
TR/07/92 June 1992
 Revised Nov. 1993

 Design, Implementation and Testing of an
Integrated Branch and Bound Algorithm for
Piecewise Linear and Discrete Programming
 Problems within an LP Framework.

 By

M T Hajian
G Mitra

Design, Implementation and Testing of an Integrated Branch and Bound Algorithm
 for Piecewise Linear and Discrete Programming Problems within an LP

 Framework.

 By

M. T. Hajian, Brunel, The University of West London
 G. Mitra, Brunel, The University of West London

CONTENTS.

0. Abstract.
1. Introduction and Background.
2. Classes of Discrete Variables.
3. Mathematical Statement of a General Discrete

and Separable Programming Problem.
4. General Branch & Bound Algorithm.

4.1 Statements of the Algorithm for Single Optimum Solution.
4.2 Dealing With Different Classes of Variables.
4.3 Zero-One and General Integer Variables.
4.4 Semi Continuous Variables.
4.5 Special Ordered Sets of type One.
4.6 Special Ordered Sets of type Two.
4.7 Method of Partitioning Special Ordered Sets.

5. Tree Search Strategies.
5.1 Method of Choosing an Unsatisfied Global Entity.
5.2 Node Choice.
5.3 Measure of Non-Discreteness.
5.4 Bounding the Tree Search.
5.5 The Generalized Tree Search Strategies.

 6. Data Structure for representing Discrete variables, Set variables and the
 Branch and Bound Tree.

6.1 Data Structure for representing Discrete and Set variables.
6.2 Data Structure for representing the Search Tree.

7. Experimental Results.

8. References.

Appendix 1. Input Data Definition for The General Discrete Programming Problems.
Appendix 2. Table of Test Problems.

Page 1

0. Abstract

A number of discrete variable representations are well accepted and find regular use within

LP systems. These are Binary variables, General Integer variables, Variable Upper Bounds

or Semi Continuous variables, Special Ordered Sets of type One and type Two. The FortLP

system has been extended to include these representations. A Branch and Bound algorithm

is designed in which the choice of sub-problems and branching variables are kept general.

This provides considerable scope of experimentation with tree development heuristics and the

tree search can then be guided by search parameters specified by user subroutines. The data

structures for representing the variables and the definition of the branch and bound tree are

described. The results of experimental investigation for a few test problems are reported.

Page 2
Introduction and Background.
Alternative ways of representing non-linear programming problems involving variable
separable function as discrete programming problems are well known since the 60s, Miller
(1963), Falk and Soland (1968), Beale and Tomlin (1969), but not many general non-linear
and discrete programming systems are in industrial use. Currently known systems are:
SCICONIC, OSL, XPRESSMP, LAMPS and there are a number of systems with only zero-
one and integer facilities, these include ZOOM, MPSX, FMPS, LINDO, MPSIII, and
MINTO.

Early research results concerning tree search methods applied to such problems were reported
in the 60s and early 70s, Benichou (1971), Mitra (1973), Forrest et al (1974). All
the above mathematical systems use tree search algorithm in which the original problem
(relaxed as an LP) as well as a waiting node or a sub-problem are solved by the Sparse
(Revised) Simplex method.

During the 80s most of the research effort has been directed towards, (i) Preprocessed integer
programming model to generate constraints which produce deep cuts, Van Roy and Wolsey
(1984), (ii) use of such constraints in the root node and also subsequent tree search.

In this report we set out our algorithmic and software design consideration for constructing
a general discrete programming systems. This work is a part of our ongoing research in
Large Scale Linear and Discrete Optimisation system. It is built around the FortLP which
is a sparse simplex solver for large linear programs.

Page 3

The objectives of this work are summarized below:
(a) to develop a family of Branch and Bound algorithms to solve discrete programming
problems in their most general form,
(b) to introduce a general Cutting plane method within the Branch and Bound tree search
framework, and
(c) to use this system as an experimental tool to investigate new ideas of constraint
generation.

In this report, the development of a generic Branch And Bound algorithm for solving discrete
programming problems, namely part (a) above is described and some experimental results
are presented.

The contents of this report are organised in the following way. In section 2 the classes of
discrete variables and set variables are reviewed. In section 3 the mathematical representation
of a general discrete problem is introduced. In section 4 and 5 a general Branch and Bound
approach which takes into account different classes of variables and set variables together
with alternative rules applied in Branch and Bound are outlined.

In section 6 we discuss the data structure and implementation issues of internal representation
of different types of variables and sets. The results of our experiments with a collection of
some well known test problems are given in section 7.

Page 5

function g(y) may be represented as:

where:
g (y) = g(ŷ 1)x1 + g(ŷ 2)x2 + ... +g(ŷ k)xk

ŷ 1x1 + ŷ 2x2+...+ ŷ KXK - y = 0, y  ≥ 0
 x1 + x2 + ... + xk =1, xk ≥ 0, k=l,...,K

(21)

(22)
(23)

Fig.l
The discrete function can take only one of the K possible values weighted by the variable xk.
This requirement can be easily expressed by adding the condition,

xk ∈ {0,l}, k=l,...,K.
Such a group of variables is called a Special Ordered Set of Type One as only one variable
in the group can take a value different from their (lower bound) zero value in a valid
solution.

(v) Special Ordered Sets of type Two (SOS2) are sets of variables of which not more than
two members may be non-zero in the final solution, with the further condition that if there
are as many as two they must be adjacent. SOS2s were introduced Beale (1970) to make it
easier to find global optimum solutions to problems containing piecewise linear
approximations to a nonlinear function of single argument. The overall problem has an
otherwise linear programming or integer programming structure except for such nonlinear

functions.

Page 6

Consider the function f(y) Fig.2 as a piecewise linear function in one variable defined over

(ŷk’f(ŷk)),k=1, …,k, the closed intervals where the coordinates [ŷk’ŷk+1] k=1, … ,k-1,

represent points P1, . . . ,Pk.

f(y)

 Fig.2

Any point y in the closed interval [ŷk’ŷk+1] may be written as y=xkŷk+xk+1ŷk+1’ where

xk+xk+1 = l and xk’ xk+1 ≥0, similarly as f(y) is linear in the interval, it can be written as

f(y)= f(ŷk)xk+ f(ŷk+1)xk+1·

This leads to the representation of f(y) using a set of weighting variables,
by the following equality:

 xk’ k=1,…k,

where:
f(y) = f(ŷ1)x1 + f(ŷ2)x2 + ... + f(k)xk

ŷ1x1 + ŷ2x2 +... + ŷkxk - y = 0, y ≥ 0
x1 + x2 + ... + xk = 1, xk ≥ 0, k=l,...,K

(2.4)

(2.5)
(2.6)

Plus the added condition that not more than two adjacent variables can be non-zero at any
one time.
The set of weighted variables xk are called the special variables and the rows (2.1)&(2.4),
(2.2)&(2.5), and (2.3)&(2.6) are called the function row, reference row and the convexity
row respectively.

Page 7
3. Mathematical Statement of a General Discrete and Separable Programming Problem.

The classes of discrete variables are described in the previous section, as Binary, General
integer, Semi Continuous variables and Special Ordered Sets of variables of type One, and
Two. A statement of the general discrete programming problem, which contains the above
types of variables and sets as well as continuous variables is set out below. Consider the
index sets N1 ,..., N7 which are used to specify the different variable types. The data
structure which is used to implement this representation within our experimental optimiser
FortLP system also follows this variable indexing scheme.
 N1 = set of indices of Bounded Variables

 lj ≤ xj ≤ uj

 0 ≤ lj , uj p + ∞ j ∈ N1

N2 = set of indices of Free Variables

 -∞ p xj p + ∞ j ∈ N2

N3 = set of indices of Binary Variables

 xj= 0 or 1, j∈ N3

N4 = set of indices of General Integer Variables

 lj ≤ xj ≤ uj’ xj≡0 mod(1), j∈N4

N5 = set of indices of Semi-continuous variables

 0 < lj ≤ xj ≤ uj

 j∈Ν5
 xj = 0

(3.1)

(3.2)

 (3.3)

(3.4)

 (3.5)

 where N6l is the set of indices of the lth SOS1 type Variables, and only

 one xj can be non-zero.

either {or

N6=UN6l
 l

xj = 0 or 1, j ∈ N6l ’ l=1,...,ℒ
ℒ = No. of SOSls

Page 8

(3.6)

 where N7k is the set of indices of the kth SOS2 type Variables, and xjN7=UN7k’
 k

 satisfies the adjacency condition of this set.
 0 ≤ xj ≤ 1, j ∈ N7k k= 1,…,k (3.7)

k = No. of S0S2s

The total number of variables defined by these index sets (which are mutually exclusive,

 is denoted by n,)øN
1j j

I

7

=
=

 (3.8)

as:

Using these set definitions a general discrete programming model may be
presented

subject to constraints:

 i =1,…,P (3.10)

l = 1,…,ℒ

 (3.11)

k = 1,…,K

where:
l ≤ xj j ≤ uj ,

-∞ p lj ¹ uj p + ∞’

-∞ p xj p + ∞’
 0 ≤ xj ≤ 1,

0 ≤ xj ≤ uj ,

j∈N1UN4,

j∈N2,
 j∈N3UN6UN7’

 j∈Ν5’

((3.12)

namely

][
7

∑=
= 1j j

Nn

∑
=

=
n

1j j0j0
x a x Max

 x

 x

bx

Nj
j

Nj
j

i’jij

6

∑

∑

∑

∈

∈

=

=

=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
≥
≤

k7

,1

,1

a

l

n

1j

Page 9

with the further discrete restrictions such as,

xj = 0or 1, if j∈N3,

xj =0 mod(l) if j∈N4,

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

≤≤<

0

0

j

jjj

x

uxl
 if j∈N5, either

or

(3.13)

only one xjcan be non-zero if j∈N6l, and at

most two adjacent xj can be non-zero if j∈N7k’

Function rows and reference rows included in (3.10), (3.11) represent the convexity
rows of special ordered sets of type one and two.
The model therefore has m = P + ℒ + K rows ad columns given by (3.8)

Page 10
4.0 General Branch and Bound Algorithm

Preliminary Discussion; before starting with the algorithm some terminology needs to be

defined. Maximisation is considered for all the discussion through out this report unless

minimisation is explicitlymentioned.

a) A solution is said to be LP feasible if it satisfies all of the problem’s linear constraint

(3.10, 3.11, and 3.12), and similarly is integer feasible if it satisfies all the linear constraints

and integer requirements (3.13).

b) An optimal solution is an integer feasible solution of the problem (if one exists) which in

term of the objective function value, is either better or at least as good as other integer

feasible solutions of that problem.

c) Following Beale’s terminology, Beale (1985), in this report the term Global Entity is used

to represent all binary, general integer, semi continuous and set variables (special ordered

sets of type one and two). A discrete programming problem may have only set or semi

continuous variables and no integer variables, in this case, it is inappropriate to address the

model as an integer program.

d) An LP relaxed problem is a problem whose discrete restrictions (3.13) are not considered.

e) RIPBST, or cutoff value is initially fixed to a large negative number then it is updated by

the integer feasible solution found during the tree search.

f) A good integer solution is an integer feasible (not necessarily optimum) solution whose

objective function value xg0 lies within a user defined percentage of the original LP solution

value x00, that is where 0< θ ≤1. The value of xg0 can be used for the cutoff θ Χ x00 ≤ xg0

value before finding the first integer solution.

