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Abstract

Traffic state estimation in an urban road network remains a challenge for traffic models and the
question of how such a network performs remains a difficult one to answer for traffic operators.
Lack of detailed traffic information has long restricted research in this area. The introduction of
Bluetooth into the automotive world presented an alternative that has now developed to a stage
where large-scale test-beds are becoming available, for traffic monitoring and model validation
purposes. But how much confidence should we have in such data?

This paper aims to give an overview of the usage of Bluetooth, primarily for the city-scale
management of urban transport networks, and to encourage researchers and practitioners to take a
more cautious look at what is currently understood as a mature technology for monitoring travellers
in urban environments. We argue that the full value of this technology is yet to be realized, for the
analytical accuracies peculiar to the data have still to be adequately resolved.



Introduction

Traffic is a complex, non-linear and non-stationary process that exhibits different levels of
organization; ranging from the driver-vehicle interaction [1], to the microscopic behaviour of
individual drivers [2], to the macroscopic behaviour of road stretches and networks [3-7].
Understanding the traffic dynamics has proven very challenging, especially in the presence of
hindrances peculiar to urban road networks, such as pedestrian crossings, traffic signals and
intersections. The lack of traffic data has traditionally prevented researchers from gaining detailed
insight into the mechanistic basis of the traffic processes. In recent years however, technological
advances have been made in the area of road and in-vehicle telematics, which have led to the
collection of large amounts of new road data. This new data has, in turn, given new vigour to
theoretical work in the area of Intelligent Transport Systems (ITS).

The current state of the practice among researchers and in various departments of transportation is
to collect Bluetooth data, and use this in combination with other sources in order to sample
important traffic parameters, such as speed, flow and density [8-11]. The Bluetooth scanners sample
the road traffic by capturing the electronic identifiers, or MAC addresses, of the Bluetooth-enabled
devices that transits within the scanning area. Along with the MAC addresses, the times at which the
devices are first and last detected are recorded (Figure 1). Because the MAC addresses are unique
and all scanners are time-synchronized, the activity of the individual road users can be monitored.
Over the past decade, there has been a relatively comprehensive experience with the Bluetooth
technology in transport and other sectors, across the world. Considerable research has been
conducted on the estimation of the experienced travel times and the root choice of the users [12-
17]. Recently, researchers have also attempted to reconstruct the full state of traffic from the
partial, noisy Bluetooth observations [9, 17]. Very few attempts, however, have been made towards
understanding the source of noise and the accuracies peculiar to the data. At best, the Bluetooth
noise is assumed to have a (simple) known distribution, with parameters that are not derived from
the characteristics of the scanners, or from any other evidence. Needless to say, improper scanner
models yield estimations that may diverge considerably from the actual traffic situation, now matter
how accurate the underpinning traffic models are.

In the next sections, we will give an overview of the history of Bluetooth technology applied to
transport and other sectors. Two main sections will then follow, in which we will discuss the noise
components of the Bluetooth data and will bring a new outlook to the way the data is pre-processed
and analysed, in order to address two related transport problems: the estimation of travel times and

route choices. Conclusions will be drawn in the final section.
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Figure 1: Bluetooth probing strategy. Bluetooth scanners probe road networks by recording MAC addresses of the
detected devices, and times of first and last detection. These data enable to monitor the users’ activity (e.g. travel
time and demand) for the target corridors.

