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0. Abstract 
 

A  number  of   discrete   variable  representations  are well  accepted  and  find  regular  use  within 

LP  systems.  These  are  Binary   variables,  General   Integer  variables,  Variable  Upper   Bounds 

or  Semi  Continuous  variables,  Special  Ordered  Sets  of   type  One  and  type  Two. The  FortLP 

system  has  been  extended  to  include  these  representations.  A  Branch  and  Bound  algorithm 

is  designed   in  which  the  choice  of   sub-problems  and  branching  variables  are   kept  general. 

This   provides  considerable  scope  of  experimentation  with  tree  development  heuristics   and  the 

tree  search  can  then  be  guided  by  search   parameters   specified  by  user  subroutines.  The data 

structures   for   representing  the  variables  and   the  definition  of  the  branch  and  bound   tree are 

described.  The   results   of  experimental  investigation   for  a  few   test   problems   are   reported. 
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Introduction and Background. 
Alternative ways of representing non-linear programming problems involving variable 
separable function as discrete programming problems are well known since the 60s, Miller 
(1963), Falk and Soland (1968), Beale and Tomlin (1969), but not many general non-linear 
and discrete programming systems are in industrial use. Currently known systems are: 
SCICONIC, OSL, XPRESSMP, LAMPS and there are a number of systems with only zero- 
one and integer facilities, these include ZOOM, MPSX, FMPS, LINDO, MPSIII, and 
MINTO.             
                                    

Early research results concerning tree search methods applied to such problems were reported 
in the 60s and early 70s, Benichou (1971), Mitra (1973), Forrest et al (1974). All 
the above mathematical systems use tree search algorithm in which the original problem 
(relaxed as an LP) as well as a waiting node or a sub-problem are solved by the Sparse 
(Revised)   Simplex  method. 

During the 80s most of the research effort has been directed towards, (i) Preprocessed integer 
programming model to generate constraints which produce deep cuts, Van Roy and Wolsey 
(1984), (ii) use  of  such  constraints  in  the  root node  and  also  subsequent  tree  search. 

In this report we set out our algorithmic and software design consideration for constructing 
a general discrete programming systems. This work is a part of our ongoing research in 
Large Scale Linear and Discrete Optimisation system. It is built around the FortLP which 
is  a  sparse  simplex solver for large linear  programs. 
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The  objectives  of  this  work  are  summarized   below: 
(a) to develop a family of Branch and Bound algorithms to solve discrete programming 
problems  in  their  most  general  form, 
(b) to introduce a general Cutting plane method within the Branch and Bound tree search 
framework,  and 
(c) to use this system as an experimental tool to investigate new ideas of constraint 
generation. 

In this report, the development of a generic Branch And Bound algorithm for solving discrete 
programming problems, namely part (a) above is described and some experimental results 
are presented. 

The contents of this report are organised in the following way. In section 2 the classes of 
discrete variables and set variables are reviewed. In section 3 the mathematical representation 
of a general discrete problem is introduced. In section 4 and 5 a general Branch and Bound 
approach which takes into account different classes of variables and set variables together 
with  alternative  rules  applied  in  Branch  and   Bound are  outlined. 

In section 6 we discuss the data structure and implementation issues of internal representation 
of different types of variables and sets. The results of our experiments with a collection of 
some well known  test problems are given in section 7. 
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function  g(y) may  be  represented as: 

where: 
g (y) = g(ŷ 1)x1 + g(ŷ 2)x2 + ... +g(ŷ k)xk

ŷ 1x1 +  ŷ 2x2+...+ ŷ KXK - y = 0, y   ≥ 0 
 x1  +    x2 + ... +  xk      =1,  xk  ≥  0,   k=l,...,K 

(21) 

(22) 
(23) 

 

Fig.l 
The discrete function can take only one of the K possible values weighted by the variable xk. 
This requirement can be easily expressed by adding  the condition, 

xk ∈ {0,l},  k=l,...,K. 
Such a group of variables is called a Special Ordered Set of Type One as only one variable 
in the group can take a value different from their (lower bound) zero value in a valid 
solution. 

(v) Special Ordered Sets of type Two (SOS2) are sets of variables of which not more than 
two members may be non-zero in the final solution, with the further condition that if there 
are as many as two they must be adjacent. SOS2s were introduced Beale (1970) to make it 
easier to find global optimum solutions to problems containing piecewise linear 
approximations to a nonlinear function of single argument. The overall problem has an 
otherwise linear programming  or  integer programming structure except for such nonlinear 

functions. 
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Consider  the  function  f(y)  Fig.2  as  a  piecewise  linear  function  in  one  variable defined over 

(ŷk’f(ŷk)),k=1, …,k,  the closed intervals where the coordinates [ŷk’ŷk+1] k=1, … ,k-1,  

represent points P1, . . . ,Pk. 

f(y) 

 

 Fig.2 

Any point y in the closed interval [ŷk’ŷk+1] may be written as y=xkŷk+xk+1ŷk+1’ where 

xk+xk+1  = l  and    xk’ xk+1  ≥0,   similarly as  f(y)  is  linear   in   the  interval,  it  can be written  as   

f(y)=  f(ŷk)xk+  f(ŷk+1)xk+1·

This leads to the representation of f(y) using a set of weighting variables,          
by the following equality: 

         xk’  k=1,…k,
    

 

where: 
f(y) =  f(ŷ1)x1  +  f(ŷ2)x2  + ... +  f(k)xk

ŷ1x1   +   ŷ2x2  +... +  ŷkxk  -  y  = 0,  y  ≥  0 
x1  +   x2  + ... +   xk     = 1,   xk ≥ 0, k=l,...,K 

(2.4) 

(2.5) 
(2.6) 

Plus the added condition that not more than two adjacent variables can be non-zero at any 
one time. 
The set of weighted variables xk are called the special variables and the rows (2.1)&(2.4), 
(2.2)&(2.5), and (2.3)&(2.6) are called the function row, reference row and the convexity 
row respectively. 
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3. Mathematical Statement of a General Discrete and Separable Programming Problem. 

The classes of discrete variables are described in the previous section, as Binary, General  
integer, Semi Continuous variables and Special Ordered Sets of variables of type One, and 
Two. A statement of the general discrete programming problem, which contains the above 
types of variables and sets as well as continuous variables is set out below. Consider the 
index sets N1 ,..., N7 which are used to specify the different variable types. The data 
structure which is used to implement this representation within our experimental optimiser 
FortLP system also follows this variable indexing  scheme.  
            N1 =  set of indices of  Bounded Variables 

       lj    ≤  xj  ≤   uj                                                                            

                    0  ≤  lj ,  uj   p  +  ∞    j ∈ N1

N2 =  set of  indices of  Free Variables 

                    -∞  p  xj  p + ∞     j ∈ N2                                                                                                    

N3 =  set of indices of Binary Variables 

                    xj= 0  or 1,          j∈ N3

N4 = set of indices of General Integer Variables 

         lj ≤ xj ≤ uj’    xj≡0   mod(1),      j∈N4

N5 =   set of indices of Semi-continuous variables 

 

  0 < lj ≤  xj ≤ uj      

                              j∈Ν5        
      xj = 0 
 

(3.1)  

 

(3.2) 

 

 (3.3) 

 
 
 

(3.4) 
 
 
 
 

 (3.5) 

               where N6l is the set of indices of the lth SOS1 type Variables, and only 
 

  one xj can be  non-zero.          