 Page 11

Branch and Bound (B&B) is a technique for solving certain constrained optimisation
problems. It is particularly important for solving those problems whose solution by complete
enumeration can often be prohibitively expensive. A wide variety of problems of this kind
arise in Operational Research, Combinatorial Optimisation and Artificial Intelligence.

Taking into account practical computational experiences, the Branch and Bound method is
considered to be the most efficient technique for attacking Discrete Programming
(Combinatorial Optimisation problems). The Branch and Bound method carries out a
progressive partitioned search of the solution space of a given problem. Starting with an LP
relaxation, the space of all linear feasible solutions is repeatedly partitioned into smaller and
smaller subsets, and an upper bound (in the case of maximisation) is calculated for the
objective function value of the corresponding problems. After each partitioning, those
subproblems with a bound that exceeds the solution value of a known integer feasible solution
value are excluded from all further partitioning. The search continues until an integer feasible
solution is found such that the solution value of its objective function is greater than the
bound of all the remaining subproblems.

Depending on the optimisation requirement of a discrete model Branch and Bound

algorithms may be designed in different ways. These algorithms may be of three main
groups;
(i) Branch and Bound algorithm which computes all the optimal solutions,
 (ii) Branch and Bound algorithm which provides a single optimal solution,
(iii) Branch and Bound algorithm which determines the k best integer feasible solution.
(iv) Branch and Bound algorithm which determines a good integer feasible solution.

Page 12

These methods are generally characterised by their branching, bounding, solving, and
selection techniques. In this chapter the branch and bound method for a single optimum
solution (ii) of a given problem, (if a feasible solution of that problem exists) is considered,
within this it is also possible to determine a good integer solution (iv). The algorithm for
finding a single optimum solution (ii), can be easily extended to algorithm which computes
all the integer optimal solutions (i), and the algorithm which determines the k best integer
feasible solution (iii).

This Branch and Bound algorithm explores a search tree and in general, only search of a
small proportion of the solution space may be required. The remainder of the search tree can
be partly eliminated using the bound derived from a good integer feasible solution. When an
integer solution is proven to be optimal the rest of the search tree is fully eliminated.

4.1 Statements of the Algorithm for Single Optimum Solution
We have developed and implemented a Branch and Bound algorithm which finds a single
optimum solution. This algorithm uses the sparse simplex solver FortLP to process the LP
relaxed subproblems. The algorithm first finds an integer feasible solution and then continues
the tree search to find a better integer solution or prove the optimality of the current integer
solution. For a detailed discussion of the algorithm see Mitra (1976), Mitra (1973),
Benichou (1971), and Beale (1968). The steps of the algorithm can be stated as follows:
(0) INITIAL STEP: If an optimum solution to the LP problem does not exist Exit, else
check the integer feasibility, if integer feasible Exit, else set the best integer solution value
(RIPBST) to a large negative value, prepare a space for the list (stack) of subproblems of the
search tree and continue.

 Page 13
(i) BRANCHING: Take a violated global entity from a current node Pk, create the two
appropriate sub-problems, Pk+1 and Pk+2, add them to the list of subproblems (see diagram
4.1) and store the associated basis
(ii) SELECTION: If the list of sub-problems is empty Exit, else select and remove a sub-
problem from the list by node choice criterion.
(iii) SOLVING: Starting from a stored basis solve the selected sub-problem using a simplex
algorithm. If the algorithm used is of the dual type the sub-problem may be discontinued
should its objective function value become less than or equal to Max (RIPBST); in this case
go to (ii).
(iv) BOUNDING: If the sub-problem has no feasible solution go to (ii). If the objective
function value is less than or equal to Max (RIPBST) go to (ii). If the solution meets all
conditions of discreteness (3.13), of the sets and variables go to (v). Otherwise go to (i).
(v) Integer Solution: Set integer solution marker. If objective function value of this integer
solution is equal to the original LP solution, Exit, else if x is greater than Max (RIPBST),
up date the Max (RIPBST) Go to (ii).
If the integer solution marker is not set to any integer feasible solution and the list is empty
then no feasible (integer) solution exists to the problem. Otherwise output the best integer
solution.

Diagram 4.1

Page 14
4.2 Dealing With Different Classes of Variables.
A discrete programming problem as set out in section 2 is a problem which contains a
number of discrete variables and set variables (generally global entities). If during the tree
search the discreteness conditions of any discrete variable or set variables are not satisfied
for a given subproblem, then the corresponding problem is analysed to choose a suitable
unsatisfied global entity. Based on the result of this analysis two subproblems are proposed.
The methods of dealing with different types of global entities are described in sections 4.3
to 4.7.

4.3 Zero-One and General Integer Variables.
The zero-one variables can be dealt with by generating two new sub-problems, setting the
chosen variable to value 0.0 in one sub-problem and 1.0 in the other.

In the case of a general integer variable taking a non-integer value xk= [āk0] + fk’ [āk0]≡ 0

mod(l) and 0< fk < 1 in the linear programming relaxation solution of a sub-problem. We

create two sub-problems with new lower and upper bounds xk ≥ [āk0] + 1 and xk ≤ [āk0].

4.4 Semi Continuous Variables.
Let xj be an semi continuous (variable upper bound) variable. It is easily seen from the
definition of an semi continuous variable (section 2) that in any of the following cases the
semi continuous requirements is not satisfied.

or
Case i) 0 < xj < lj,

Case ii) uj < xj

where lj and uj are the (conditional) lower and upper bound respectively. Case (ii) does not
occur because the upper bound is imposed on the original LPR. If xj is in the first range

Page 15

case i) then, the semi continuous requirement is not satisfied and two new sub-problems are
defined by setting the xj = 0 in one and updating the lower .bound to lj’ in the other
(diagram 4.2),

 Diagram 4.2
4.5 Special Or dered Sets of Type One

Special ordered set of type one is a set of variables in which only one variable can take a
value different from its lower bound typically zero see (section 2).
Consider the subproblem Pk which contains a special ordered set of type one (say N6l) for

which Xj’ . . . ,Xj+p Are the corresponding set variables, that is, j,...,j+p ∈ N 6l . If in the

optimum solution to Pk, the values of the set variables violate the special ordered set of type
one requirement then two new subproblems are generated in the following way (diagram
4.3).

Find an index d, j ≤ d ≤ j + p (methods of finding index d are discussed later in this

chapter), and construct two subproblems Pk+1’ P k+2 where,

Pk+1
: Same as Pk Pk+2

: Same as PK

and xk = 0 for d +1 ≤ k ≤ j + p and xk = 0 for j ≤ k ≤ d

Page 16

 Diagram 4.3

4.6 Special Ordered Sets of TypeTwo.
Similarly consider subproblem Pk, which contains a special ordered set of type two (say N7k)

for which Xj,...,Xj+p Are the corresponding members of the set variables that is, j,...j+p ∈

N7k. If the solution values of these variables contain more than two nonzeros or there are two

Page 17
nonzero set variables which are not adjacent then, two new subproblems are generated in the
following way (diagram 4.4).

Find an index d, j ≤ d ≤ j+p, (methods of finding index d are discussed later in this , j ≤ d ≤ j+p,

chapter), and construct two subproblems Pk+1’ Pk+2 (diagram4.4) where,

Pk+1: Same as Pk Pk+2: Same as Pk

and xk = 0 for d + l ≤ k ≤ j + p and xk = 0 for j≤k≤d-l

 Diagram 4.4

Page 18
4.7 Method of Partitioning Special Ordered Sets

A natural method for partitioning set variables which do not satisfy set conditions can be
developed by using weighted average of their values in the following way (Tomlin 70). Let
wj be the weight associated with variables xj, j∈ N6l or j ∈ N7k. These weights can be the
coefficients of variables in the reference row (if one exists) of the set, that is, wj = aij where
i is the index of the reference row of the set and j is the index number of the members of the
set. If there is no reference row present, since the ordering of the set is defined implicitly
within the problem then, one can simply consider the index number of each variable as its
weight that is, wj = j.

The weighted average of these variables is given by the expression,

∑∑
∈∈

=
sjsj

xxw jjj ˆ/ˆw
_

, where, s≡N6l or s≡N7k, (4.1)

The index d can be considered to be the partition indicator and is defined by the relation

 wd ≤ < w
_

w d+1
(4.2)

Choosing the biggest nonzero variable in a set as the marker can be another simple way of
partitioning a set.

Page 19
5. Tree Search Strategies.
The number of sub-problems which must be searched and solved is dependent on the variable
and node choice strategies. Experiences with real life integer test problems indicate that
applying a given branch and bound search strategy on different classes of integer programs
lead to unpredictable results. For a given problem class, it is well known that a suitably
tuned search heuristic of variable branching and node choice rules can often produce good
discrete solution within a relatively small search tree. A variety of these methods has been
investigated by researchers since the early 70s but none of these have shown dominating
performance results and has become established as a standard technique. Therefore a discrete
programming system which can provide a range of options for the variable and node choice
is well suited for the investigation of different classes of integer programming applications.