The Birth of the Bluetooth Traffic Data Sensing

The usage of Bluetooth in transport has passed its first decade, and though it has come a long way,
its full potential is still to be explored. In the early days, [18] investigated the utilization of Bluetooth
for short-term ad hoc connections between moving vehicles, while it was still a new wireless
technology. The findings were promising. They showed that even fast vehicles - driving 100 km/h —
could be detected by a Class 1 (20dB) Bluetooth. Although the experiments were performed for
vehicle-to-vehicle communication, the same issues apply to monitoring traffic through Bluetooth
scanners. In the same year, Sergio Luciani, submitted an application to the United States Patent
office that described, though as a fall back option, exactly that: The usage of Bluetooth scanners for
traffic monitoring. In his application, Luciani [19] described that tracking the MAC address of a
device along the road through matching sighting with paths through the road network, one would be
able to determine travel times that, when compared to a baseline, could be used to determine the
traffic state of the road. The patent was issued one year later in 2003. While the described setup is
similar to what is used today, it took years to see it established on the road. Though the idea of using
Bluetooth, among other mobile sensors, for traffic monitoring manifested itself in various sensor
network based traffic information service systems (SNTISS), such as the three-tiered architecture
proposed by [20]. By that time it was clear that intelligent transport systems (ITS) would require
networks of smart sensors embedded in the traffic area, performing automated continual and
pervasive monitoring to enhance the quality of traffic information collection and services.

It took another three years before [21] introduced a prototypical implementation and test
deployment of a Bluetooth and wireless mesh networks platform for traffic network monitoring. The
platform used cars as mobile sensors and used wireless municipal mesh networks to transport the
sensed data. The assumption was that drivers carry mobile devices equipped with the widely
adopted low-cost Bluetooth wireless technology. The platform was able to track cars travelling at
speeds of 0 to 70 km/hour. In addition to tracking vehicles, the study was able to approximate car



speeds with an accuracy of £+ 15%. A similar study was performed by Mohan, et al. [22] who
suggested the system as a cost effective solution for developing countries. One year later, and with
large sample sizes of 5% to 7% of the overall traffic stream, Tarnoff et al. [23] introduced a system
claiming accurate measurement of travel times as well as origin-destination data for freeway and
arterial roadway networks. The paper points out that the major benefits are that the cost of
Bluetooth scanning are a factor of 100 less than equivalent floating car runs, and that privacy is less
of an issue with the Bluetooth equipment due to the absence of databases that can relate addresses
to specific individuals (owners). Another system was developed to ease the path for road authorities
to enter the travel time measurement market by Puckett and Vickich [24], who took a practitioners’
approach. The accuracy of travel time measurement, and the ease on the privacy issue, that made
the usage of mobile phone data nearly impossible, might have been the turning point, as from then
on Bluetooth gained a lot more interest from the research community.

Experiences and Case Studies

Over the past few years, the Bluetooth data source has been used for large-scale behavior studies,
across different domains. It has been used to characterize pedestrian environments and walking
behavior, by using the distributions of device type, dwell time and travel time [25, 26]. These
endeavors have been directed towards the analysis of the effect of the environment on the signal
strength of the scanners, and the relationship between the signal strength and type and frequency
of detection road users such as walkers, runners and cyclists [27]. Recently, researchers have used
the Bluetooth-based tracking strategy to measure the time it takes for passengers to move through
the various airport areas [28]. Currently, Bluetooth finds its widest application within the Intelligent
Transport System and Road Management domains. Here, the Bluetooth data are often fused with
other data sources - such as WiFi, GPS and loop detectors [29] - in order to enhance the estimation
of the traffic state or to identify the causes of congestion outbreaks [9]. Finally, the Bluetooth
technologyhas also been recently employed for improving the estimation of Origin-Destination
patterns [30] and route choice analysis [31, 32].

BT
coverage area

Mobile
BT Device

First Detection Last Detection

Figure 2: Travel Time estimation mechanism.



The Bluetooth-Based Estimation of Travel Time

The Travel Time is an important traffic indicator of the status of the network and may be used to
minimize the level of congestion. It has long been a topic of research and numerous models have
been proposed for both motorways [33-42] and arterial [43-46] networks. The relationship between
the level of congestion and travel time has been studied theoretically by a number of researchers [4,
47] and has led to the conclusion that, if the vast majority of drivers were informed on the actual
travel time for their trips, congestion would be reduced significantly, provided that these drivers
made the right decision at the right time, in a cooperative fashion [48].