       

either {or 

N6=UN6l   
         l 



xj = 0  or  1,  j ∈ N6l ’  l=1,...,ℒ  
ℒ  = No. of   SOSls 
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(3.6) 

   where  N7k is the set of  indices  of  the  kth  SOS2  type Variables,  and   xjN7=UN7k’
 k

 satisfies the  adjacency condition  of  this set. 
  0  ≤   xj  ≤  1,  j ∈ N7k   k=  1,…,k       (3.7)             

k = No. of S0S2s 

The    total    number   of   variables   defined  by  these  index  sets  (which   are  mutually exclusive, 

           is  denoted  by n, )øN
1j j

I

7

=
=

 (3.8) 
    

as: 

 
Using  these  set  definitions  a  general  discrete  programming   model  may  be  
presented 
 

subject  to  constraints: 

 i  =1,…,P                                             (3.10) 

 
l = 1,…,ℒ                                           
                                                                  
                                                        (3.11) 

k = 1,…,K                                                
   
                   

where: 
l  ≤  xj j  ≤  uj , 

-∞ p  lj ¹    uj   p + ∞’ 
    

-∞  p   xj  p + ∞’                 
   0   ≤   xj   ≤  1, 

0  ≤   xj ≤  uj , 

j∈N1UN4,                                            

j∈N2, 
                                                      j∈N3UN6UN7’                                                                                  

            j∈Ν5’

    

((3.12)  

namely 

][
7

∑=
= 1j j

Nn
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=
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n

1j j0j0
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with  the  further  discrete  restrictions  such  as, 

xj = 0or 1, if j∈N3, 

xj =0 mod(l) if j∈N4, 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

≤≤<

0

0

j

jjj

x           
        

uxl
                          if j∈N5,      either 

 
or 

 

(3.13) 

 

only one xjcan be non-zero if j∈N6l, and at 

 
most two adjacent xj can be non-zero if j∈N7k’

Function rows and reference rows included in (3.10), (3.11) represent the convexity 
rows of special ordered sets of type one  and  two. 
The model therefore has m = P +  ℒ + K rows    ad  columns   given   by   (3.8) 
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4.0 General Branch and Bound Algorithm 

Preliminary Discussion; before starting with the algorithm some terminology needs to be 

defined. Maximisation is considered for all the discussion through out this report unless 

minimisation  is explicitlymentioned. 

a) A solution is said to be LP feasible if it satisfies all of the problem’s linear constraint 

(3.10, 3.11, and 3.12), and similarly is integer feasible if it satisfies all the linear constraints 

and integer requirements (3.13). 

b) An optimal solution is an integer feasible solution of the problem (if one exists) which in 

term of the objective function value, is either better or at least as good as other integer 

feasible solutions of that problem. 

c) Following Beale’s terminology, Beale (1985), in this report the term Global Entity is used 

to represent all binary, general integer, semi continuous and set variables (special ordered 

sets of type one and two). A discrete programming problem may have only set or semi 

continuous variables and no integer variables, in this case, it is inappropriate to address the 

model as an integer program. 

d) An  LP  relaxed  problem  is  a  problem  whose discrete  restrictions  (3.13)  are   not   considered. 

e) RIPBST, or cutoff value is initially fixed to a large negative number then it is updated by 

the integer feasible solution found during the tree search. 

f) A good integer solution is an integer feasible (not necessarily optimum) solution whose 

objective   function  value xg0  lies  within  a  user  defined  percentage  of  the   original   LP  solution 

value x00,   that  is  where 0< θ ≤1. The  value  of  xg0 can  be  used  for  the  cutoff  θ Χ x00 ≤ xg0

value  before  finding  the  first  integer  solution. 
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Branch   and   Bound   (B&B) is  a  technique  for  solving   certain  constrained    optimisation 
problems. It is particularly important for solving those problems whose solution by complete 
enumeration can often be prohibitively expensive. A wide variety of problems of this kind 
arise  in   Operational   Research,  Combinatorial  Optimisation and  Artificial  Intelligence. 

Taking into account practical computational experiences, the Branch and Bound method is 
considered to be the most efficient technique for attacking Discrete Programming 
(Combinatorial Optimisation problems). The Branch and Bound method carries out a 
progressive partitioned search of the solution space of a given problem. Starting with an LP 
relaxation, the space of all linear feasible solutions is repeatedly partitioned into smaller and 
smaller subsets, and an upper bound (in the case of maximisation) is calculated for the 
objective function value of the corresponding problems. After each partitioning, those 
subproblems with a bound that exceeds the solution value of a known integer feasible solution 
value are excluded from all further partitioning. The search continues until an integer feasible 
solution is found such that the solution value of its objective function is greater than the 
bound  of  all  the  remaining  subproblems. 

Depending   on   the  optimisation   requirement   of  a  discrete   model  Branch  and  Bound 

algorithms   may   be   designed   in  different   ways. These   algorithms   may   be  of   three   main 
groups; 
(i) Branch  and   Bound  algorithm which   computes  all  the  optimal   solutions, 
 (ii) Branch  and  Bound  algorithm  which  provides  a  single optimal  solution, 
(iii) Branch  and  Bound  algorithm  which  determines  the  k  best  integer  feasible solution. 
(iv) Branch  and  Bound  algorithm  which  determines  a  good  integer  feasible   solution. 
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These   methods   are  generally  characterised   by  their   branching,  bounding,  solving,  and 
selection techniques. In this chapter the branch and bound method for a single optimum 
solution (ii) of a given problem, (if a feasible solution of that problem exists) is considered, 
within this it is also possible to determine a good integer solution (iv). The algorithm for 
finding a single optimum solution (ii), can be easily extended to algorithm which computes 
all the integer optimal solutions (i), and the algorithm which determines the k best integer 
feasible  solution  (iii). 

This Branch and Bound algorithm explores a search tree and in general, only search of a 
small proportion of the solution space may be required. The remainder of the search tree can 
be partly eliminated using the bound derived from a good integer feasible solution. When an 
integer  solution  is  proven  to  be optimal  the  rest  of  the  search  tree is  fully eliminated. 

4.1  Statements  of  the  Algorithm  for  Single  Optimum Solution 
We have developed and implemented a Branch and Bound algorithm which finds a single 
optimum solution. This algorithm uses the sparse simplex solver FortLP to process the LP 
relaxed subproblems. The algorithm first finds an integer feasible solution and then continues 
the tree search to find a better integer solution or prove the optimality of the current integer 
solution. For a detailed discussion of the algorithm see Mitra (1976), Mitra (1973), 
Benichou   (1971), and   Beale  (1968).  The  steps  of  the  algorithm  can  be  stated   as  follows:  
(0) INITIAL STEP: If an optimum solution to the LP problem does not exist Exit, else 
check the integer feasibility, if integer feasible Exit, else set the best integer solution value 
(RIPBST) to a large negative value, prepare a space for the list (stack) of subproblems of the 
search   tree  and  continue. 
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(i) BRANCHING:  Take  a  violated  global  entity  from  a  current  node  Pk,  create  the  two 
appropriate sub-problems, Pk+1 and Pk+2, add them to the list of subproblems (see diagram 
4.1) and  store  the associated basis 
(ii) SELECTION: If the list of sub-problems is empty Exit, else select and remove a sub- 
problem  from  the  list   by  node  choice  criterion. 
(iii) SOLVING: Starting from a stored basis solve the selected sub-problem using a simplex 
algorithm. If the algorithm used is of the dual type the sub-problem may be discontinued 
should its objective function value become less than or equal to Max (RIPBST); in this case 
go  to  (ii). 
(iv) BOUNDING: If the sub-problem has no feasible solution go to (ii). If the objective 
function value is less than or equal to Max (RIPBST) go to (ii). If the solution meets all 
conditions  of  discreteness (3.13), of   the sets   and   variables   go  to   (v). Otherwise  go   to  (i).  
(v) Integer Solution: Set integer solution marker. If objective function value of this integer 
solution is equal to the original LP solution, Exit, else if x is greater than Max (RIPBST), 
up date  the  Max (RIPBST) Go to (ii). 
If the integer solution marker is not set to any integer feasible solution and the list is empty 
then no feasible (integer) solution exists to the problem. Otherwise output the best integer 
solution. 

