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Abstract—Suspended loads on UAVs can provide 
significant benefits to several applications in 
agriculture, law enforcement and construction. The 
load impact on the underlying system dynamics 
should not be neglected as significant feedback 
forces may be induced on the vehicle during certain 
flight manoeuvres. Much research has focused on 
standard multi-rotor position and attitude control 
with and without a slung load. However, predictive 
control schemes, such as Nonlinear Model 
Predictive Control (NMPC), have not yet been fully 
explored. To this end, we present software and 
flight system architecture to test controller for safe 
and precise operation of multi-rotors with heavy 
slung load in three dimensions.  
 

1. INTRODUCTION 
Heavy suspended loads, no matter if containing a 
sensor, water for firefighting or a pesticide fluid [1,2], 
may significantly influence flight dynamics due to a 
high mass-ratio of the load to the vehicle.  The 
nonlinear dynamics of an aerial suspended load are 
well studied by a vast amount of publications, such as 
[3–6]. In most cases, the controller is derived by a 
linearisation of the dynamical model. An overview of 
the generic 3-dimensional pendulum control problem is 
mentioned in [3]. A fuzzy controller for load swing 
compensation while the vehicle is tracking a position 
trajectory at low attitude angles near hover is 
introduced in [4]. Detailed studies on the slung load 
model and a trajectory tracking slung load controller 
using linear quadratic regulation are presented in [5] 
and [6]. A dynamic programming approach is 
developed, capable to generate swing free trajectories 
for agile manoeuvres. Nevertheless, there hasn’t been 
research on including the slung load dynamics to the 
model of an online Nonlinear Model Predictive Control 
(NMPC). NMPC provides an optimal controller for 
highly nonlinear dynamics whilst accounting for 
constraints and enabling a state feedback loop that 
involves disturbance and model uncertainties. NMPC is 
an established tool for relatively slow elapsing 
processes since the Nineties and has mostly been 
applied in the field of industrial process engineering. 
However, due to rising computational power on micro 
controllers, NMPC becomes applicable for agile 
lightweight aerial systems, too. To this end, the 
contributions of this paper are: 

1. Design of a NMPC for a quadrotor with 
suspended slung load, capable of stabilising or 

tracking the load and quad movement over a 
large flight envelope 

2. Performance comparison of the NMPC to a 
Linear Quadratic Regulator (LQR) with 
respect to robustness, time varying reference 
and aggressive control 

3. Preparation of a NMPC algorithm in C++ 
code for field tests including assessment of 
computational demand 

 
2. SYSTEM DYNAMICS 

A precise derivation of the highly non-linear system 
dynamics of the quad-load-combination is essential for 
an efficient control over the entire flight envelope.  
 
The kinematics of the load depend on the moving pivot 
and herewith the quad acceleration. The acceleration 
resulting from the cable force impact on the pivot is 
now added to the quad acceleration. With Newton’s 
second law of motion, this is ac =  fM, where f is the 
cable force vector and M is the quad mass. The 
complete system of equations for the combined 
dynamics for model Fig.1 is shown in (1). 
 

 
Figure 1 Load coordinates in frame O related to 

inertial frame I by the quad position ξ_ 
 
It remains to mention that, as a result, the quad 
dynamics implicitly depend on the load’s motion and 
vice versa. The yaw angle   is considered to be constant 
zero such that a feed forward term can be added to 
control the quadrotor orientation  
 
Details on the system dynamics can be found in 
literature [3-8]  



  
 
 
 

(1) 
 
 
We assume  

• No aerodynamic effects 
• No cable mass 
• No cable strain 
• No free fall of the load (cable force ≥ 0) 
• Pivot with no offset to multi-rotor CoG 

 
3. CONTROL DESIGN 

The control design is separated into the description of 
the NMPC and the LQR, both of which are used and 
compared in this work. The two controls consider the 
slung load dynamics to derive the corresponding 
controller.  
 