It is one thing, however, to assume that the output from a traffic simulator is realistic, and quite
another thing trying to determine how realistic this output is, when the parameters of the simulator
are numerous and the data available for validation are very limited and noisy. A very important
validation data seemed to become available at a low cost when it was shown by Murphy et al. [18]
that pairing Bluetooth sensors together could produce travel time data. Simply put, given a pair of
locations, O and D, both covered by Bluetooth scanners, the time it takes for a Bluetooth
discoverable traveller to go from O to D is given by the time difference between the matching
identifiers (Figure 2). Therefore, if a vehicle is first detected at O at time ¢y, and later at D at time tp,
the travel time 7(0, D) for this device will simply be

7(0,D) =tp — to (D)

By plotting these values over some period of time (Figure 3, left), the travel time stands out, from
what is seems like feeble background noise. Since the early promising reports on the use of the
Bluetooth technology for traffic monitoring, researchers and practitioners have been debating about
the actual value of this relatively new data source. Strictly speaking, although the mechanisms for
measuring the travel time seems simple and does produce large datasets, it is still not clear how
much noise is actually ‘lurking’ in the data and how this noise ought to be isolated and reduced.
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Figure 3: Travel Time de-noising and parameterization. Common travel time measures for a corridor are produced
from the aggregation of per-vehicle travel times over a given time window, e.g. 1 day (left). Data cleansing is often
achieved by separating high-density regions from the regions of low density. From the cleansed data (dark-blue region
on the left picture), sufficient statistics (e.g. mean and standard deviation) are computed and used as indicators of
road performance (right). The filtered data in this example was clustered into 144 time bins of equal length. Mean and
standard deviation were then computed for each time bin. In the graph on the left, the red region indicates the
+ 2 - sdev (standard deviation) interval around the mean.



Travel Time Modes and Noise

What both researchers and practitioners know is that the Bluetooth data typically hides the traffic
mode of the detected travellers. Within any Bluetooth dataset, one should expect to find samples
belonging to the class of personal cars, pedestrians, busses, taxies, cyclists and all kinds of road
users. Not all these data points are equally important as far as vehicular traffic is concerned. Yet,
they do equally influence the sufficient statistics that are to be computed, as a summary of the large
dataset, if the priors of each mode are not known. This difficulty is typically addressed as follows. If
one assumed that the outliers, e.g. the non-target transport modes, were more scattered or less
dense in the dataset, and the samples of the target class closer together, then clustering techniques
could be used to identify and filter the target class from the rest of the dataset. This modus-operandi
branches out into two major strategies. One strategy, which we shall term static, consists of slicing
time into bins within which the (travel time) data is partitioned. Then for each bin, a second
clustering is applied in order to discern between dense (target) versus scattered (non-target) regions
[17, 49, 50]. An example of this approach is depicted in the right diagram of Figure 3. The second
approach is more dynamic, in the sense that the output of the clustering algorithm depends also on
the data from the previous time-steps. If different transport modes exhibit different density patterns
in the data, the dynamic approach is expected to enable more robust filtering and even prediction
(8, 51].

But do we always see these patterns of high and low-density regions in the travel time data? And are
the high-density regions actually characteristic of the target class? Under certain circumstances,
both questions may have a positive answer. Let us assume that we were to target the class of
motorized vehicles. Intuitively, motorized vehicles tend to be faster than pedestrian and cyclists,
provided that the traffic were not congested. Therefore, we would expect to see at least two modes
in the travel time (average speed) distribution: a higher travel time (lower average speed) peak for
the non-motorized vehicles and a lower travel time (higher average speed) peak caused by the
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Figure 4: Average speed measured between two scanned intersections. The speed distribution for the target corridor
(Coronation Drive, Brisbane) appears to be multi-modal between 9am (~40% of one day) and 3pm (~60% of one
day).



motorized vehicles. In this situation, any classifier is expected to place a decision boundary
somewhere between these two classes. As congestion kicks in, these two classes will gradually come
closer together and merge, at the point in time when the average speed of cars and pedestrians
would no longer be statistically distinguishable.