5.1 Methods of Choosing an unsatisfied Global Entity
Choosing a global entity from the set of unsatisfied discrete variables and sets is an important
step of the branch and bound procedure. This is because the choice of a less effective
variable (global entity) can increase the size and complexity of the search tree with little
progress towards finding the optimum solution.

The importance of this issue was observed by Land and Doig (1960) who first introduced the
tree search algorithm to solve the discrete programming problems. Since then some of the
researchers on this subject Beale (1965), Tomlin (1970), Benichou (1970), Mitra (1973),
Gauthier (1977) and Beale (1985) have proposed different strategies for choosing the
branching variable in order to reduce the size of the search tree.
In general these rules determine a ranked order (or priorities) for the global entities and

Page 20
thereby identifies the branching variable or set of variables. If these rules lead to the same
order of priority for the global entities during the search then these rules are considered to
be static. On the other hand, if they lead to different orders of priority during the search then
they are dynamic. The static priority orders are applied
a) when priorities are given by the modeller,
b) when priority order is computed from the deterioration of the functional value
measured
by pseudo-costs, and
c) by computing a decreasing order of absolute cost values of the discrete variables.
In contrast the dynamic priority orders can be determined by:
d) maximum fractional values of global entities at each node,
e) minimum fractional values of global entities at each node,
f) using the measure of non-discreteness for all global entities (see section 5.3), and
g) estimates of objective function value at each node for changing the bound on unsatisfied
integer variables.
These estimates are obtained by alternative methods of penalty and bound calculations.

Let J be the set of indices of the non-basic variables such that if xj is a non-basic variable

then j∈J and let I be the set of the basic variables such that if xj is a basic variable i∈I.

Now consider, the optimal solution of the 1th sub-problem represented as, Tomlin (1970),

where x0 =ā00 s the optimum (maximum) objective function value. If the solution is not

integer feasible then there are one or more global entities with unsatisfied discrete

Ii
Jj

’)(-xa ax
Jj

)(-xa ax

jiji0

j0j000

∈∀

∑
∈

+=

∑
∈

+=

i

Page 21

requirements. For example, consider xk to be an integer variable with a non-integer value:
(5.1)

kfkkxkakx +β== ’0 ’ kfand] kak 100[<+<=β

Land (1960), suggested that the most computationally convenient criterion for choice of the

branching variable is to select a variable which is farthest from an integer, that is find an xj

such that,
 Max min {1 -fj’fj}’ j∈ N3U N4 (5.2)
 j

In some circumstances, one may choose a variable Xj which is closest to an integer such that,

Min min {1 - fj , fj} , j∈N3UN4 (5.3)

Beale (1965), introduced penalties as a criterion to choose the branching variable. These
penalties are considered to be the deterioration of the objective function in one dual step due
to the imposition of the new lower or upper bound on a variable.
The variable with the largest penalty is chosen and is used to generate two new sub-
problems, one with the new lower bound of βk + 1.0 and the other with the new upper
bound of βk on the variable xk.

From the theory of cost ranging the imposition of the new lower bound βk + 1.0 on xk must
decrease the objective function x0 by the ’up penalty’ PU;

{ })/(0)1(min
0kj,j

kjajak0fUP
a

−
<

 (5.4)

similarly the ’down penalty’ or change of the objective function value by placing an upper
bound βk on xk is given by PD;

}/00{
0,

min
kjajakfkjaj

PD
>

= (5.4)

Tomlin (1970) argues that because the penalties introduced previously are entirely based on
the satisfaction of integer requirement of the basic variables and there may be some integer

 Page 22
Variables which are currently satisfied by being out of basis at their presumably integer upper
or lower bounds, no use is made of the fact that this requirement* must be maintained when
calculating the penalties. Therefore stronger penalties were introduced by considering
separately the non-basic integer variables and the effect of changing their values by integer
quantities. These penalties replace the above up and down penalties respectively;

0kjaj
*P

p
min=

U

Jj a- /f- a’ amax

Jj)afa

kjp00j0j

kjk00j

∈

∉−

)}()(1{

/()1(−
 (5.5)

Jj a-/fa’ amax

Jj)afa

kjp00j0j

kjk00j

∈

∉−

}({

/()
 (5.6) 0kjaj

*P
f

min=
D

where J is the set of non-basic integer variables.

Although these penalties are clearly stronger than PU (5.3) and PD (5.4) but, they can be still
sharpened by considering the Gomory’s mixed integer cutting plane algorithm Gomory
(1960). Consider a non-integer value of an integer variable xk (5.2), the following
supplementary constraint must be satisfied by any integer solution obtained from the current

subproblem: ∑ ≥−−−=
j

0)(
jpjk

x*ffs

where,

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

−

=

))/(1(1

/(1(kf

kf-pjf-kf

pjf

fk)-)pja

pja

pj*f

Jj and f if
Jj andf if

Jj anda if
Jj anda if

pj

pj

pj

pj

∉>

∉≤

∉<

∉≥

k

k
f
f
0
0

 (5.7)

and fpj is the fractional part of a pj

Page 23

This currently unsatisfied constraint must be satisfied in any integer solution attainable from
the current problem by dual simplex method. It may be observed* that the penalty for doing
so is at least

}{
pjojk

j
G

*f / a fmin p = (5.8)

Benichou (1970) introduced Pseudo Costs. The concept of pseudo cost was presented to
measure in a quantitative way the importance of the integer variables and to forecast the
deterioration of the functional value when forcing an integer variable from a non integer to
an integer value. Two quantities are attached to each integer variable xj’ they are called lower
(PCLj) and upper (PCUj) pseudo cost. At the beginning of the search pseudo costs are
generally not known, but they can be computed during tree scanning as follows:

f
k

j

FF

j
PCU

f
k

j

FF
kk

j
kkPCL

−

−
=

−
++=

1

’ 21

where F k is the functional value of node k, and
its successors.

 are the functional values of

These pseudo costs appear to be the deterioration of the functional value per unit of change
in xj one corresponding to a decrease and the other to an increase in xj. Values of the pseudo
cost of xj depend on the node where they are computed. Although the value of the pseudo
cost of xj varies from node to node, Benichou (1970) say that they have the same order of
magnitude in the most cases and therefore, they are assumed to be constant throughout the
tree search. The disadvantage of this method is that at the beginning of the search pseudo
costs are not known and one has to compute them after the exploring the node with the
chosen variable xj. To overcome this difficulty, Gauthier (1975) suggests the optimization of

k+1’ and F k+2 F

Page 24

the dummy subproblems at the beginning of the search for calculating the pseudo costs of
each integer variable. The full optimisation of a dummy subproblem can take a large number
of iterations therefore, some rules have been defined to stop the optimisation and use the
premature solution to calculate the pseudo costs.

Beale (1985) contends that the above penalties are not always useful because many practical
problems often happen to have several non-basic integer variables with zero reduced costs.
Therefore, estimates which can be derived by a natural way based on the- Lagrangian
relaxation discussed in Geofrrion (1974), may be more efficient towards finding the optimum
solution. In the course of the tree search consider a subproblem stated as,

max x0
subject to:

 x + ∑ a0 0j xj = b0
 ∀j

 ∑ aij xj = bi ∀I,j

 (5.12)
 (5

 ∀j
 lj ≤ xj ≤ uj for some j

When considering the effect of imposing a change on the value of some integer variable xk,
it is natural to rewrite the constraints with this variable on the right hand side,

max x0

subject to:
 x + ∑ a0 0j xj = b0 - a0k xk j≠k

 ∑ aij xj = bi - aikxk ∀i (5.13)
 j≠k

 lj ≤ xj ≤ uj for some j

If one decreases each bi by di=aik(l-fk) simultaneously then, increasing the trial value of xk

by (1-fk) dose not change the value of x0 or any other variable. The same argument applies

Page 25

to decreasing xk by fk if, one considers di = - aikfk.

Therefore, to evaluate the effect of changing xk, the value of this variable is assumed to be
constant while decreasing each bi by di, for all rows. If π i denotes the shadow price, or
Lagrangian multiplier, on the ith row, then if all di were small the original LP optimum

functional value would be degraded by ∑πixi

We then compute shadow prices πi such that

the optimum solution to the sub-problem:

maximizes x0
subject to:

 for some j
jujxjl

i
iijiji bxax

j i

≤≤

∑∑∑ =+
−

ππ)(0

where π0=1.
The degradation Σπixi is not often a realistic estimate of degradation D, but it defines a
guaranteed lower bound. Note that Σπixi =0 if xk is a basic variable.
An upper bound on the degradation can be defined in terms of minimum and maximum
shadow prices πMINi and πMAXi. Brearley et al (1975) show how to derive these bounds. In
particular, note that, πMIN0 = πMAX0=1 and πMINi is greater than or equal to zero if the ith row
is a less-than-or-equal-to type.
Therefore, D=∑πi di + ri Where;
 i

 { 0fordd})iimin),|{|max(

0fordd})imax,|{|min(

iiii

iiii

<θ+π

>θ+π

π−π

π−π

and θ is a small positive tolerance. The explanation of using this tolerance in the formulae
can be found in Beale (1985).

Page 26

Since the value of D is dependent on value di and di is dependent on the direction of

branching, two degradations can easily be estimated for each variable:
 one from deriving the variable down to the integer part of its current value,
 and the other from deriving it up to this number plus one.

The largest estimated degradation may be used as a criterion for variable choice. There are
some cases in which the formulator of the model can assess the relative importance of the
variables. These degrees of importance can then be assigned as the priorities-and then the
branching can take place according to the variable with the highest priority.

Page 27
5.2 Node Choice
Likewise the variable choice discussed in section (5.1), choosing a subproblem from the list
of unexplored subproblems is another important decision in the tree search method for
solving an integer programming problem.
In the early Branch and Bound codes, the selection of the branching variable and the
Selection of the next subproblem to solve were considered together. For instance a well
Adopted methods was to branch on the variable with the greatest penalty and investigate the
Branch in the other direction, Direbeek (1966), Beale and Small (1965).