3.1 Nonlinear Model Predictive Control (NMPC) 
The mathematical model defined by (1) represents the 
system dynamics and is used as an internal model f for 
the predictive controller. An optimal control problem is 
repeatedly solved at each control step over a finite time 
horizon [9]. The state vector contains the three 
Cartesian positions and velocity of the vehicle, the 
pitch and roll angle as well as the two slung load 
Cartesian coordinates and their derivatives. The third 
coordinate is omitted due to the spherical surface 
constraint of (2). The control vector contains the 
vehicle’s roll rate, pitch rate and collective thrust. A 
cost function J is minimized with respect to u. The cost 
function is used to penalise deviation from the 
reference flight and slung load condition. The optimal 
control problem can be defined as 
 

 (2) 
with the errors Δxk and Δuk of the current state and 
control to the reference trajectory, denoted by the 
asterisk. The matrices Q and R are positive semi-
definite weighting matrices on the quadratic state error 

and control error respectively. P defines the terminal 
cost, i.e. the positive cost of the error at the last step of 
the prediction horizon. The stability of the open loop 
can be significantly influenced by this parameter. 
 
The ACADO toolkit [10] provides a comprehensive 
C++ code library suitable for creation of an algorithm 
to solve the optimal control problems arising from the 
NMPC formulation. 
 
The optimal control problem is subject to the model’s 
differential system of equations and a set of inequality 
constraints. These constraints capture the bounds on 
the control inputs and platform limitations, or state 
constraints. For example, they can be used to prevent 
the platform from flying upside down (through roll and 
pitch angle bounds) or limit the roll rate based on the 
maximum torque that the rotors can generate. 
 
The collective thrust is limited to the maximum 
available power and to avoid an unrecoverable drop in 
altitude. The constraint domain is derived from 
experience or specification of the X-4 Flyer Mark II in 
[11], with numerical values given in Table 1. 
 

Table 1. Inequality constraints for NMPC 

  
 
The reference trajectories and weighting matrices are 
set dynamically   An overview of the prediction 
parameters and their numerical values are given in 
Table 2. The values were chosen empirically and based 
on literature, such as [12,13] or examples from the  
ACADO toolkit. 
 

Table 2. Overview of NMPC settings 

 



 
 

4. SIMULATION FRAMEWORK 
The simulation framework can be structured into six 
major components (Fig 2. ) . These are: 

  Top-level controller (i.e. NMPC or LQR) 
  Low-level proportional attitude control 
  Control mixer to provide motor-speeds 
  Quadrotor system dynamics 
  Slung load system dynamics 
  Visualisation tool 

 
The top-level control is embedded to the framework by 
an  outer feedback loop, where the states are directly 
forwarded to the control block, neglecting  
measurement deviations,  hence y = x. Whilst the LQR 
is included by putting the gain matrix K on the state 
error, the NMPC uses a  MATLAB S-function  [14]  
and C++ compiler (mex) to define the  controller. 
Reference trajectories and weighting matrices are 
dynamically allocated in the SIMULINK environment. 
 

5. FLIGHT SYSTEM ARCHITECTURE  
 
An overview of the system architecture is shown in Fig 
3. The motion capture system provides position and 
attitude of the Vehicle. We use a cascaded flight 
control and a consumer PC runs the computationally 
intensive off-board Controller.  The on-board controller 
tracks the commands based on its on-board IMU. In the 
system the user can change the flight mode and 
nominal trajectory 
 
The motion Capture System uses five infrared cameras 
track the markers attached to the vehicle visually.  The 
rigid geometry of the vehicle is introduced to the 
motion capture system software and the position of the 
COG and the attitude of the vehicle can be determined 
by the system 
 
Figure 4 shows the off board architecture where the 
motion captures system provides position and attitude 
of the vehicle. The software module is implemented in 
MATLAB/Simulink and includes the off-board 
controller and also provides the user interface. The 
commands are transmitted to the vehicle wirelessly via 
XBee-Pro radio modules 
 
The on-board system is also shown in Fig 4. In the on-
board system the Arduino decodes the radio messages 
and converts the commands to PWM signals which are 
fed into the APM. The APM (ATmega2560, IMU) runs 
the ArduCopter firmware. The APM has two main 
flight modes: a) Stabilize: control of roll, pitch, yaw 
rate and thrust and b) Acro: control of angular rates and 
thrust 
 