 

Diagram 4.1
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4.2  Dealing   With   Different  Classes  of  Variables. 
A discrete programming problem as set out in section 2 is a problem which contains a 
number of discrete variables and set variables (generally global entities). If during the tree 
search the discreteness conditions of any discrete variable or set variables are not satisfied 
for a given subproblem, then the corresponding problem is analysed to choose a suitable 
unsatisfied global entity. Based on the result of this analysis two subproblems are proposed. 
The methods of dealing with different types of global entities are described in sections 4.3 
to  4.7. 

4.3  Zero-One  and  General   Integer   Variables. 
The zero-one variables can be dealt with by generating two new sub-problems, setting the 
chosen   variable   to  value  0.0  in  one  sub-problem  and  1.0 in  the other. 

In  the case of a  general  integer  variable  taking   a   non-integer  value       xk= [āk0]  +  fk’   [āk0]≡ 0 

 

mod(l) and 0< fk < 1  in  the   linear  programming  relaxation  solution  of  a sub-problem.   We 

 

create  two  sub-problems  with  new  lower  and  upper  bounds  xk  ≥  [āk0]  + 1  and  xk  ≤  [āk0]. 

4.4   Semi   Continuous Variables. 
Let xj be an semi continuous (variable upper bound) variable. It is easily seen from the 
definition of an semi continuous variable (section 2) that in any of the following cases the 
semi  continuous  requirements  is  not  satisfied. 

or 
Case  i)  0   <  xj < lj, 

Case  ii) uj  <  xj

where lj and uj are the (conditional) lower and upper bound respectively.  Case (ii) does not 
occur  because  the  upper bound  is  imposed  on  the  original  LPR.    If  xj  is  in  the  first range 
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case i) then, the semi continuous requirement is not satisfied and two new sub-problems are 
defined by setting the xj = 0 in one and updating the lower .bound to lj’ in the other 
(diagram   4.2), 

 

  Diagram 4.2 
4.5   Special   Or  dered   Sets   of   Type  One 
 
Special   ordered   set   of   type  one  is  a  set  of  variables  in  which   only   one   variable  can   take  a 
value   different    from   its  lower   bound    typically   zero   see   (section 2). 
Consider   the   subproblem    Pk   which   contains   a  special   ordered   set   of   type   one   (say N6l)   for 
 
which Xj’ . . . ,Xj+p Are  the  corresponding  set  variables,  that  is, j,...,j+p   ∈    N 6l  . If  in  the 

 
optimum solution to Pk, the values of the set variables violate the special ordered set of type 
one requirement then two new subproblems are generated in the following way (diagram 
4.3). 

Find an index d, j  ≤  d  ≤  j + p (methods   of   finding   index   d   are   discussed   later  in  this 
 

 

chapter),    and    construct    two    subproblems  Pk+1’   P k+2       where, 

 

Pk+1
: Same as    Pk Pk+2

:    Same  as   PK
 

and  xk = 0  for  d +1 ≤ k ≤ j + p and   xk  =   0 for  j ≤  k ≤ d 
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     Diagram 4.3 

 
 

4.6 Special Ordered Sets of TypeTwo. 
Similarly   consider  subproblem   Pk,  which  contains a  special  ordered  set  of type two (say N7k) 
 
for which Xj,...,Xj+p Are  the  corresponding  members  of  the set  variables  that  is,   j,...j+p ∈ 

 
N7k.  If  the  solution  values  of  these  variables  contain  more  than  two  nonzeros  or there are two 
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nonzero set variables which are not adjacent then, two new subproblems are generated in the 
following  way  (diagram   4.4). 

Find an index d, j ≤ d ≤ j+p, (methods of finding index d are discussed later in this , j ≤ d ≤ j+p, 

chapter),  and   construct    two    subproblems Pk+1’  Pk+2 (diagram4.4) where, 

Pk+1:   Same   as    Pk     Pk+2:   Same   as  Pk

 

and   xk   =  0  for  d + l ≤ k ≤  j + p  and   xk   =  0  for j≤k≤d-l 

 

 
 

 

 

  Diagram 4.4 
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4.7 Method of Partitioning Special Ordered Sets 

 
A natural method for partitioning set variables  which do not satisfy set  conditions  can  be 
developed by using weighted average of their values in  the following way (Tomlin 70). Let 
wj  be the weight associated  with  variables  xj, j∈ N6l or j ∈ N7k. These  weights  can be the 
coefficients  of  variables in the reference row (if one exists) of the set, that is, wj = aij where 
i is the index of the reference row of the set and j is the index number of the members of the 
set. If  there is  no reference row present, since the  ordering of the  set is defined  implicitly 
within  the problem then, one can simply consider the  index  number of each variable as its 
weight  that  is, wj = j. 

The weighted average of these variables is given by the expression, 

∑∑
∈∈

=
sjsj

xxw jjj ˆ/ˆw
_

,  where, s≡N6l or s≡N7k, (4.1) 

The index d can be considered to be the partition indicator and is defined by the relation

              wd  ≤    < w
_

w d+1
(4.2) 

Choosing the biggest nonzero variable in a set as the marker can be another simple way of 
partitioning a set. 
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5. Tree Search Strategies. 
The  number  of sub-problems  which  must  be  searched  and  solved  is  dependent  on  the  variable 
and   node  choice  strategies.  Experiences  with   real  life  integer   test   problems   indicate   that 
applying  a  given  branch  and  bound  search  strategy  on  different  classes  of  integer  programs 
lead  to  unpredictable  results.  For  a  given  problem  class,  it  is   well  known   that   a   suitably 
tuned  search  heuristic  of  variable   branching  and  node  choice  rules  can  often  produce  good 
discrete  solution  within  a  relatively  small  search  tree.  A  variety  of  these  methods  has  been 
investigated  by   researchers  since  the  early  70s  but   none  of   these  have   shown  dominating 
performance   results  and  has  become  established  as  a  standard  technique.  Therefore  a  discrete 
programming system which  can  provide  a  range  of  options  for  the  variable  and  node  choice 
is  well  suited  for  the  investigation  of  different  classes  of  integer  programming  applications. 

5.1 Methods  of  Choosing  an  unsatisfied  Global  Entity 
Choosing a global entity from the set of unsatisfied discrete variables and sets is an important 
step of the branch and bound procedure. This is because the choice of a less effective 
variable (global entity) can increase the size and complexity of the search tree with little 
progress  towards   finding   the  optimum  solution. 