However, many alternatives have been suggested since then to consider the node
(subproblem) selection separately, Tomlin (1970), Mitra (1973), Gauthier (1976) and Beale
(1985). In principle the node choice may be considered to be separate from the variable
choice criterion. But not all such choices can be carried out independently of the information
provided by the variable choice procedure. In a Branch and Bound code applying some of
these rules are subject to availability of the information for example, an integer feasible
solution and pseudo costs of integer variables.

The strategies which are long established in the literature and in practice are summarized
below,

i) Last In First Out (LIFO) or, Depth First,
this is to select the last subproblem created provided that the upper bound on the objective
function of this subproblem dose not exceed the value of RIPBST (in this case delete the
subproblem from the list) otherwise, the most recently created subproblem with a bound that
is better than RIPBST is selected. This strategy minimises the number of subproblems in the

Page 28

list at any time. It also allows the subproblems in the list to be stored sequentially, which
makes a fast access to the stack.
(ii) Choose a node by using Best Projection (BP) criterion due to Hirst (1969).
The BP criterion is to choose a node which maximises CBk where,

 CBk = (Fk/π) - (F0 - M(I))(Sk/S0).

In this formulation Sk = Σ min{ fj, (1-fj)} is a measure of integer infeasibility of the solution

at node k, π is a user assigned parameter Mitra (1973), M(I) is a bound assigned to LP
relaxed problem, and Fk is the objective function value of node k.
iii) Estimations of the integer solution values for each node due to Forrest et al (1974).
Choose a node which has the best estimated solution. There are different methods to estimate
the solution value of a node, in general Ek the estimation of node k is given by the
expression,

 Ek = F(k-1) + ΣDj , j ∈ {j | xj
 unsatisfied global entity }

where, Dj = min {DUj , DLj}, DUj and DLj a re the degradations of the objective function

value of node k, for assigning new lower and upper bounds to variable xj respectively. It is
obvious that the accuracy of this estimation depends on the accuracy of the degradation
values. These degradation values can be derived by, a) calculation of pseudo cost of integer
variables due to Gauthier (1977), b) calculation of penalties due to Tomlin (1970), and
c) calculating pseudo shadow costs due to Beale (1985).
vi) Percentage error criterion due to Forrest et al (1974),
This is to choose a node with the smallest percentage error, P.E..

FF
EF
best1

best PE
k

k

k
}

−
−

=
−

 {min

Page 29

Where Fbest is the best integer solution objective function value found so far and Ek is the
estimation of the integer solution value at node k, gained by summing the estimated cost per
unit change of the unsatisfied discrete variables.

5.3 Measure of Non-Discreteness
Integer infeasibility measure is used in most of the variable and node choice strategies
adopted in Branch and Bound methods. The measure of integer infeasibility for a binary or
general integer variable xj in the solution of a given subproblem is often shown by tj where,

tj = min {fj , (1-fj)},

and fj is the fractional part of the solution value of the variable xj (see section 5.1).

In an extended Branch and Bound algorithm for solving discrete programming problems with
semi continuous and SOS type variables, some measure comparable to this integer
infeasibility measure needs to be defined for these types of variables and sets .

An unsatisfied semi continuous variable xj with solution value of, 0 < xj < lj in a given sub-

problem has,

 tj = min {xj/lj , l-(xj/lj)}.

In the case of special ordered sets some analogy has been given by Forrest (1974), using the

general upper bound of the convexity row ∑xj=1, that is,

 tl = 1 - max(xj), j ∈ N6l

for special ordered sets of type one and similarly,

Page 30

tk = 1 - max(xj), j ∈ N6k

for special ordered sets of type two.
The above expressions defined for special ordered sets do not properly reflect a discreteness
measure since it is by no means certain that, the largest variable (or sum of adjacent
variables) in a set on any branch will become unity in any feasible solution.

We have therefore introduced the following measure for an unsatisfied special ordered set
of type one as,

,
k

t
l

ll
l ρ

−
=
ι

where,
ll is the indexof the last nonzero in the set l,
kl is the first nonzero index in the set l, and

l is the number of variables in the set l. ρ

Similarly for an unsatisfied special ordered set of type two, this measure is,

},1
1k

,0max{t
−

−−
=

ι
k

k ρ
kk

When the type one and type two sets conditions are satisfied tl , tk assume zero values.

Otherwise 0< tl ,tk < 1 compare with the fractional values of zero-one integer variables.

These measures can be also used for calculating the sum of fractions or integer infeasibility

of a subproblem.

Page 31
5.4 Bounding the Tree Search

Once an integer solution x0c (the objective function value of the incumbent) has been
obtained, it can be used to restrict the tree search in the following way.
A subproblem can be set to terminal (leaf) node of the tree and excluded from the further
expansion by one of the following conditions:
i) eliminate a subproblem k with the upper bound value of Uk from the further expansion if

Uk ≤ x0C.
ii) If a dual method is used to solve a subproblem then it always provides an upper bound
on the objective function value of the subproblem after the dual feasibility is gained. If this

upper bound Uk, reaches or passes the incumbent value (Uk ≤ x0C), then the dual iteration

can be abandoned together with the subproblem (node).
iii) If there is no feasible solution to the subproblem then again it can be abandoned.

Postponement of a Node in the Tree Search

The Lagrangean Relaxation method first proposed by Geoffrion (1974), often provides a good

bound estimate for the objective function of the integer solution that may be found at a given
node. Let Ek denote such a bound estimate for the kth node. In theses cases if Ek < x0C then
the search beyond node k can be postponed. This postponement strategy suggested by Beale
(1985), can also influence the size of the search tree.

5.5 The Generalized Tree Search Strategies.
Experiments on real life test problems using different strategies show that each individual
strategy behaves differently on different test problems and therefore, it is worthwhile to have
a system which supports different strategies for the users.
In principle the node choice may be considered separately from the variable choice criterion.

Page 32

But not all such choices can be carried out independently of the information provided by the

variable choice procedure. In a Branch and Bound code applying some of these rules is

subject to the availability of the information such as integer feasible solution and pseudo costs

of integer variables.

A complete tree search strategy STR(V,N) is defined by a unique combination V,N of

variable and node choice rules where, V ∈ {VC1 ,..,VC6}, N ∈ {NCl ,..., NC6 } ’ and

NC1: Last in first out (LIFO) VC1: Maximum Fraction

NC2: BP Criterion VC2: Minimum Fraction

NC3: Node Estimation using Penalties

NC4: Node Estimation using Pseudo-Costs

VC3: Minimum Pseudo-Cost
VC4: Estimated Degradation

NC5: Node Estimation using Pseudo Shadow Costs VC5: Minimum Penalty

NC6: Percentage Error Criterion VC6: Given Priority Order

The table below shows the possible combinations of node and variable choices:

 VC1 VC2 VC3 VC4 VC5 VC6

NC1 √ √ √ √ √ √

NC2 √ √ √ √ √ √
NC3 √ √ √

NC4 √ √ √
NC5 √ √ √
NC6 √ √ √

 Table5.1
We observe that the combination of some strategies are not included, as they require an

Excessive amount of computational effort.

Page 33

6. Data Structures for representing Discrete variables, Set variables and the Branch and
Bound Tree.
6.1 Data Structure for Representing Discrete and Set variables
In order to introduce discrete and set variables into our linear programming optimiser,
FortLP, the existing data structure has been extended in the following way.
FortLP data structure uses a sparse column storage scheme which is described by
Tamiz(1986). The following diagram gives the representation of the column j of the A
matrix in a compact form,
 Column(j)

→PNCOLP(j)
ICLCOD

PRUPVA

NONZER

. . .

IROW(i)

. . .

. . .

PLXT(i)

. . .

Diagram 6.1 - Data Structure for representing Discrete variables

where,
PNCOLP(j), is the pointer to the beginning of column j of the A matrix,
ICLCOD, is the column code,
PRUPVA, is the pointer to the upper bound value,
NONZER, is the number of non-zero entries in column j,
IROW(i), is the row position of th e ith non-zero entry in column j, and
PLXT(i), is the address in the distinct non-zero pool of its corresponding value.

ICLCOD was originally used to identify ordinary, bounded, and fixed variables. Here we

extend ICLCOD to define binary, general integer, and semi-continuous variables as well as

ordinary, bounded, and fixed variables. The lower bound on continuous and semi-continuous

Page 34

variables are stored separately in an array called RLOFXV(NCOL).

To represent the variables of a given SOS1 or SOS2 the following items of information are
introduced. The first column SETBEG, the last column SETEND, the reference row
REFROW, the convexity row CONROW, and the function row FUNROW. In order to
incorporate this information into FortLP, a compatible data structure is introduced which
extends the existing data structure such that two new locations added to the end of each
packed column belonging to a given set. The first location SETNTP presents the set number
and type (if negative then SOS1 otherwise SOS2), and the second location SOLVAL presents
the current solution value of the column. These solution values are refreshed during the tree
development process by storing this information with the column, the average weighted
reference row value is easily computed and utilised in the partitioning of the set. The pointers
and the contents of the storage structure are displayed in diagram 6.2.

6.2 Data structure for representing the Search Tree

The stages of Branch and Bound algorithm are conceptually represented as a search tree in
which each node of the tree represents a subproblem. The root of the tree corresponds to the
original linear programming relaxation of the problem. When any node or subproblem is
explored, either two new branches with corresponding sub-problems are created from it or
the node is bounded from further expansion (see section 5.4). In either case the processed
node is eliminated from the list of unexplored subproblems. Therefore, only the alternative
subproblems (unexplored nodes) which need to be solved are stored. It is easily seen that the
information concerning the leaf nodes of the tree are sufficient to represent the entire search

Page 35

PACKED
COLUMN

SETNTP

SOLVAL

 xj

SETBEG

SETEND

REFROW

PACKED
COLUMN

SETNTP

SOLVAL

CONROW

FUNROW

j,...,j+p are the indices of the
variables in the set k

 Diagram 6.2 - Data structure for representing the kth Special Ordered Set

tree. Following the sequence in which the leaf nodes are generated, they are put in a list
linearly, overwriting a processed node when appropriate. This data structure is well known
as the stack mechanism.