The software consists of three Simulink models 
running three instances of MATLAB with a) Sensor 
Model Outputs the state vector b) Controller Model 
Off-board controller, user interface Radio Model 
Communication protocol, redundancy management and 
c) a shared memory is used for inter-process 
communication  
 
The core modules of the software system are detailed 
in figure 5 
 
a) Calibration: Gives the user the capability to move 

the origin of the inertial frame to the current 
position of the vehicle and to align the inertial 
frame with the body axis 

b) Latency Compensation:  In order to compensate 
for the system latency, a state estimator is used to 
predict the future state of the vehicle  

c) Ground Control:  Provides the user interface and 
monitors and logs the flight data\ 

d) Reference Management Provides the nominal 
trajectory 

e) Controller: Off-board controller  
f) Flight Mode Management:   Overwrites the output 

of the off-board controller depending on the flight 
mode 

 
The system Latency is shown in Table 3 
 

Table 3 System Latency 
 

 
 
The flight failure modes included  
 
a) The on-board radio receives no radio messages :  

After the timeout, the on-board Arduino initiates 
the emergency  landing 

b) The Radio model receives no command updates :  
The Radio model transmits an emergency landing 
command 

c) The motion capture system fails to track the 
vehicle:  The Radio model transmits an emergency 
landing command 

d) The motion capture system provides misleading 
position or attitude information: This failure mode 
cannot be detected by the current system. An on-
board estimator needs to be implemented to detect 
unsafe  manoeuvres 

 



 
Figure 2. Simulation framework components 

 

.  
Figure 3. Overview of the Flight System Architecture 

 

 
 

Figure 4. Overview of the on board and off-board system Architecture 

 
Figure 5. Overview of Software Module 

 

 
Figure 6. Core modules 

 
 



 
6. RESULTS 

 
Simulation 
The NMPC and the LQR are evaluated for their 
capability of managing stabilisation problems and 
trajectory tracking. Three   different scenarios are 
analysed. The first scenarios involve stabilisation 
problems with a deflected initial condition. The second 
and third scenario involve reference trajectory tracking 
for the quad rotor and the load position. 
 
The weighting matrices of both control algorithms are 
the same in each simulation. Table 4 shows the entries 
of the matrices that show variations to the identity 
matrix. The weighting matrix P for the NMPC terminal 
state error is set equal to the corresponding values of Q 
for simplification. 
 
 
Table 4. Weighting matrix variations

 
 
Stabilisation of Load Displacement 
 
In this scenario the goal is to actively damp an 
oscillation of the load. The quad is at stable hover and 
the load is initially displaced from its equilibrium 
position by 1m to the positive r-direction. As the 
control reference is set to maintain a stable hover with 
no load movement, active damping of the swinging 
load is required. Fig. 7 compares the vehicle’s x- 
position, the load’s position r and the corresponding 
control input i.e. pitch-rate, for the NMPC and the 
LQR control designs. The LQR forces the control 
limits to be exceeded and a motor-speed beyond the 
possible limit is demanded on some rotors. As a result, 
the load contacts the ground and the yaw angle deviates 
from the reference value. Both can be compensated 
after a few seconds, when the pitch angle and 
corresponding thrust demand start decreasing. The 
NMPC ensures the control constraints are respected, 
such that the load no longer impacts the ground. Of 
note, both controllers are able to damp the load within 
4 s, whilst returning the platform to the reference flight 
configuration. 
 
Waypoint Tracking 
In this scenario, the goal is to track a specific reference 
trajectory for the platform whilst avoiding a swinging 
of the load. An inclined square circuit is used as the 
reference trajectory for the vehicle, where each corner 
forms a waypoint at a different reference altitude. The 
square’s sides are 1m in length (only lateral direction 
measured) with an altitude variation of _2 m. The load 
reference is zero deflection to the equilibrium state, i.e. 
no swinging. The initial position is  at stable hover with 
non-deflected slung load and an altitude  of 2 m. 

Results for an example simulation are depicted in Fig. 
9, where quad and load position are shown. 
 

 
Figure 7. Quad position, load position and commanded 
pitch rate over time with an initial load deflection. 
 