What about the density patterns? Until recently, it seemed safe to consider the data coming from
mobile phones and smartphones less abundant, compared to the sightings from the Bluetooth-
enabled vehicles. Put it simply, a native support of a more powerful Bluetooth class, for a mobile
device, would entail a shorter battery lifetime. However, a lower power-class would also translate to
smaller communications ranges. By contrast, the batteries of vehicles have had the advantage of
being constantly recharged by the vehicles’ engine. Therefore, there would be virtually no
disadvantage in using a more powerful Bluetooth hands-free vehicle kit, in order to offer wider
scanning ranges. Under these hypotheses, it was reasonable to conclude that the motorized versus
non-motorized classes are characterized by different densities, in time and space. However, the new
Bluetooth low energy (LE) protocol, which is being supported by an ever-increasing number of
portable electronic devices [52], has proved successful in keeping the energy consumption to a
minimum, while increasing the range to over 100 meters [53]. As the non-vehicular traffic becomes
easier to observe, the assumption of clearly distinguishable density regions may no longer hold. In
general, as the Bluetooth technology keeps improving, the assumptions made about the Bluetooth
data will need to be revisited. But even if all transport classes could be perfectly separated, each
class would still exhibit some degree of variance around its mean value (Figure 3, right). Part of this
variance can be explained as follows. The behaviour of the individual drivers is influenced, among
other things, by a number of external factors, such as traffic lights, merging and diverging flows.
These factors may cause the trajectory of two nearby vehicles to diverge significantly, even over a
small time window. At the one end of the spectrum we shall find the travellers experiencing the
shortest travel times, as their drive will not be interrupted by any red signal or merging vehicle. At
the opposite end of the spectrum, the least lucky drivers will experience the largest travel times, for
being interrupted by all traffic hindrances in their way. It the case of short road links between two
Bluetooth scanners, the travel time (or average speed) distribution tends to be bi-modal (Figure 4).
In this situation no driver is likely to experience the average travel time, located somewhere
between the two peaks.

The rest of the variance of the clustered and cleansed data comes from the characteristic of the
sensors and can be explained more formally. The Bluetooth scanning is not continuous but it rather
happens at fixed time intervals called inquiry cycles [54]. When an inquiry cycle is completed, the
MAC IDs of the detected devices are sent to the main server to be time-stamped with the time at
which the inquiry cycle call has returned. Let T} be the duration of the inquiry cycle, which we will
assume to be constant’; and Tp the duration of the data processing operations, i.e. data transfer
from scanner to server and time-stamping (Figure 5, left). If Tp is uniformly distributed within some
arbitrary interval [a, b] with a and b being non-negative real numbers, the measurement error & will
be distributed as depicted in Figure 5 (right). This error is the difference between the time reported
or measured by the Bluetooth scanning system and the actual time at which the devices enter the
scanning area. Interested readers should refer to [55] for detailed analysis on the Bluetooth data
acquisition process and analysis on the noise from the data. The width of such a distribution is

' The duration of the inquiry cycle is a parameter of the scanner that is typically controlled by the user.



postulated to be proportional to the variance that is observed around each mode of the speed or
travel time distribution (Figure 4 right). In reality, this probability density function is also affected by
the miss-detection rate, that is, the chance of a scanner to miss a discoverable device that is
transiting within the scanning area. It can be shown that the higher this probability is, the wider the
error distribution will become. The miss-detection rate depends on the dwell-time of a vehicle
within the scanning area, and other external disturbances. For instance, the polarization of a scanner
antenna (e.g. omnidirectional versus directional) defines its communication coverage shape
(horizontal and vertical), and the gain (strength in dBi units) of the antenna defines the size of the
coverage shape. The actual scanning shape in the real environment, in turn, is affected by the local
installation factors such as attenuations and reflections to the signals from trees, buildings and even
weather conditions (water absorbs radio waves at the frequencies used by Bluetooth). Low scanning
frequencies and small covering areas result in a smaller chance for the fast vehicles to be timed
accurately. In the worst case, vehicles are missed altogether if their transit in and out of the scanning
area is very short. If we neglected the miss-detection chance and still wished to formulate travel
time in probabilistic terms, we should modify Eq. (1) as follows:

E[z(0,D)] = E[tp] + E[§] — (E[to] + E[g]) )

Where E[‘] is the expected travel time and ty, and tp are now random variables denoting the
entrance time, over some period of time, at the origin and destination scanner, respectively. The
equation above holds true, no matter what the distribution of £ may be, as long as we assume that ¢
is the same for all scanners. Therefore we can see that, on ‘average’, the measurement errors will
cancel each other out, leaving us with the conclusion that

E[z(0,D)] = E[tp — to] 3)

which says that the mean of the measured travel time is equal to the mean of the actual travel time,
regardless of the error &. This result may lead researchers and practitioners to ignore the nature of
the Bluetooth noise, for travel time estimation purposes, and replace the random variables tg and
tp with their sufficient statistics, such as the mean. The problem with Eq. (3) is however numerical
rather than theoretical. The mean computed from the (Bluetooth) data is equal to the analytical
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Figure 5: Bluetooth inquiry cycles and measurement error distribution. The graph on the right shows that the
measurement error depends on the time at which the individual devices enter the scanning area (entrance time) and
the time at which the current inquiry process completes. This includes the random variable T,, which is assumed to be
distributed uniformly between a and b. The probability distribution of the error f(§) resulting from this system is
shown on the right.



mean only if the dataset, over the time period considered, were infinitely large. In practice,
however, the difference between measured and analytical mean will fall within small intervals, if the
sample size were big enough. By contrast, if the data were very limited over the target time window,
the travel time measured could diverge significantly from the actual travel time. Thus, we have seen
that not only does the Bluetooth noise have a non-Gaussian distribution, as is often assumes; but
this noise should not be neglected, even for the simple task of estimating the travel time between to
Bluetooth scanners.

Route Choice Analysis

Route choice problems in transportation modelling have been drawing the attention of researchers
from different domains, including statistics [56], economics [57], Al [58] and psychology [59].
Amongst these endeavours, extensive effort has been invested to understand the mechanisms
whereby people plan routes, given the objective and reward of the trip and the information that is
assumed to be available to them, such as travel times, road closures and bottlenecks and traffic
incidents. We are interested in route choice because of its importance in determining traffic
demand. Congestion occurs when the demand for travel exceeds the capacity of the road.
Therefore, analysing how and why demand changes is important to reduce congestion and,
ultimately, economic and environmental damage. Moreover, understanding people choice can assist
with deciding on the public transport infrastructures to build, in order to enhance the quality of life
in the cities [60]. Over the years, a number of robust and efficient models have been proposed to
address traffic choice problems. Despite the mathematical elegance and practical appeal of these
models, their validation with real data has remained a challenge. Travel surveys and traffic
simulators, have long been the methods of choice for training and validating the models [61].
However, it is commonly agreed that survey data may be strongly biased [62], as they usually involve
small, randomly selected samples of the population, which may not reflect the actual overall
behaviour. Moreover, the reliability of surveys depends on several factors, such as subject
motivation, structure of the survey and question design. In contrast, traffic simulators produce rich,
high-precision data, but this synthetic data may not reflect what people actually do under atypical
circumstances. Similarly to the travel time estimation problem, researchers have recently explored
the opportunity offered by the large datasets of Bluetooth data [63].