In defining the subproblem only the bound information are altered thus, size of the linear
programming subproblems are constant . From the point of view of storage it is a
considerable advantage that the A matrix is stored only once.
In this approach, only the differences between the parent and the subproblem need to be
stored. These differences are in the bounds on the discrete variables, the upper bound on the
objective function value, some estimate of the objective function value and the optimum basis
parent from which the new subproblem is generated. The storage requirement for

representing a node may be computed in the following way.

xj+p

kth
Set

Page 36
Let,

NCOL be the number of columns, and
MROW be the number of rows of a model including the objective function.

For each node we store the following vector array,
ICOLPT(NCOL), the array of pointers to star of each column, INTEGER*4,
ICOLBT(NCOL), the array of column types, this covers binary, general integer and

 semi-continuous variables, INTEGER*2,
ICOLVP(NCOL),the array of pointers to the current bound values, INTEGER*2,and
IBSIND(MROW), the array of basic columns for the node, INTEGER*4.

We also store the following scaler information for each node,

PARNOD, the parent node number,
IDEPTH, the depth of the node in the tree,
SUMINF, the non-discreteness measure of the node,
NONDIS, the number of unsatisfied discrete variables and sets,
RPAROB, the upper bound on the objective function value of the node,
RESTIM, an estimate of the integer feasible solution deriving from the node,
VARCHO, the chosen branching variable or set variables marker, and
SETCHO, the set chosen for branching.

Diagram 6.3 contains an explanation of the storage structure.

The storage requirement S to represent a node is computed as,

 S (full word) = 2*NCOL + MROW + 8,

And the total storage requirement TS is equal to,

 TS = S*MAXSTK,

where MAXSTK is the user assigned parameter for the maximum number of waiting nodes

(stack).

If the problem size is large and the total storage requirement TS is larger than the available

Page 37

NODE
K

PARNOD

I*4 IBSIND MROW

<—————

STACKPT

NODE
K+l

NODE
K+2

NEW
STACKPT
<————

Note that, by the stack mechanism node k is overwritten by node k + l followed by
 k+2 which extends the stack.
Diagram 6.3 – Illustrates the Node Representation.

memory then this information is stored in a direct access file. The list of unexplored node
is stored in an array with MAXSTK size which provides the pointers to the beginning of each
node where is kept or gives the record number on the file.

PARNO
D

I*4 IBSIND MRO

PARNOD -

IDEPTH -

SUMIN
F
NONDI
S
RPARO
B
RESTIM

VARCHO

SETCH
O

I*4 ICOLPT NCOL

I*2 ICOLBT NCOL

I*2 ICOLVP NCOL

I*4 IBSIND MROW

p
k

P P
k+1 k+2

 Page 38
7. Experimental Results.

As a part of our investigation a number of test problems were collected. These test problems
are listed in appendix 2 of this report. Majority of these test problems are real life models
which arise in different application covering many industry sectors and MIPLIB (Mixed
Integer Programming Library of test problems). Given the wide range of problem types and
fairly erratic behaviour of search trees, we have decided to investigate only six strategies
(table 7.1) out of twenty four possible strategies (table (5.1) over a number of models listed
in table 7.2.

The preliminary investigation of other strategies over a few chosen test problems showed a
wide variation of the search tree.

Variable Choice Strategy (VARCHO)

VARCHO= 1

VC1 Minimum Fraction, (Minmin)

 2

VC2 Maximum Fraction, (Minmax)

 3

VC3 Given Priority Order

 NODE Choice Strategy (FNODCH & SNODCH)

FNODCH& 1
SNODCH

NC1
 Last In First Out, (LIFO)

 2 NC2 ~ Extended Last In First Out, (E-LIFO)

 3 NC3 Best Projection, (BP)

 ~ NC2: an extended LIFO criterion which first fixes the chosen variable to the integer value farthest from its fractional value and
 then process the corresponding node.
 Table 7.1 - Explanations of VC# and NC#

Table 7.2 represents the list of chosen models and includes the following items of
information:-

NAME - name of the problem
ROWS - number of constraints in the problem, not including free rows

Page 39
COLS - total number of variables in the problem
BV - number of variables that are binary
UI - number of general integer variables
SC - number of semi-continuous variables
S1, S2 - number of special ordered sets of type one and two
IP obj. - Optimum integer solution to the problem,
LP obj. - optimal solution to the linear relaxation of the problem

 NAME ROWS COLS BV UI SC S1 S2 IP obj. LP obj.

MODGLOB 291 422 98 --- --- --- --- 20740508.0 20430947.0

EGOUT 98 141 55 --- --- --- --- 568.10 149.58

KHB05250 101 1350 24 --- --- --- --- 106940226.0 95919464.0

FIXNET3 478 878 378 --- --- --- --- 51973.0 40717.01 -

P0040 23 40 40 --- --- --- --- 62027.0 61796.5

P0201 133 201 201 --- --- --- --- 7615.0 6875.0

P0291 252 291 291 --- --- --- --- 5223.7 1705.1

MAT3B 96 710 10 --- --- 70 --- 72023.76 60728.3

PROBLEM 1 534 632 7 1 --- 2 1 53.36 54.40

PROBLEM 2 652 643 18 1 --- 2 1 53.36 54.40

MOZIGEN 11 19 1 1 1 2 1 95.16 93.43

BEALE 171 303 38 --- --- 11 --- 100.00 100.00

S2MATRIX 51 450 — — --- --- 25 157.9 225.88

GAS1 211 75 12 --- --- --- --- -6.65 -6.79

MICHSC 90 127 64 --- 63 --- --- 5177.8 5167.0

HYPERPL 128 68 63 --- --- --- --- 1336.5 333.33

AIR02 50 6774 6774 --- --- --- --- 7810.0 7640.0

STEIN 15 36 15 15 --- --- --- --- 9.0 7.0

GRAY2IN 35 48 24 --- --- --- --- 202.3 185.5

SAMPLE2 46 67 21 --- --- --- --- 375.0 247.0
GRAY9IN 63 96 48 --- --- --- --- 280.95 256.01

Table 7 . 2 - Model statistics

 Page 40
The experimental results for these test problems are presented in tables 7.3 to 7.8. In these
tables of test results we have decided not to include time taken for solving these problems
since the performance of different Branch and Bound algorithms are closely connected with
the number of sub-problems (nodes) which are proposed and investigated by the search.

The first row of these tables indicates the strategy used for solving the problems, (NC#,
VC#). Column marked with "Name" gives the name of the models. Columns marked with
"First Integer Solution", present the number of nodes processed to find the first integer
solution and the corresponding solution. Similarly columns with the heading "Best Integer
Solution" present the Best integer solution found so far. Number of integer solutions found
during the course of a search is reported in a column with the heading "no. of int. feas sols".
Finally, we report the total no of nodes investigated in the column marked "Total no. of
nodes".

Page 41

column with the heading "no. of int. feas sols". Finally, we report the total no of nodes

investigated in the column marked "Total no.of nodes".

 Search Strategy, STR (NC1, VC1)

First Integer Solution Best Integer Solution
Name

no. nodes obj. value no. nodes obj. value

no. of
int feas
 sols.

Total,
no. of
nodes

MODGLOB 98 36180511.5 46967 ~ 26467978.1 184 49801

EGOUT 94 626.8 1333 568.1 12 5240

KHB05250 23 108684849.0 15769 106940226.0 6 24388

FIXNET3 183 100073.1 45849 ~ 61986.0 94 49801

P0040 2 62166.0 8 62027.0 3 144

P0201 19 8635.6 533 7615.0 9 4558

P0291 16 25964.4 614 5223.7 15 2164

MAT3B 627 85857.0 33583 ~ 81807.0 43 49801

PROBLEM 1 7 48.98 35 53.36 6 36

PROBLEM2 6 48.98 39 53.36 7 40

MOZIGEN 5 111.5 9 95.16 3 12

BEALE 528 100.0 528 100.0 1 528

S2MATRIX 38 157.9 36838 157.9 5 40301

GAS1 9 -6.22 39 -6.65 4 40

MICHSC 43 5241.27 4137 5177.8 24 4800

HYPERPL 207 1336.5 207 1336.5 1 300

AIR02 19 7984.0 49 7810.0 3 58

STEIN15 6 9.0 6 9.00 1 300

GRAY2IN 16 238.89 134 203.34 9 162

SAMPLE2 21 445.0 196 375.0 3 380

GRAY9IN 12 285.74 683 280.94 7 782

 Table 7.3 - LIFO and Minmin

Page 42

In the following tables solutions marked with the sign “ ~ ”are the best (not necessarily

optimal) integer solutions found during the course of a search. We could not terminate the

search due to a long performance time or lack of space for storing the sub-problems.

Search Strategy, STR(NC1, VC2)

First Integer Solution Best Integer Solution
Name

no. nodes obj. value no. nodes obj. value

no. of
 int feas

 sols.

Total,
no. of
nodes

MODGLOB 41 29764906.2 30326 ~ 26007495.0 336 49801

EGOUT 94 670.0 10046 568.1 20 26236

KHB05250 19 111632934.0 10002 106940226.0 9 13524

FIXNET3 180 232184.7 10119~ 208771.7 86 49801

P0040 11 62597.0 56 62027.0 8 120

P0201 18 8595.0 219 7615.0 13 938

P0291 36 16342.8 43131~ 14905.0 8 49801

MAT3B 125 82705.0 39681~ 78855.0 14 49801

PROBLEM 1 7 48.98 27 53.36 6 28

PROBLEM2 6 48.98 35 53.36 7 36

MOZIGEN 7 111.5 9 95.16 3 12

BEALE 28 100.0 28 100.0 1 28

S2MATRIX 38 157.9 38 157.9 1 36050

GAS1 2 -6.65 2 -6.65 1 12

MICHSC 80 5308.4 29855~ 5279.1 8 49801

HYPERPL 105 1336.5 105 1336.5 1 132

AIR02 13 26740.0 921 7810.0 8 922

STEIN 15 6 9.0 6 9.0 1 264

GRAY2IN 9 232.9 101 202.34 4 142

SAMPLE2 43 565.0 297 375.0 7 404

GRAY9IN
17 371.3 368 280.9 17 1044

Table 7.4 - LIFO and Minmax

 Page 43

In our investigation of the LIFO criterion we have set the maximum number of nodes

to 49801 and for the BP criterion we have set the maximum number of nodes to 9980 since

BP criterion creates a bushier tree than LIFO and requires more storage.