The results (Fig. 8) suggest that the NMPC is able to 
effectively track the reference trajectory of both the 
quad and the load, with a Root Mean Squared 
Displacement (RMSD) of 0:064m and 0:091m 
respectively. The LQR control design shows poorer 
tracking performance, approximating a more circular 
trajectory with position and load RMSD of 0:569m 
(governed by the altitude deviation) and 0:021m 
respectively. This can be attributed, in part, to the fact a 
single reference value is required at each time step for 
the LQR, compared to the full time varying reference 
used in the NMPC. The result implies that the NMPC 
approach can better manage more complex reference 
trajectories. 
 
Load Position Tracking 
In this scenario, the goal is to track a specific load 
reference trajectory, whilst the platform maintains 
hover. The load reference describes a circular pattern 
of radius 1m and a period of 3 s. The initial position of 
the platform and load are (0,0,-2) and  (0,0,2+l) 
respectively. Results for an example simulation are 
given in Fig. 9, where load and platform position are 
depicted. To track the reference load position, the quad 
must first leave the stable hover in order to move or 
upswing the load.  The flight path for both control 
algorithms describes loops, where a larger loop radius 
is initially required to force the load to adopt the 
reference trajectory. Subsequent motion is a relatively 
constant radius circular trajectory to maintain the 
load’s reference circular path. The NMPC’s performs 
with an overall RMSD of quad and load position of 
0:779m  and 0:915m respectively. The LQR comes to 
0:781m and 0:924 m. 
 
The load trajectory generated by the LQR touches the 
ground at 0:8 s simulation time, shown by the dashed 
line. The actual ground contact is not part of the 
simulation and the depicted flight neglects the impact 
to continue the flight and recover from the altitude drop 
at 2:2 s simulation time. The reason for this impact is 
again the disregarding of control input constraints, 



putting the vehicle to an attitude where total thrust 
becomes insufficient for maintaining a level flight. 
 
The average computational cost of the NMPC is 5:0 ms 
per real time iteration which corresponds to 200 Hz  
control sample time. This was verified using 1000+ 
iterations  on the first stabilisation scenario run on a 1.7 
GHz Intel  Core i7-4650U dual-core processor on an 
Apple OS X 10.9.5  operating system and a test-
simulation in C++ code. The SIMULINK environment 
was removed to ensure efficiency of the control 
algorithm. Similar computation times were observed 
for other scenarios which suggest the controller is 
suitable for real applications, and could be 
implemented onboard real hardware configurations. 
 
Flight Test  
Figure 10 shows the x-y position and altitude of the 
reference load trajectory and the vehicle. We can 
observe good match between the command and the 
flight logs. Figure 11 shows the ratio of MPC 
weighting for vehicle and load position deviation from 
the reference 

7. CONCLUSION 
A NMPC algorithm for slung load quadrotor control 
including comparative performance assessment under a 
range of operating conditions was presented. The 
results show the importance of explicit consideration of 
the platform constraints and nonlinear dynamics of 
slung load systems in control design. Especially when 
heavy slung loads generate significant cable forces, 
wise trajectory planning is required. This work shows 
that the LQR may violate these constraints, e.g. leading 
to ground contact. The NMPC strictly avoids such 
events and significantly decreases the overall control 
effort through predictive management of the actuating 
control elements. This is a great advantage when power 
is limited, e.g. carrying loads close to the specification 
limit, resulting in short control margins.   A state 
observer for the slung load must be derived, which 
could be accomplished using visual sensor to then 
realise an integrated visual predictive control solution 
[15]. Investigation on the NMPC robustness, e.g. 
Lyapunov stability using the end term penalty, is 
advisable to assure robustness for all operating 
conditions before preparing a field deployable solution. 
Furthere work is also focused on the use of robust 
methods for multi-objective and multdisciplinary 
design of the slung load, UAV system [16] 
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Figure 8. Reference trajectory tracking of LQR and NMPC in comparison. 
 

 
 

Figure 9. Tracking a circular load reference of radius 1m to the quad and period 3 s while quad reference is at origin. 
 



 
Figure  10.  x-y position and altitude of the reference load trajectory and the vehicle 

 

 

Figure 11.  Ratio of MPC weighting for vehicle and load position deviation from the reference 

 

 
 
 