The importance of this issue was observed by Land and Doig (1960) who first introduced the 
tree search algorithm to solve the discrete programming problems. Since then some of the 
researchers on this subject Beale (1965), Tomlin (1970), Benichou (1970), Mitra (1973), 
Gauthier (1977) and Beale (1985) have proposed different strategies for choosing the 
branching   variable  in  order  to  reduce  the  size  of  the  search  tree.  
In   general  these  rules  determine  a  ranked   order   (or priorities)   for   the   global   entities and 
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thereby  identifies the  branching variable or set of variables. If these rules lead to the   same 
order of priority for the global entities during the search then these rules are considered to 
be static. On the other hand, if they lead to different orders of priority during the search then 
they  are dynamic. The static priority  orders are  applied 
a)  when  priorities  are given by the modeller, 
b) when priority order is computed from the deterioration of the functional value 
measured 
by pseudo-costs, and 
c) by computing a decreasing order of absolute cost values of the discrete variables. 
In  contrast  the dynamic priority orders can be determined  by: 
d) maximum fractional values of global entities at  each  node, 
e) minimum  fractional values of global entities at  each  node, 
f) using  the  measure of  non-discreteness for all global entities (see section 5.3), and 
g) estimates of objective function value at each node for changing the bound on unsatisfied 
integer variables. 
These  estimates are obtained  by alternative methods of penalty  and bound calculations. 

Let  J  be  the  set  of indices of the non-basic variables such that if xj is a non-basic variable 

then j∈J and let I be the set of the basic variables such that if xj is a basic variable    i∈I.  
 

Now consider, the  optimal  solution of the 1th  sub-problem  represented  as, Tomlin  (1970), 
 

 
where x0 =ā00 s the optimum (maximum) objective function value.   If the solution is not 

integer   feasible  then  there  are  one  or  more  global  entities  with  unsatisfied  discrete 

Ii
Jj

’)(-xa  ax
Jj

)(-xa ax

jiji0

j0j000

∈∀

∑
∈

+=

∑
∈

+=

i  



Page 21 

requirements. For example, consider xk to be an integer variable with a non-integer value: 
(5.1) 

kfkkxkakx +β== ’0     ’     kfand] kak 100[ <+<=β  

Land (1960), suggested that the most computationally convenient criterion for choice of the 

branching variable is to select a variable which is farthest from an integer, that is find an xj

such that, 
                                      Max min {1 -fj’fj}’ j∈ N3U N4                                                                                                   (5.2) 
                                                     j 

 
In some circumstances, one may choose a variable Xj which is closest to an integer such that, 

Min min {1 - fj , fj} , j∈N3UN4                                                                                    (5.3) 

 
Beale (1965), introduced penalties as a criterion to choose the branching variable. These 
penalties are considered to be the deterioration of the objective function in one dual step due 
to the imposition of the new lower or upper bound on a variable. 
The variable with the largest penalty is chosen and is used to generate two new sub- 
problems, one with the new lower bound of βk + 1.0 and the other with the new upper 
bound of βk on the variable xk. 

From the theory of cost ranging the imposition of the new lower bound βk + 1.0 on xk must 
decrease the objective function x0 by the ’up penalty’ PU; 

                           

{ })/(0)1(min
0kj,j

kjajak0fUP
a

−
<

                                                             (5.4)              

 
similarly the ’down penalty’ or change of the objective function value by placing an upper 
bound βk on xk is given by PD; 

}/00{
0,

min
kjajakfkjaj

PD
>

=                          (5.4)

Tomlin (1970) argues that because the penalties introduced previously are entirely based on 
the satisfaction of integer requirement of the basic variables and there may be some integer 
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Variables   which  are  currently  satisfied  by  being  out  of  basis  at  their  presumably  integer  upper 
or lower bounds, no use is made of the fact that this requirement* must be maintained  when 
calculating the penalties. Therefore stronger penalties were introduced by considering 
separately the non-basic integer variables and the effect of changing their values by integer 
quantities.  These   penalties   replace  the  above  up  and  down  penalties  respectively; 
 

0kjaj
*P

p
min=

U
  

Jj  a- /f- a’  amax   

Jj  )afa

kjp00j0j

kjk00j

∈

∉−

)}()(1{

/()1( −
                           (5.5)     

                                                                                                                                                

Jj  a-/fa’  amax   

Jj  )afa

kjp00j0j

kjk00j

∈

∉−

}({

/()
                          (5.6)         0kjaj

*P
f

min=
D

 

where  J  is  the  set of  non-basic  integer  variables. 

Although these penalties are clearly stronger than PU (5.3) and PD (5.4) but, they can be still 
sharpened by considering the Gomory’s mixed integer cutting plane algorithm Gomory 
(1960). Consider a non-integer value of an integer variable xk (5.2), the following 
supplementary  constraint  must  be  satisfied   by  any  integer   solution   obtained   from  the  current 

subproblem: ∑ ≥−−−=
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and   fpj  is the  fractional  part  of   a pj  
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This currently unsatisfied constraint must be satisfied in any integer solution attainable from 
the current problem by dual simplex method. It may be observed* that the penalty for doing 
so is at least 

}{  
pjojk

j
G

*f /   a fmin  p = (5.8) 

Benichou (1970) introduced Pseudo Costs. The concept of pseudo cost was presented to 
measure in a quantitative way the importance of the integer variables and to forecast the 
deterioration of the functional value when forcing an integer variable from a non integer to 
an integer value. Two quantities are attached to each integer variable xj’ they are called lower 
(PCLj) and upper (PCUj) pseudo cost. At the beginning of the search pseudo costs are 
generally  not  known,  but  they  can  be  computed  during  tree  scanning  as follows: 
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where F k is the functional value of node k, and 
its successors. 

    are the functional values of 

These pseudo costs appear to be the deterioration of the functional value per unit of change 
in xj one corresponding to a decrease and the other to an increase in xj. Values of the pseudo 
cost of xj depend on the node where they are computed. Although the value of the pseudo 
cost of xj varies from node to node, Benichou (1970) say that they have the same order of 
magnitude in the most cases and therefore, they are assumed to be constant throughout the 
tree search. The disadvantage of this method is that at the beginning of the search pseudo 
costs are not known and one has to compute them after the exploring the node with the 
chosen variable xj. To overcome this difficulty, Gauthier (1975) suggests the  optimization  of 

k+1’ and  F k+2  F
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the dummy  subproblems at the beginning of the  search for calculating the  pseudo costs of 
each integer variable. The full optimisation of a dummy subproblem can take a large number 
of iterations therefore, some rules have been defined to stop the optimisation and use the 
premature solution to calculate the pseudo costs. 

Beale (1985) contends that the above penalties are not always useful because many practical 
problems often happen to have several non-basic integer variables with zero reduced costs. 
Therefore, estimates which can be derived by a natural way based on the- Lagrangian 
relaxation discussed in Geofrrion (1974), may be more efficient towards finding the optimum 
solution. In the course  of the  tree search consider a subproblem stated as, 

max             x0 
subject to:    

                        x + ∑ a0 0j xj   =   b0
                                         ∀j                           

                              ∑ aij xj =     bi  ∀I,j               

       
 
          (5.12) 
          (5

                                                                 ∀j 
                                                                                                    lj ≤  xj ≤ uj         for  some j 
 

When considering the effect of imposing a change on the value of some integer variable xk, 
it  is  natural to rewrite the constraints  with this variable on the right hand side, 

max x0

subject to: 
                        x + ∑ a0 0j xj   =  b0 -  a0k xk                                 j≠k 

                                         ∑ aij xj    =  bi - aikxk             ∀i                                  (5.13) 
                              j≠k 

                                                 lj ≤  xj ≤ uj      for  some j 

 

If one decreases each bi by  di=aik(l-fk) simultaneously  then, increasing  the trial value of xk

by (1-fk) dose not change the value of x0 or  any other variable. The same  argument applies 
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to decreasing xk by fk if, one considers di = - aikfk. 

