter 7. Hence, the FPGA-based design in chapter 8 had a higher

device utilisation footprint as well as a better speed improvement over the design from
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Table 9.2: Summary of FPGA designs used in each chapter.
Chapter Application Device Speed

utilisation improvement
3 Path planning 20% 52,000
4 Path planning 32% N/A
5 TSP N/A N/A
6 TSP 7% 70.66 (averaged)
7 Multi-objective functions 5% 1,094.5 (averaged)
8 Multi-objective functions 27% 1,987.5 (averaged)

chapter 7.

The proposed design methodologies can be considered advancements in addressing

physical and processing constraints for UAV or highly automated aircraft systems.

The proposed FPGA-based EAs can be used to deliver instantaneous decision making

capability ready for deployment onto UAV platform. Additionally, the knowledge

discovered in this research provides a greater degree of confidence concerning the

effectiveness of developing and implementing EAs on FPGA hardware devices.

9.1 Summary of Key Contributions

In this thesis, the proposed FPGA-based EAs offer technological advancement capabili-

ties that can play a significant role in UAVs and highly automated systems. The key

contributions of this research are:

• Proposed novel FPGA-based EA design methodologies and architectures for

both single-objective and multi-objective optimisation allowing for adaptation in

applications where the coupling of EA with FPGA is beneficial;

• Verified the efficiency of an EA with small population size, which supports the

development of resource efficient FPGA-based EA architectures;
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• Demonstrated the versatility of its potential in aerospace applications through

evaluation on path planning problem, TSP, and multi-objective optimisation test

function; and

• Established performance bounds for speedup achieved by FPGA-based EAs over

software versions showing significant reductions in computational run-time.

9.2 Future Work

Recommendations for future research include:

• Investigation of fault-tolerant system approaches relative to the FPGA implemen-

tation of specific EAs, such as diversification, replication, and redundancy.

• Exploration of different techniques for handling large-scale optimisation problem

sizes.

• Further study into hardware implications and potential reengineering of multi-

objective EA features for generating high-resolution Pareto fronts effectively.

• Development of a dynamic reconfigurable FPGA-based system architecture to

allow for an entire system needed for a UAV application to be managed on a

unified FPGA-based architecture. For example, the civilian application of a UAV

for automated weed control will require a suitable architecture for the integration

and management of image/data processing algorithm, force-landed procedure,

path planning algorithm, tracking control system, vision navigation, and mission

monitoring protocols.
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Definition of Authorship and

Contribution to Publication

In accordance with Section 2.6.8 of the QUT Manual of Policies and Procedures (MOPP

2.6.8) 1 which cites the Australian Code for the Responsible Conduct of Research,

authorship is defined as being based on substantial contributions in a combination of:

(a) (i) conception and design, or

(ii) analysis and interpretation of research data; and

(b) (iii) drafting significant parts of a work, or

(iv) critically revising it so as to contribute to the interpretation.

1
http://www.mopp.qut.edu.au/D/D_02_06.jsp
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