Search Strategy, STR(NC2, VCl)

First Integer Solution Best Integer Solution Name
 no. nodes obj. value no. nodes obj. value

no. of
int feas

sols.

Total.
no. of
nodes

MODGLOB 35 20880067.2 30204 20740508.0 13 35288

EGOUT 39 601.4 5470 568.1 9 8300

KHB05250 21 129159364.0 17783~ 114538541.0 66 49801

FIXNET3 105 86408.0 12503 ~ 80309.0 13 49801

P0040 11 62134.0 131 62027.0 4 134

P0201 45 11050.0 15657 7615.0 76 17564

P0291 31 110611.3 46104 5223.0 194 46336

MAT3B — — — — 0 49801

PROBLEM 1 12 -574.33 42 53.36 10 44

PROBLEM2 12 -574.33 64 53.36 11 66

MOZIGEN 3 96.16 7 95.16 3 8

BEALE 17 100.00 17 100.00 1 17

S2MATRIX 38 157.9 38 157.9 1 34060

GAS1 4 -6.49 9 -6.65 2 22

MICHSC 18 5274.5 8260 5177.8 34 8746

HYPERPL 92 1336.5 92 1336.5 1 92

AIR02 3 8026.0 16 7810.0 2 18

STEIN15 6 9.0 6 9.0 1 286

GRAY2IN 11 234.64 224 202.34 9 242

SAMPLE2 13 475.0 119 375.0 4 264

GRAY9IN 7 300.1 331 280.94 9 754

Table 7.5 - E-LIFO and Minmin

Page 44

Search Strategy, STR(NC2, VC2)

First Integer Solution Best Integer Solution
Name

no. nodes obj. value no. nodes obj. value

no. of
int feas

sols.

Total,
no. of
nodes

MODGLOB 45 28971733.9 28365 ~ 20740508.0 12 49801

EGOUT 38 631.5 41519~ 568.4 15 49801

KHB05250 19 122690022.0 5568 106940266.0 21 9566

FIXNET3 59 76085.0 16902~ 60213.0 15 49801

P0040 11 62134.0 91 62027.0 8 110

P0201 50 11370.0 2153 7615.0 33 2520

P0291 25 61361.2 15614~ 41361.0 7 49801

MAT3B 115 81713.0 1603~ 76313.0 71 49801

PROBLEM1 12 -547.3 36 53.36 10 38

PROBLEM2 12 -547.3 40 53.36 11 42

MOZIGEN 3 96.16 7 95.16 3 8

BEALE 22 100.0 22 100.0 1 22

S2MATRIX 39 157.9 39 157.9 1 3805

GAS1 5 -6.31 30 -6.65 3 30

MICHSC 26 5322.7 4616- 5285.92 9 49801

HYPERPL 136 1336.5 136 1336.5 1 140

AIR02 10 9404.0 1805 7810.0 10 4650

STEIN 15 7 9.0 7 9.0 1 262

GRAY2IN 14 222.09 123 202.34 6 160

SAMPLE2 15 415.0 29 375.0 2 234

GRAY9IN 14 340.3 925 280.9 14 1282

Table 7.6 - E-LIFO and Minmax

 Page 45

Search Strategy, STR(NC3, VC1)

First Integer Solution Best Integer Solution
Name

 no. nodes obj. value no. nodes obj. value

no. of
int feas
 sols.

Total.
no. of
nodes

MODGLOB 44 21464525.0 2202~ 20763860.0 21 9980

EGOUT 46 601.44 8559 568.1 9 9250

KHB05250 23 129115788.0 9012~ 116836089.0 50 3980

FIXNET3 70 55845.0 8305~ 55845.0 1 9980

P0040 6 62119.0 27 62027.0 4 134

P0201 29 7735.0 38 7615.0 3 3692

P0291 78 59946.2 5223 5223.74 44 6779

MAT3B 170 79646.0 7806 72023.7 43 9876

PROBLEM 1 24 52.27 36 53.36 4 43

PROBLEM2 24 52.28 36 53.36 5 43

MOZIGEN 4 95.16 4 95.16 1 11

BEALE 1305 100.0 1305 100.0 1 9767

S2MATRIX --- --- --- --- 0 9980

GAS1 5 -6.49 9 -6.65 2 23

MICHSC 918 5209.0 4043 5177.86 12 4171

HYPERPL 280 1336.5 280 1336.5 1 323

AIR02 3 8416.0 29 7810.0 3 47

STEIN 15 9 9.0 9 9.0 1 277

GRAY2IN 10 212.39 166 202.34 5 192

SAMPLE2 20 505.0 293 375.0 5 333

GRAY9IN 19 300.19 168 280.9 7 665

Table 7.7 - BP and Minmin

Page 46

 Search Strategy, STR(NC3, VC2)

First Integer Solution Best Integer Solution
Name

no. nodes obj. value no. nodes obj. value

no. of
int feas

sols.

Total,
no. of
nodes

MODGLOB 31 20751102.1 8243~ 20745508.0 18 9980

EGOUT 39 631.54 672~ 602.32 4 9980

KHB05250 20 116800424.0 5158 106940226.0 13 3322

FIXNET3 59 76085.0 5931~ 75213.0 13 9980

P0040 7 62119.0 68 62027.0 3 122

P0201 18 7805.0 47 7615.0 3 735

P0291 30 35072.0 327 26869.0 3 9980

MAT3B 83 76313.0 4303~ 72986.6 16 9980

PROBLEM 1 24 52.27 34 53.36 4 47

PROBLEM2 24 52.28 34 53.36 4 47

MOZIGEN 4 95.16 4 95.16 1 11

BEALE 1296 100.0 7697~ 100.0 8 9980

S2MATRIX 894 197.3 6305~ 187.9 17 9980

GAS1 6 -6.49 12 -6.65 2 19

MICHSC 14 5189.13 16 5177.8 2 4759

HYPERPL 81 1336.4 81 1336.4 1 134

AIR02 4 26048.0 59 7810.0 4 63

STEIN15 9 9.0 9 9.0 1 273

GRAY2IN 11 224.3 100 202.3 5 145

SAMPLE2 16 415.0 66 375.0 1 235

GRAY9IN 10 298.2 618 280.9 6 1041

 Table 7.8 – BP and Minmax

Page 47

A Discussion of Test Results

In this section we discuss our results reported in the previous section. We have
prepared table (7.9) which presents the best performance and the worst performance of the
strategies used for solving each test problem. We have compiled this table by considering
each test problem and looking up tables (7.3) to (7.8) and extracting the best and the worst
performing heuristics. Our measure of search performance is based on the number of nodes
processed and the difference between the optimal integer solution to the problem and the best
solution found so far.

Table (7.9) together with tables (7.3) to (7.8) demonstrate the erratic behaviour of
different variable choice and node choice criterion. For example problem MODGLOB is
solved only by STR(NC2,VC1) which scores the maximum number of worst performances
(6 cases) in the table. STR(NC3, VC2) seems to produce the best result although it cannot
produce any solution for problem BEALE which was solved by other strategies.

The most difficult problems amongst our test problems are the first four test
problems. This includes FIXNET3 which was not solved by any of the above strategies
however, STR(NC3, VC1) finds a very close integer feasible solution to its integer optimal
solution. The least difficult problem is AIR02 which is a scheduling problem with 6774
binary variables.

Page 48

Worst and Best Performing Strategies

Worst Performance Best Performance
Name

Strategy no. nodes obj. value Strategy no. nodes obj. value

MODGLOB NC1-VC1 46967~ 264679978.0 NC2-VC1 30204 20740508.0

EGOUT NC2-VC2 41519~ 568.4 NC1-VC1 1333 568.1

KHB05250 NC2-VC1 17783~ 114538541.0 NC3-VC2 5158 106940226.0

FIXNET3 NC1-VC2 10119~ 208771.7 NC3-VC1 8305~ 55845.0

P0040 NC2-VC1 131 62027.0 NC1-VC1 8 62027.0

P0201 NC2-VC2 15657 7615.0 NC3-VC1 38 7615.0

P0291 NC2-VC2 15614~ 41361.0 NC1-VC1 614 5223.0

MAT3B NC2-VC1 49801 ~ — NC3-VC1 7806 72023.7

PROBLEM 1 NC2-VC1 42 53.36 NC1-VC2 27 53.36

PROBLEM2 NC2-VC1 64 53.36 NC3-VC2 34 53.36

MOZIGEN NC1-VC2 9 95.16 NC3-VC1 4 95.16

BEALE NC3-VC2 7697~ 100.00 NC2-VC1 17 100.00

S2MATRIX NC3-VC1 9980~ ... NC2-VC2 39 157.9

GAS1 NC1-VC1 39 -6.65 NC1-VC2 2 -6.65

MICHSC NC1-VC2 29855~ 5279.1 NC3-VC2 16 5177.8

HYPERPL NC3-VC1 1280 1336.5 NC3-VC2 81 1336.5

AIR02 NC2-VC2 1850 7810.0 NC2-VC1 16 7810.0

STEIN15 NC3-VC1 9 9.0 NC2-VC2 7 9.0

GRAY2IN NC2-VC1 224 202.34 NC3-VC2 100 203.3

SAMPLE2 NC1-VC2 297 375.0 NC2-VC2 29 375.0

GRAY9IN NC2-VC2 925 280.9 NC3-VC2 168 280.9

Table 6.4.1 - Performance Table

Page 49
8. References
Beale, E.M.L. (1980), "Some Features of Integer Programming in SCICONIC" Special
Issue, Mixed Integer Programming in Mathematical Programming Systems, By: Jackson
R.H.F. and O’Neil R.P., A joint Publication of the Computer Science Technical Section of
ORSA.