Therefore, to evaluate the effect of changing xk, the value of this variable is assumed to be 
constant while decreasing each bi by di, for all rows. If π i denotes the shadow price, or 
Lagrangian  multiplier, on  the  ith row,  then  if  all  di were  small  the  original  LP  optimum 
 
functional value would be degraded by ∑πixi

We then compute shadow prices πi such that 

the  optimum  solution   to  the   sub-problem: 

maximizes       x0 
subject to: 

                  for   some j 
jujxjl

i
iijiji bxax

j i

≤≤
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−

ππ )(0

 
where π0=1. 
The degradation Σπixi is not often a realistic estimate of degradation D, but it  defines  a 
guaranteed lower bound. Note that Σπixi =0 if xk is a basic variable. 
An upper bound on the degradation can be defined in terms  of  minimum  and  maximum 
shadow prices πMINi and  πMAXi. Brearley et al (1975) show how to derive these bounds. In 
particular, note that, πMIN0 =  πMAX0=1 and πMINi  is greater than or equal to zero if the ith row 
is  a  less-than-or-equal-to  type. 
Therefore, D=∑πi di + ri Where;      
                                                                                 i       

                 {            0fordd})iimin),|{|max(

0fordd})imax,|{|min(

iiii

iiii

<θ+π

>θ+π

π−π

π−π

                                                                         
 
 
and θ is a small positive tolerance. The explanation of using this tolerance in the formulae 
can be found in Beale (1985). 
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Since   the   value  of   D  is  dependent  on  value  di   and  di  is  dependent   on   the  direction  of 

branching,   two   degradations   can   easily   be   estimated   for   each   variable: 
                          one from deriving the variable down to the integer part of its current value, 
                          and   the   other   from   deriving  it   up   to   this   number  plus  one. 

The largest estimated degradation may be used as a criterion for variable choice. There are 
some cases in which the formulator of the model can assess the relative importance of the 
variables. These degrees of importance can then be assigned as the priorities-and then the 
branching   can   take   place  according   to  the  variable   with    the    highest    priority. 
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5.2 Node Choice 
Likewise  the  variable  choice  discussed  in  section  (5.1),  choosing  a  subproblem  from  the list 
of   unexplored   subproblems   is  another  important  decision   in   the  tree  search   method   for 
solving  an  integer  programming  problem. 
In   the   early   Branch   and  Bound   codes,  the   selection   of   the  branching  variable  and  the 
Selection   of   the   next  subproblem   to   solve  were  considered  together.  For  instance  a well 
Adopted  methods was  to  branch  on  the  variable  with  the  greatest  penalty and  investigate  the 
Branch  in  the  other  direction,  Direbeek  (1966),  Beale  and   Small  (1965). 

However, many alternatives have been suggested since then to consider the node 
(subproblem) selection separately, Tomlin (1970), Mitra (1973), Gauthier (1976) and Beale 
(1985). In principle the node choice may be considered to be separate from the variable 
choice criterion. But not all such choices can be carried out independently of the information 
provided by the variable choice procedure. In a Branch and Bound code applying some of 
these rules are subject to availability of the information for example, an integer feasible 
solution  and  pseudo  costs  of   integer  variables. 

The  strategies  which  are  long  established  in  the  literature  and   in  practice  are   summarized 
below, 
 
i)  Last   In  First  Out   (LIFO)  or, Depth  First, 
this   is  to  select  the  last  subproblem  created  provided  that  the  upper  bound on the objective 
function  of  this  subproblem  dose  not  exceed  the  value  of  RIPBST  (in  this case  delete  the 
subproblem  from  the  list)  otherwise,  the  most   recently  created  subproblem  with  a bound that 
is  better  than  RIPBST  is  selected.  This  strategy  minimises   the  number  of subproblems in the 
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list  at  any  time.  It  also  allows  the  subproblems in  the  list  to  be  stored  sequentially, which 
makes  a  fast  access  to  the  stack.  
(ii) Choose  a  node  by  using  Best  Projection  (BP)  criterion  due  to  Hirst  (1969). 
The    BP   criterion   is    to    choose    a    node    which     maximises     CBk    where, 

                                                   CBk  =  (Fk/π)  -   (F0  -  M(I))(Sk/S0). 

In  this  formulation Sk = Σ min{ fj, (1-fj)} is  a measure  of  integer  infeasibility  of  the  solution 
 

at   node  k, π  is  a  user  assigned   parameter   Mitra  (1973),  M(I)  is  a  bound  assigned  to  LP 
relaxed  problem,  and  Fk  is  the  objective  function  value  of  node k. 
iii) Estimations  of  the  integer  solution  values  for  each  node  due  to  Forrest  et al  (1974). 
Choose  a  node  which  has  the  best  estimated  solution.  There  are  different  methods  to estimate 
the   solution   value   of  a  node,  in  general   Ek  the  estimation  of   node   k   is   given   by   the 
expression, 

 Ek = F(k-1) + ΣDj , j ∈ {j | xj
  unsatisfied   global   entity } 

 
where,      Dj = min  {DUj ,  DLj}, DUj and  DLj  a  re  the  degradations  of  the  objective function 

 
value   of   node  k,  for  assigning  new  lower  and  upper  bounds  to variable xj respectively. It  is 
obvious   that   the  accuracy   of   this  estimation  depends  on   the  accuracy  of  the  degradation 
values.  These  degradation  values  can  be  derived  by,  a)  calculation  of  pseudo cost  of  integer 
variables  due  to  Gauthier  (1977), b)  calculation  of  penalties  due  to  Tomlin  (1970),   and 
c) calculating   pseudo  shadow  costs   due  to   Beale   (1985). 
vi) Percentage  error  criterion  due  to  Forrest  et  al  (1974), 
This  is  to choose  a  node with  the  smallest  percentage error,  P.E.. 
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Where  Fbest  is the  best  integer  solution  objective  function  value  found  so  far  and  Ek  is  the 
estimation of the integer solution value at node k, gained by summing the estimated cost per 
unit change of the unsatisfied discrete variables. 

5.3  Measure  of  Non-Discreteness 
Integer infeasibility measure is used in most of the variable and node choice strategies 
adopted in Branch and Bound methods. The measure of integer infeasibility for a binary or 
general  integer  variable  xj  in  the  solution  of  a  given  subproblem  is  often  shown  by  tj where, 

tj = min {fj ,  (1-fj)}, 

and  fj  is  the  fractional  part  of  the  solution  value  of  the  variable   xj  (see section 5.1). 

In an extended Branch and Bound algorithm for solving discrete programming problems with 
semi continuous and SOS type variables, some measure comparable to this integer 
infeasibility  measure  needs  to  be  defined  for  these  types  of  variables  and sets . 

An unsatisfied  semi  continuous  variable  xj  with solution value of, 0 < xj < lj in  a  given sub- 

problem has, 

                                                 tj = min {xj/lj , l-( xj/lj)}. 

In  the  case  of  special ordered  sets  some  analogy  has  been  given  by  Forrest (1974), using the 

general upper bound of the convexity row ∑xj=1, that   is, 

       tl =   1 -     max(xj),     j ∈ N6l

for  special  ordered   sets  of   type   one  and  similarly, 
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tk = 1 -   max(xj),   j ∈ N6k

for  special ordered sets of  type two. 
The above expressions defined for special ordered sets do not properly reflect a discreteness 
measure since it is by no means certain that, the largest variable (or sum of adjacent 
variables)  in  a set on any branch will  become unity in any feasible solution. 