Travel Time-Based Choices
The route-choice problem, posed in probabilistic terms [64], requires the calculation of the
conditional distribution Ll’l-od, representing the driver choice of selecting a route i, from origin o to

destination d, from a set of relevant route choice set C°? . Formally, this is expressed as
wPe = pr(i|cod) (4)

Different mathematical models can be used to define the above probability, such as the Paired
Combination Logit Model [65] and the Cross-Nested Logit Model [66]. Of all the factors impacting on
the route choice of drivers, travel time is increasingly being recognized as one of the most influential

[58]. If we marginalize Eq. 4 over the set of all travel times available about the routes in C°%, we get:

pP? = pr(i|cod) = Z Pr(i
T

T,COd)Pr(T|COd) (5)



Here, it is assumed that the user choice depends on the time it takes to travel C°%. This dependency
is expressed by the model Pr(i|‘r, C"d), that is, the probability of selecting corridor i, given C°¢ and
the prior Pr(T|COd), denoting the probability of experiencing the travel times T when travelling C°2.

This latter distribution can be extracted directly from the (Bluetooth) travel time data.

One of the major issues with the estimation of the travelled path is that the Bluetooth scanners may
not be located at every intersection of the target corridor. Moreover, as explained earlier, there is a
chance that a scanner will not detect all vehicles that are flowing through the scanned intersection.
As such, the entire trip of the road users may translate to small Bluetooth samples. Reconstructing
long trips from such limited datasets may be a daunting challenge. Michau et al. [67] have recently
presented a technique that allows determining a lower bound for the number of miss-detections
and to infer about the actual travelled path. The inference is based on the statistics computed from
the dataset and on a set of assumptions made about the distribution of speed across vehicles and
non-vehicles. Their work is an attempt to include the Bluetooth-related uncertainties into the
reconstruction of the actual path.

A second complication concerns the identification of the actual number of trips, from the series of
unlabelled Bluetooth sightings. Typically, a Bluetooth dataset is made of series of per-traveller
recordings, which refers to the times at which the traveller has ‘hit’ the various scanners, over the
observation period. This series may contain multiple recordings from the same scanner and is usually
unlabelled, in that, it does not contain information about the origin and destination of each trip. To
address this problem it is common to resort to heuristics, which allow for the overall behaviour of
the entire population of drivers. In a recent work, Michau et al. [67] have proposed speed-based
splitting criteria, in which a split point is introduced whenever the speed between adjacent
detections goes below a threshold. This method allows also for the probability of the time-difference
between pairs of consecutive detections. In general, the splitting problem is addressed through
threshold-based heuristics, whereby groups of trips are formed, on the basis of the frequency of
consecutive recordings, among other parameters [68]. The time thresholds used, however, is not
based on the characteristic behaviour of the scanners. It has been shown that the weather has a
strong influence on the signal strength; that the miss-detection rate increases as the scanning area
becomes more crowded with active Bluetooth devices and that not all scanners may be equally
powerful [63]. Determining the actual origin, destination and path of the individual drivers from
unlabelled Bluetooth is critical to the accuracy of any route choice model used. Yet, there has been
very little contribution to incorporate these factors into a trip-splitting strategy. Instead, the
sequences of Bluetooth observations are often associated to the shortest path connecting the hit
scanners along the way, and the travel times associated with them are given through sufficient
statistics.

Concluding Remarks

Technological advances in the field of vehicle telematics are having positive impact on the state-of-
the-art of traffic models, as they have enable the measurement of important factors such as travel
time, traffic demand and route choices. In this work, we have presented examples of the application
of the Bluetooth technology to behavioural studies with focus on travel time estimation and route
choices modelling. We argue that for the effective estimation of any traffic-related information, it is
important to understand and model characteristics behaviour of the Bluetooth scanners. Not only



will the understanding of the source of Bluetooth noise improve the estimation mechanisms that are

currently used; but it will also help devising informed strategies for the optimal positioning and

distribution of the scanners, for road and even retail management purposes. It is expected that the

growth of the Bluetooth data deluge will spur more rigorous investigations along this direction. The

Smart Transport Research Centre? is already in an excellent position in this respect, as it has access

to a large Bluetooth dataset from Brisbane, with over 400 scanners. The size of this set is expected

to increase considerably in the near future, and will include data from urban and sub-urban areas.

We postulate that from such a large sample it will become easier to identify and characterize the

noise that is currently hidden in the data.
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