Beale, E.M.L., (1970), "Advanced Algorithmic Features for General Mathematical
Programming Systems," Integer and Nonlinear Programming J. Abadie North Holland
P&C.

Beale, E.M.L. (1985), "Integer Programming", NATO ASI Series, VOL.F15, Computational
Mathematical Programming by K. Schittkowski.

Beale, E.M.L. and Forrest, J.J.H., (1976), "Global Optimisation Using Special Ordered
Sets," Mathematical Programming Study, 1976(10), pp 52-69.

Beale, E.M.L. and Tomlin, J.a. (1969), "Special Facilities in a General Mathematical
Programming System for Non-Convex Problems Using Ordered Sets of Variables," Proc.
5th IFORS Conf. (Wiely, Newyork).

Benichou, M., et al., (1971), "Experiments in Mixed-Integer Linear Programming,
Mathematical Programming 1971(1), pp 76-94.

Dantzig, G.B., (1960), "On the Significance of Solving Linear Programming Problems with
Some Integer Variables", Econometrica 28 (1960) 30-44.

Despain G.L., (1980), "Mixed Integer Programming with Honeywell’s MPS," Special Issue,
Mixed Integer Programming in Mathematical Programming Systems, By: Jackson R.H.F. and
O’Neil R.P., A joint Publication of the Computer Science Technical Section of ORSA.

Page 50
Driebeek N.J., (1966), "An Algorithm for the Solution of Mixed Integer Programming
Problems",Management Science 12 (1966) 576-587.

Falk, J.E. and Soland, R.M., (1968), "An Algorithm for Separable Non-Convex
Programming Problems," Research Analysis Corporation, Maclean, Virginia, USA.

Forrest, J.J.H., Hirst, J.P.H., and Tomlin, J. A., (1974), "Practical Solution of Large Mixed
Integer Programming Problems with UMPIRE," Management Science, 20(51, (1974), pp
736-773.

Garfinkel, R.S., Nemhauser, G.L., (1972), "Integer Programming", John Wiley and Sons,
Inc.

Gauthier, J.M. and Ribiere, G., (1977), "Experiments in Mixed Integer Programming Using
Pseudo-Costs," Mathematical Programming, 12(1977), pp 26-47.

Geoffrion, A.M., (1974), "Lagrangian Relaxation for Integer Programming", Mathematical
Programming Study 2 pp 82-114.

Hajian, M., T., (1992), "Investigation of Integer Programming Solution Methods",
PhD thesis, Maths Department, Brunei University (1992).

Hirst, J.P.H., (1969), "Features Required in Branch and Bound Algorithms for Zero-One
Mixed Integer Linear Programming", Privately Circulated Manuscript, December 1969.

Hoffman, K. and Padberg, M., (1984), "LP Based Combinatorial Problem Solving,"
Computational Mathematical Programming, By, Klaus Schittkowski, NATO AS1 Series, Vol.
F15, pp 65-123.

Page 51
Hummeltenberg, W., (1984), "Implementations of Special Ordered Sets in MP Software",
European Journal of Operational Research 17 (1984) 1-15

Ibaraki, T., (1987), "Enumerative Approaches to Combinatorial Optimization", Annals of
Operations Research (1987), Vol(10-11), By, J.C. Baltzer AG Publishing Co.

IBM Corporation, (1991), "Optimisation Subroutine Library, Guide and Reference Release
2", IBM Publication (SC23-0519-02).

Lawler, L.E., Wood, D.E. (1966), "Branch and Bound Methods - A Survey", Operations
Research 14, 699-719.

Little, J.D.C., Murty, K.C., Sweeney, D.W., and Karel, C, (1963), "An Algorithm for
Travelling Salesman Problem", Operations Research 11 pp 972-989.

Miller, C.E., (1963), "The Simplex Method for Local Separable Programming", Recent
Advances in Mathematical Programming, By, R. L. Graves and P. Wolf (Mc Grow Hill),
pp 89-100.

Mitra, G., (1973), "Investigation of Some Branch and Bound Strategies for the Solution of
Mixed Integer Linear Programs," Mathematical Programming 4 (1973), pp 155-170.

Mitra, G., (1976), "Theory and Application of Mathematical Programming", Academic Press
Inc. London

NAG Ltd., (1990), "FortLP, User Guide and Reference Manual", NAG Ltd, Wilkinson
House, Jordan Hill Road, Oxford, U.K.

Nemhauser, G.L., et al, (1989), "Optimization", Handbooks in Operations Research and

 Page 52
Management Science Vol. 1 North-Holland Publishing co.

Nygreen B., (1991), "Branch and Bound with Estimation based on Pseudo Shadow Prices"
Mathematical Programming 59 (1991) 59-69.

Savelsbergh, M.W.P., Sigismondi G.C., Nemhauser G.L., "Functional Description of
MINTO, a Mixed Integer Optimiser", Georgia Institute of Technology, Atlanta, Gorgia
30332.

SCICON Ltd., (1989), "SCICONIC User Guide Version 1.40", Scicon Ltd, Milton Keynes,
U.K.

Tomlin J.A., (1970), "Branch and Bound Methods for Integer and Non-Convex
Programming," Integer and Nonlinear Programming J. Abadie North Holland P&C.

Tamiz, M., (1986), "Design, Implementation and Testing of a General Linear Programming
System Exploiting Sparsity", PhD thesis, Maths Department, Brunei University.

Van Roy, T.J., Wolsey, L.A., (1987), "Solving Mixed Integer Programs by Automatic
Reformulation", Operational Research Vol35 Nol pp 45-57 1987.

Page 53
Appendix 1. Input Data Definition for The General Discrete Programming Problems.

The Input data definition for the general discrete programming problems is shown by an

example, consider the following model,

Min: X0 = 3X1 + 4X2 + 5X3 - X4 + 2X5 + 3X6 + 4X7 + 3X8 + 2X9 + 2X11 + 2X12

 +X13 + 10X14 + 25X15 - 7.5X16

subject to:
2Xl + 3X2 - 4X3 + X4 + X17 + 2X18 + 3X19 ≤ 25

5X2 + 3X3 - X4 + 3X18 ≥ 50

 6X1 + 3X2 + 2X17 + Xl9 = 100

 X1 - 100 X4 ≤ 0

X6 + 2X7 + 3X8 + 4X9 - X17 = 0

 2X11 + 3X12 - X18 = 0

X13 + 5X14 + 10X15 + 15X16 - X19 = 0

 X5 + X6 + X7 + X8 + X9 = 1

X10 + X11 + X12 = 1

 X13 + X14 + X15 + X16 = 1

 0 ≤ X1 ≤ 100

 0 ≤ X2 ≤ 20 , and integer

 Page 54

1 ≤ X3 ≤ 10
X3 = 0

 X 0 or 1 4 =

X17 ’ X18 ’ X19 ≥ 0

Only one of the set variables X5,...,X9 can be non-zero

Not more than 2 adjacent variables from set
zero.

{X10,...,X12} and set {X13,...,X16} can be non-

The input data definition of the above model in the extended mathematical programming
format (MPSX) is as following,

NAME MGINT
ROWS
N OBJ
N ’MARKER’
L COS1
G COS2
E COS3
E CON1
E CON2
E CON3
E REF1
E REF2
E REF3
COLUMNS

X1 OBJ 3.0
X1 COS1 2.0
X1 COS3 6.0
X2 OBJ 4.0
X2 COS1 3.0
X2 COS2 5.0
X2 COS3 3.0
X3 OBJ 5.0
X3 COS1 -4.0
X3 COS2 3.0
X4 OBJ -1.0
X4 COS1 1.0
X4 COS2 -1.0
X17 COS1 1.0
X17 COS3 2 . 0
X17 REF1 -1.0
X18 COS1 2.0
X18 COS2 3.0
X18 REF2 -1.0
X19 COS1 3.0
X19 COS3 1.0
X19 REF3 -1.0

S1 S1SET1 ’MARKER’ ’SETORG
X5 OBJ 2.0
X5 CON1 1.0
X6 OBJ 3.0
X6 CON1 1.0
X7 OBJ 4.0
X7 CON1 1.0
X8 OBJ 3.0
X8 CON1 1.0
X9 OBJ 2.0

REF1

REF1

REF1

REF1

REF1

1 . 0

1 . 0

2 . 0

3 . 0

4 . 0

either
or {

 Page 55

X9 CON1 1.0
S1SET1E ’MARKER’ ’SETEND’

S1 SISET2 ’MARKER’ ’SETORG’
X10 CON2 1.0
Xll OBJ 2.0
Xll CON2 1.0
X12 OBJ 1.0
X12 CON2 1.0
S1SET2E ’MARKER’ ’SETEND’

S1 SISET3 ’MARKER’ ’SETORG’
X13 OBJ 1.0
X13 CON3 1.0
X14 OBJ 10.0
X14 CON3 1.0
X15 OBJ 25.0
X15 CON3 1.0
X16 OBJ -7.5
X16 CON3 1.0
S1SET3E ’MARKER’ ’SETEND’

RHS
M0Z1 COS1 25.0
MOZ1 COS2 50.0
MOZ1 COS3 100.0

BOUNDS
 UP MOZ2 X1 100.0
 UI MOZ2 X2 20.0
 SC MOZ2 X3 10.0
 BV MOZ2 X4 1.0
ENDATA

REF2

REF2

REF2

REF3
REF3

REF3

REF3

REF3

1.0

2.0

3.0

’E‘
1.0
1.0

5.0

10.0

15.0

’E’

where UP presents the continuous variable X1 with upper bound of 100.0, UI is presenting

the general integer variable X2 with upper bound of 20.0, SC is the semi-continuous variable

X3 with upper bound of 10.0 and default lower bound of 1.0, and X4 is the binary variable.

Page 56

A ppendix 2. Table of Test Problems

NAME ROWS COLS BV UI SC S1,2 IP obj. LP obj.