We have therefore introduced the following measure for an unsatisfied special ordered set 
of type one as, 

,
k
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l ρ

−
=
ι  

where, 
ll is the indexof the last nonzero in the set  l, 
kl is the first  nonzero index in the set  l, and  

l  is the number of variables in the  set l. ρ

Similarly for an unsatisfied special ordered set of type two, this measure is, 
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When the type one and type two sets conditions are satisfied tl ,  tk assume zero values. 
 
Otherwise               0< tl ,tk < 1 compare  with  the fractional values of zero-one integer  variables. 

These measures can be also used for calculating the sum of fractions or integer infeasibility 

of  a subproblem. 
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5.4 Bounding the Tree Search 
 
Once   an   integer   solution   x0c  (the  objective   function  value  of   the  incumbent)   has   been 
obtained,  it  can  be  used  to restrict  the  tree  search  in  the following  way. 
A  subproblem  can  be  set  to  terminal  (leaf)  node  of  the  tree  and  excluded  from  the further 
expansion  by  one  of  the  following  conditions: 
i) eliminate  a  subproblem  k  with  the upper  bound  value  of  Uk  from  the  further  expansion if 

Uk  ≤  x0C. 
ii) If a dual method is used to solve a subproblem then it always provides an upper bound 
on the objective  function  value  of  the  subproblem  after  the  dual  feasibility  is  gained.  If  this 

upper bound Uk,  reaches  or  passes  the  incumbent    value    (Uk  ≤  x0C), then  the  dual  iteration 

can  be abandoned  together  with  the  subproblem   (node). 
iii) If  there  is  no  feasible  solution  to  the  subproblem   then  again it can  be abandoned. 

Postponement   of  a  Node in  the  Tree  Search 

The  Lagrangean  Relaxation  method  first  proposed  by  Geoffrion  (1974),  often   provides a  good 

bound estimate for the  objective  function  of  the  integer  solution  that  may  be  found at  a  given 
node. Let Ek denote such a bound estimate for the kth node. In theses cases if Ek < x0C then 
the search beyond node k can be postponed. This postponement strategy suggested by Beale 
(1985),  can  also  influence  the  size  of  the  search  tree. 

5.5  The  Generalized  Tree   Search   Strategies. 
Experiments on real life test problems using different strategies show that each individual 
strategy behaves differently on different test problems and therefore, it is worthwhile to have 
a  system  which  supports  different  strategies  for  the users.  
In  principle  the  node  choice  may  be  considered  separately  from  the  variable  choice  criterion. 
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But not all such choices can be carried out independently of the information provided by the 

variable choice procedure. In a Branch and Bound code applying some of these rules is 

subject to the availability of the information such as integer feasible solution and pseudo costs 

of integer variables. 

A  complete  tree  search  strategy  STR(V,N)  is defined  by  a  unique  combination V,N of 

variable  and  node  choice  rules  where,   V ∈ {VC1 ,..,VC6},   N  ∈  {NCl ,..., NC6 } ’   and        
  

 
NC1: Last in first out (LIFO)  VC1:  Maximum    Fraction 

NC2: BP Criterion VC2:   Minimum     Fraction 
 
NC3: Node Estimation using Penalties                                     
 
NC4: Node Estimation using  Pseudo-Costs 

VC3:   Minimum    Pseudo-Cost 
VC4:   Estimated    Degradation 

NC5: Node Estimation using Pseudo Shadow Costs              VC5:   Minimum    Penalty 

NC6: Percentage Error Criterion  VC6:  Given   Priority  Order 

The  table  below  shows   the  possible  combinations   of  node  and  variable  choices: 

 
 VC1 VC2 VC3 VC4 VC5 VC6 

NC1 √ √ √ √ √ √ 

NC2 √ √ √ √ √ √ 
NC3 √ √   √  

NC4 √ √ √    
NC5 √ √  √   
NC6 √ √  √   

 Table5.1 
We  observe  that  the  combination  of  some  strategies  are  not  included,  as they require an 

Excessive    amount  of   computational   effort. 
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6. Data Structures for representing Discrete variables, Set variables and the Branch and 
Bound Tree. 
6.1 Data Structure for Representing Discrete and Set variables 
In order to introduce discrete and set variables into our linear programming optimiser, 
FortLP, the existing data structure has been extended in the following  way.  
FortLP data  structure uses a sparse column storage scheme  which is described by 
Tamiz(1986).   The following diagram gives the representation of the column j of the A 
matrix in  a compact form, 
                                  Column(j) 
 

→PNCOLP(j) 
ICLCOD 

PRUPVA 

NONZER 

. . . 

IROW(i) 

. . . 

. . . 

PLXT(i) 

. . . 

Diagram 6.1 - Data Structure for representing Discrete variables 

where, 
PNCOLP(j), is the pointer to the beginning of column j of the A matrix, 
ICLCOD, is the column code, 
PRUPVA, is the pointer to the upper bound value, 
NONZER, is the number of non-zero entries in column j, 
IROW(i), is the row position of th e ith non-zero entry in column j, and 
PLXT(i), is the address in the distinct non-zero pool of  its  corresponding value. 

ICLCOD was originally used to identify ordinary, bounded, and fixed variables.  Here  we 
 
extend  ICLCOD to define binary, general integer, and semi-continuous variables as well as 
 
ordinary, bounded, and fixed variables. The lower bound on continuous and semi-continuous 
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variables  are  stored  separately  in  an array called  RLOFXV(NCOL). 

To represent the variables of a given SOS1 or SOS2 the following items of information are 
introduced. The first column SETBEG, the last column SETEND, the reference row 
REFROW, the convexity row CONROW, and the function row FUNROW. In order to 
incorporate this information into FortLP, a compatible data structure is introduced which 
extends the existing data structure such that two new locations added to the end of each 
packed column belonging to a given set. The first location SETNTP presents the set number 
and type (if negative then SOS1 otherwise SOS2), and the second location SOLVAL presents 
the current solution value of the column. These solution values are refreshed during the tree 
development process by storing this information with the column, the average weighted 
reference row value is easily computed and utilised in the partitioning of the set. The pointers 
and  the  contents  of  the  storage  structure  are  displayed  in  diagram 6.2. 

6.2  Data  structure  for  representing   the  Search Tree 
 
The stages of Branch and Bound algorithm are conceptually represented as a search tree in 
which each node of the tree represents a subproblem. The root of the tree corresponds to the 
original linear programming relaxation of the problem. When any node or subproblem is 
explored, either two new branches with corresponding sub-problems are created from it or 
the node is bounded from further expansion (see section 5.4). In either case the processed 
node is eliminated from the list of unexplored subproblems. Therefore, only the alternative 
subproblems (unexplored nodes) which need to be solved are stored. It is easily seen that the 
information  concerning  the  leaf  nodes  of  the  tree  are  sufficient   to  represent  the  entire  search 
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PACKED 
COLUMN 

SETNTP 

SOLVAL 

                 .  .   .   .   . xj

SETBEG 

SETEND 
 

REFROW .  .  .  .  . 

PACKED 
COLUMN 

SETNTP   

SOLVAL 

CONROW 

FUNROW 

 
 

j,...,j+p are the indices of the  
variables in the set k   

 
  Diagram 6.2 - Data structure for representing the kth  Special Ordered Set 

tree. Following the sequence in which the leaf nodes are generated, they are put in a list 
linearly, overwriting a processed node when appropriate. This data structure is well known 
as the stack mechanism. 

In defining the subproblem only the bound information are altered thus, size of the linear 
programming subproblems are constant . From the point of view of storage it is a 
considerable advantage that the A matrix is stored  only once. 
In this approach, only the differences between the parent and the subproblem need to be 
stored. These differences are in the bounds on the discrete variables, the upper bound on the 
objective function value, some estimate of the objective function value and the optimum basis 
parent   from  which the  new  subproblem  is  generated.  The  storage  requirement  for 

representing  a node  may be computed in the following way. 

xj+p

kth 
Set
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Let, 
 

NCOL be the number of columns, and 
MROW be the number of rows of a model including the objective function. 

For  each  node we store the following  vector array,  
ICOLPT(NCOL), the array of pointers to star of each column, INTEGER*4,  
ICOLBT(NCOL), the array of column types, this covers binary, general integer and            

     semi-continuous variables, INTEGER*2,    
ICOLVP(NCOL),the array of pointers to the current bound values, INTEGER*2,and 
IBSIND(MROW), the array of basic columns for the node, INTEGER*4. 

We also store the following scaler information for each node, 

PARNOD, the parent node number,  
IDEPTH, the depth of the node in the tree,  
SUMINF, the non-discreteness measure of the node,  
NONDIS, the number of unsatisfied discrete variables and sets,  
RPAROB, the upper bound on the objective function value of the  node,  
RESTIM, an estimate of the integer feasible solution deriving from the node, 
VARCHO, the chosen branching variable or set variables  marker, and  
SETCHO, the set chosen for branching. 

Diagram  6.3   contains  an  explanation  of  the  storage  structure. 

The  storage  requirement  S  to  represent  a  node  is  computed  as, 

   S  (full  word)   =   2*NCOL   +  MROW + 8, 

And  the  total  storage  requirement TS is  equal  to, 

    TS = S*MAXSTK, 

where MAXSTK is the user assigned parameter for the maximum number of waiting  nodes 

(stack). 

If  the problem size is large and the total storage  requirement TS is larger than the available 
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NODE 
K 

 
PARNOD 

 

I*4  IBSIND MROW 

<————— 

STACKPT 

 

 
 

NODE 
K+l 

NODE 
K+2 

 
 
 
NEW 
STACKPT 
<———— 

 

 

Note that, by the stack mechanism node k  is  overwritten   by   node  k + l   followed  by 
                      k+2   which  extends  the  stack.  
Diagram    6.3 –  Illustrates the Node  Representation. 
 

memory then this information is stored in a direct access file. The list of unexplored node 
is   stored   in   an   array   with  MAXSTK   size  which   provides   the   pointers   to  the   beginning   of   each 
node  where  is   kept   or   gives   the   record   number  on  the  file. 
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7. Experimental  Results. 
 

As   a  part of our investigation  a number  of  test  problems  were  collected. These test  problems 
are  listed  in  appendix  2 of  this  report.  Majority  of   these  test  problems  are  real life  models 
which  arise  in  different  application  covering   many  industry  sectors  and  MIPLIB   (Mixed 
Integer  Programming  Library  of  test  problems). Given  the  wide  range  of  problem  types  and 
fairly   erratic  behaviour  of  search  trees, we  have  decided   to  investigate  only  six   strategies 
(table  7.1)  out  of   twenty   four  possible  strategies  (table (5.1) over  a   number of models listed 
in   table  7.2. 

The preliminary investigation of other strategies over a few chosen test problems showed a 
wide  variation   of  the  search  tree. 
 

Variable  Choice  Strategy  (VARCHO) 

VARCHO=    1 
                        

VC1 Minimum  Fraction, (Minmin) 

      
                        2 

VC2 Maximum Fraction, (Minmax) 

                        3 
 

VC3 Given Priority Order 

 NODE   Choice  Strategy   (FNODCH  &  SNODCH) 

FNODCH& 1 
SNODCH 
 

NC1     
 Last In First Out, (LIFO) 

                        2 NC2 ~ Extended Last In First  Out, (E-LIFO) 

                        3 NC3 Best  Projection,  (BP) 

  ~ NC2: an extended LIFO criterion which  first fixes  the  chosen variable to  the  integer value farthest from  its fractional value and  
              then process the corresponding node. 
                                        Table  7.1 -  Explanations  of  VC#  and  NC# 

Table  7.2   represents    the   list   of   chosen    models   and   includes   the   following   items   of 
information:- 
 
NAME - name  of  the  problem 
ROWS - number   of  constraints in  the  problem,  not  including  free  rows 
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COLS  - total   number  of  variables  in  the  problem 
BV  - number of  variables   that   are   binary 
UI  - number   of   general   integer    variables 
SC  - number  of  semi-continuous  variables 
S1, S2  - number  of   special   ordered   sets   of type  one  and  two 
IP obj.  - Optimum   integer   solution   to   the   problem, 
LP obj.  - optimal   solution   to   the   linear   relaxation   of   the   problem 
 

        NAME ROWS COLS BV UI SC S1 S2 IP obj. LP obj. 

MODGLOB 291 422 98 --- --- --- --- 20740508.0 20430947.0 

EGOUT 98 141 55 --- --- --- --- 568.10 149.58 

KHB05250 101 1350 24 --- --- --- --- 106940226.0 95919464.0 

FIXNET3 478 878 378 --- --- --- --- 51973.0 40717.01  - 

P0040 23 40 40 --- --- --- --- 62027.0 61796.5 

P0201 133 201 201 --- --- --- --- 7615.0 6875.0 

P0291 252 291 291 --- --- --- --- 5223.7 1705.1 

MAT3B 96 710 10 --- --- 70 --- 72023.76 60728.3 

PROBLEM 1 534 632 7 1 --- 2 1 53.36 54.40 

PROBLEM 2 652 643 18 1 --- 2 1 53.36 54.40 

MOZIGEN 11 19 1 1 1 2 1 95.16 93.43 

BEALE 171 303 38 --- --- 11 --- 100.00 100.00 

S2MATRIX 51 450 — — --- --- 25 157.9 225.88 

GAS1 211 75 12 --- --- --- --- -6.65 -6.79 

MICHSC 90 127 64 --- 63 --- --- 5177.8 5167.0 

HYPERPL 128 68 63 --- --- --- --- 1336.5 333.33 

AIR02 50 6774 6774 --- --- --- --- 7810.0 7640.0 

STEIN 15 36 15 15 --- --- --- --- 9.0 7.0 

GRAY2IN 35 48 24 --- --- --- --- 202.3 185.5 

SAMPLE2 46 67 21 --- --- --- --- 375.0 247.0 
GRAY9IN 63 96 48 --- --- --- --- 280.95 256.01 

Table   7 . 2 -  Model     statistics 
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The experimental results for these test problems are presented in tables 7.3 to 7.8. In these 
tables of test results we have decided not to include time taken for solving these problems 
since the performance of different Branch and Bound algorithms are closely connected with 
the  number  of  sub-problems  (nodes)  which  are  proposed  and  investigated  by  the search. 