 EGOUT 98 141 55 — — — 568.1 149.58

 MODGLOB 291 422 98 — — — 20740508.0 20430947.0

 BEALE 171 303 38 — — 11 100.00 100.00

 MOZIGEN 11 19 1 1 1 3 95.16 93.43

 S2MATRIX 51 450 — — — 25 157.9 225.88

 SOUZA 191 194 11 — 11 100.00 100.00

 KHB05250 101 1350 24 — — — 106940226.0 95919464.0

 MICHA 90 127 64 — 63 — 5177.8 5167.0

 BPGAS1 211 75 12 — — — -6.65 6.79

 GRAY2IN 35 48 24 — — — 202.30 185.5

 GRAY9IN 63 96 48 — — — 280.95 256.01

 HYPERPL 128 68 63 — — — 1336.5 333.33

 SAMPLE2 46 67 21 — — — 375.0 247.0

 MAT1A 176 202 10 — — 22 5.68 0.0

 MAT1B 262 435 16 — — 25 6.7 0.0

 MAT1C 615 676 38 — — 38 9.7 0.0

 MAT2A 102 1092 12 — — 90 72037.8 66150.5

 MAT2B 83 710 10 — — 70 60733.0 55500.5

 MAT2C 118 1515 15 — — 100 76843.1 71950.5

 MAT2D 70 714 14 — — 50 41360.2 39019.1

 MAT2E 66 411 11 — — 40 34437.9 33209.2

 MAT3A 114 1134 14 — — 80 73864.5 64566.9

 MAT3B 96 1515 10 — — 70 72023.76 60728.3

 MAT3C 92 732 6 — — 60 56274.1 50199.9

 PROBLEM1 534 632 7 — — 3 53.36 54.40

 PROBLEM2 652 643 18 — — 3 53.36 54.40

 PROBLEM3 652 643 18 — 3 51.02 52.45

 PROBLEM4 652 643 144 — 3 53.36 54.40

 PROBLEM5 700 678 18 — 4 -5.93 11.08

 PROBLEM6 652 643 144 — 3 50.05 F 52.45

 PROBLEM7 1500 1129 2 — 11 28.46 2934

 AIR01 23 771 771 — — — 6796 6743.0

 AIR02 50 6774 6774 — — — 7810 7640.0

 AIR03 124 10757 10757 — — — 340160 338864.25

 AIR04 8223 8904 8904 — — — 56138 55535.43

Page 57

NAME ROWS COLS BV UI SC S1.2 IP obj. LP obj.

AIR05 426 7195 7195 —
— ...

 26402 25877.6

AIR06 825 8627 8627 —
— —

 49649 49616.3

BELL3A 123 133 39 32
— —

 878430.3 862578.6

BELL3B 123 133 39 32
— —

 11786160.6 11404143.8

BELL4 105 117 34 30
— —

 18541484.2 17984775.9

BELL5 91 104 30 28
— —

 8966406.4 8608417.9

BM23 20 27 27 —
— —

 34 20.57

CRACPB1 143 572 572 —
— —

 22199 22199.0

DIAMOND 4 2 2 —
— —

 INF - 1.0

DSBMIP 1182 1886 160 32
— —

 -305.19 -305.1

EGOUT 98 141 55 —
— —

 568.10 149.58

ENIGMA 21 100 100 —
... —

 0.0 0.0

FIXNET3 478 878 378 —
— —

 51973 40717.01

FIXNET4 479 878 378 ...
— ...

 8936 4257.97

FIXNET6 479 878 378 —
— —

 3983 1200.0

FLUGPL 18 18 — 11
— ...

 1201500 1167185.7

GEN 780 870 144 6
— —

 112313 112130.0

KHB05250 101 1350 24 —
— ...

 106940226 95919464.0

L152LAV 97 1989 1989 —
— —

 4750 F 4656.3

LP41 85 1086 1086 —
— ...

 2967 2942.5

ISEU 28 89 89 —
— ___

 1120 834.68

MODGLOB 291 422 98 —
— —

 20740508 20430947.0

MISC01 54 83 82 —
— —

 563.5 5 7.0

MISC02 39 59 58 —
— —

 1690 1010.0

MISC03 96 160 159 —
— —

 3360 1910.0

MISC04 1725 4897 30 —
— —

 2666.69 2656.42

MISC05 300 136 74 —
— —

 2984.5 2930.9

MISC06 820 1808 112 —
— —

 12850.8 12841.6

MISC07 212 260 259 —
— —

 2810 1415.0

MOD008 6 319 319 —
— —

 307 290.9

MOD010 146 2655 2655 —
— —

 6548 6532.08

MOD011 4480 10958 96 —
— —

 -54558535 - 62121982.5

MOD013 62 96 48 —
— —

 280.9 256.02

NOSWOT 182 128 75 25
— —

 -43 -43.0

P0033 16 33 33 —
— —

 3089 2520.5

2 WEEK

Page 58

NAME ROWS COLS BV UI SC S1.2 IP obj. LP obj.

P0040 23 40 40 — — — 62027 61796.5

P0201 133 201 201 — — — 7615 6875.0

P0282 241 282 282 — — ._ 258411 176867.5

P0291 252 291 291 — — — 5223.7 1705.1

P0548 176 548 548 — — — 8691 315.2

P2756 755 2756 2756 — — — 3124 2688.7

P6000 2095 5872 5872 — — ___ -2350544 -2351871.3

PIPEX 25 48 48 — — — 788.2 773.75

RENTACAR 6803 9557 55 — — — 30356761 28806137.6

RGN 24 180 100 — — — 82.19 48.79

SAMPLE2 45 67 21 — — — 375 247.0

SENTOY 30 60 60 — — — -7772 -7839.2

SET1AL 493 712 240 — — — 15869.7 11145.6

SET1CH 493 712 240 — — — 54537.7 32007.7

SET1CL 493 712 240 — — — 6484.25 1671.96

STEIN 15 36 15 15 — — — 9 7.0

STEIN27 118 27 27 — — — 18 13.0

STEIN45 331 45 45 — — — 30 22.0

STEIN9 13 9 9 — — — 5 4.0

VPM1 234 378 168 — — — 20 15.4

Explanation of columns:

NAME - name of the problem
ROWS - number of constraints in the problem, not including free rows
COLS - total number of variables in the problem
BV - number of variables that are binary
UI - number of general integer variables
SC - number of semi-continuous variables
S1,2 - number of special ordered sets of type one and two
IP obj. - best known integer solution to the problem,

INF, no integer feasible solution found
F, indicates that the given solution is not integer optimal
if there is no qualifier defined the given solution is optimum

LP obj. - optimal solution to the linear relaxation of the problem

	001BU01.pdf
	 Design, Implementation and Testing of an
	Integrated Branch and Bound Algorithm for
	 By

	001BU02.pdf
	 By

	001BU03.pdf
	001BU04.pdf
	Page 1

	001BU05.pdf
	001BU06.pdf
	Page 3

	001BU08.pdf
	Page 5

	001BU09.pdf
	Page 6

	001BU10.pdf
	001BU11.pdf
	001BU12.pdf
	Page 9

	001BU13.pdf
	001BU14.pdf
	 Page 11
	Branch and Bound (B&B) is a technique for solving certain constrained optimisation
	Depending on the optimisation requirement of a discrete model Branch and Bound

	001BU15.pdf
	Page 12
	These methods are generally characterised by their branching, bounding, solving, and

	001BU16.pdf
	 Page 13

	001BU17.pdf
	In the case of a general integer variable taking a non-integer value

	001BU18.pdf
	001BU19.pdf
	Page 16

	001BU20.pdf
	Page 17

	001BU21.pdf
	A natural method for partitioning set variables which do not satisfy set conditions can be
	The index d can be considered to be the partition indicator and is defined by the relation

	001BU22.pdf
	001BU23.pdf
	001BU24.pdf
	Page 12

	001BU25.pdf
	 Page 22
	Variables which are currently satisfied by being out of basis at their presumably integer upper

	001BU26.pdf
	001BU27.pdf
	001BU28.pdf
	Page 25
	An upper bound on the degradation can be defined in terms of minimum and maximum

	001BU29.pdf
	Page 26

	001BU30.pdf
	001BU31.pdf
	Page 28
	list at any time. It also allows the subproblems in the list to be stored sequentially, which

	001BU32.pdf
	Page 29

	001BU33.pdf
	Page 30
	
	Otherwise

	001BU34.pdf
	A subproblem can be set to terminal (leaf) node of the tree and excluded from the further
	Postponement of a Node in the Tree Search

	001BU35.pdf
	A complete tree search strategy STR(V,N) is defined by a unique combination V,N of
	VC4: Estimated Degradation
	NC1

	001BU36.pdf
	001BU37.pdf
	001BU38.pdf
	001BU39.pdf
	001BU40.pdf
	Page 36

	001BU41.pdf
	I*4 IBSIND MROW
	I*4 IBSIND MRO
	PARNOD -
	IDEPTH -
	Note that, by the stack mechanism node k is overwritten by node k + l followed by

	001BU42.pdf
	As a part of our investigation a number of test problems were collected. These test problems
	Integer Programming Library of test problems). Given the wide range of problem types and
	VARCHO= 1
	VC1
	Given Priority Order
	NC1
	Table 7.2 represents the list of chosen models and includes the following items of

	001BU43.pdf
	ROWS

	001BU44.pdf
	001BU45.pdf
	001BU46.pdf
	Name
	First Integer Solution

	001BU47.pdf
	 Page 43
	Name
	First Integer Solution
	Best Integer Solution

	001BU48.pdf
	Page 44
	Name
	MODGLOB

	001BU49.pdf
	001BU50.pdf
	Best Integer Solution

	001BU51.pdf
	001BU52.pdf
	Page 48

	001BU53.pdf
	001BU54.pdf
	001BU55.pdf
	Page 51

	001BU56.pdf
	001BU57.pdf
	001BU58.pdf
	NAME
	REF1
	REF1
	1 . 0

	001BU59.pdf
	 Page 55

	001BU60.pdf
	001BU61.pdf
	001BU62.pdf
	001BU04.pdf
	Page 1