The first row of these tables indicates the strategy used for solving the problems, (NC#, 
VC#). Column marked with "Name" gives the name of the models. Columns marked with 
"First Integer Solution", present the number of nodes processed to find the first integer 
solution and the corresponding solution. Similarly columns with the heading "Best Integer 
Solution" present the Best integer solution found so far. Number of integer solutions found 
during the course of a search is reported in a column with the heading "no. of int. feas sols". 
Finally, we report the total no of nodes investigated in the column marked "Total no. of 
nodes". 
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column   with  the  heading  "no. of  int. feas sols".   Finally, we report the total no of nodes 

investigated  in  the  column  marked "Total  no.of nodes". 
 

                                                             Search   Strategy,  STR (NC1,  VC1) 

First Integer Solution Best Integer Solution 
Name 

no. nodes obj. value no. nodes obj. value 

no. of 
int feas 
 sols. 

Total, 
no. of 
nodes 

MODGLOB 98 36180511.5 46967 ~ 26467978.1 184 49801 

EGOUT 94 626.8 1333 568.1 12 5240 

KHB05250 23 108684849.0 15769 106940226.0 6 24388 

FIXNET3 183 100073.1 45849 ~ 61986.0 94 49801 

P0040 2 62166.0 8 62027.0 3 144 

P0201 19 8635.6 533 7615.0 9 4558 

P0291 16 25964.4 614 5223.7 15 2164 

MAT3B 627 85857.0 33583 ~ 81807.0 43 49801 

PROBLEM 1 7 48.98 35 53.36 6 36 

PROBLEM2 6 48.98 39 53.36 7 40 

MOZIGEN 5 111.5 9 95.16 3 12 

BEALE 528 100.0 528 100.0 1 528 

S2MATRIX 38 157.9 36838 157.9 5 40301 

GAS1 9 -6.22 39 -6.65 4 40 

MICHSC 43 5241.27 4137 5177.8 24 4800 

HYPERPL 207 1336.5 207 1336.5 1 300 

AIR02 19 7984.0 49 7810.0 3 58 

STEIN15 6 9.0 6 9.00 1 300 

GRAY2IN 16 238.89 134 203.34 9 162 

SAMPLE2 21 445.0 196 375.0 3 380 

GRAY9IN 12 285.74 683 280.94 7 782 

      Table 7.3 - LIFO  and Minmin 
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In the following tables solutions marked with the sign “ ~ ”are the best (not necessarily 

optimal) integer solutions found during the course of a search. We could not terminate the 

search due to a long performance time or  lack  of space for storing the sub-problems. 
 

Search Strategy, STR(NC1, VC2) 

First Integer Solution Best Integer Solution 
Name 

no. nodes obj. value no. nodes obj. value 

no. of 
  int  feas 

    sols. 

Total, 
no. of 
nodes 

MODGLOB  41 29764906.2 30326 ~ 26007495.0 336 49801 

EGOUT 94 670.0 10046 568.1 20 26236 

KHB05250 19 111632934.0 10002 106940226.0 9 13524 

FIXNET3 180 232184.7 10119~ 208771.7 86 49801 

P0040 11 62597.0 56 62027.0 8 120 

P0201 18 8595.0 219 7615.0 13 938 

P0291 36 16342.8 43131~ 14905.0 8 49801 

MAT3B 125 82705.0 39681~ 78855.0 14 49801 

PROBLEM 1 7 48.98 27 53.36 6 28 

PROBLEM2 6 48.98 35 53.36 7 36 

MOZIGEN 7 111.5 9 95.16 3 12 

BEALE 28 100.0 28 100.0 1 28 

S2MATRIX 38 157.9 38 157.9 1 36050 

GAS1 2 -6.65 2 -6.65 1 12 

MICHSC 80 5308.4 29855~ 5279.1 8 49801 

HYPERPL 105 1336.5 105 1336.5 1 132 

AIR02 13 26740.0 921 7810.0 8 922 

STEIN 15 6 9.0 6 9.0 1 264 

GRAY2IN 9 232.9 101 202.34 4 142 

SAMPLE2 43 565.0 297 375.0 7 404 

GRAY9IN 
17 371.3 368 280.9 17 1044 

Table 7.4 - LIFO and Minmax 
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In our investigation of the LIFO criterion we have set the maximum number of nodes 

to 49801 and for the BP criterion we have set the maximum number of nodes to 9980 since 

BP criterion creates a bushier tree than LIFO and requires more storage. 
 

Search Strategy, STR(NC2, VCl) 

First Integer Solution Best Integer Solution Name 
 no. nodes obj. value no. nodes obj. value 

no. of 
int feas 

sols. 

Total. 
no. of 
nodes 

MODGLOB 35 20880067.2 30204 20740508.0 13 35288 

EGOUT 39 601.4 5470 568.1  9 8300 

KHB05250 21 129159364.0 17783~ 114538541.0 66 49801 

FIXNET3 105 86408.0 12503 ~ 80309.0 13 49801 

P0040 11 62134.0 131 62027.0  4 134 

P0201 45 11050.0 15657 7615.0 76 17564 

P0291 31 110611.3 46104 5223.0 194 46336 

MAT3B — — — —  0 49801 

PROBLEM 1 12 -574.33 42 53.36 10 44 

PROBLEM2 12 -574.33 64 53.36 11 66 

MOZIGEN 3 96.16 7 95.16  3 8 

BEALE 17 100.00 17 100.00 1 17 

S2MATRIX 38 157.9 38 157.9 1 34060 

GAS1 4 -6.49 9 -6.65  2 22 

MICHSC 18 5274.5 8260 5177.8 34 8746 

HYPERPL 92 1336.5 92 1336.5 1 92 

AIR02 3 8026.0 16 7810.0  2 18 

STEIN15 6 9.0 6 9.0 1 286 

GRAY2IN 11 234.64 224 202.34  9 242 

SAMPLE2 13 475.0 119 375.0  4 264 

GRAY9IN 7 300.1 331 280.94  9 754 

Table 7.5 - E-LIFO and Minmin 
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Search Strategy, STR(NC2, VC2) 

First Integer Solution Best Integer Solution 
Name 

no. nodes obj. value no. nodes obj. value 

no. of 
int feas 

sols. 

Total, 
no. of 
nodes 

MODGLOB 45 28971733.9 28365 ~ 20740508.0 12 49801 

EGOUT 38 631.5 41519~ 568.4 15 49801 

KHB05250 19 122690022.0 5568 106940266.0 21 9566 

FIXNET3 59 76085.0 16902~ 60213.0 15 49801 

P0040 11 62134.0 91 62027.0 8 110 

P0201 50 11370.0 2153 7615.0 33 2520 

P0291 25 61361.2 15614~ 41361.0 7 49801 

MAT3B 115 81713.0 1603~ 76313.0 71 49801 

PROBLEM1 12 -547.3 36 53.36 10 38 

PROBLEM2 12 -547.3 40 53.36 11 42 

MOZIGEN 3 96.16 7 95.16 3 8 

BEALE 22 100.0 22 100.0 1 22 

S2MATRIX 39 157.9 39 157.9 1 3805 

GAS1 5 -6.31 30 -6.65 3 30 

MICHSC 26 5322.7 4616- 5285.92 9 49801 

HYPERPL 136 1336.5 136 1336.5 1 140 

AIR02 10 9404.0 1805 7810.0 10 4650 

STEIN 15 7 9.0 7 9.0 1 262 

GRAY2IN 14 222.09 123 202.34 6 160 

SAMPLE2 15 415.0 29 375.0 2 234 

GRAY9IN 14 340.3 925 280.9 14 1282 

Table 7.6 - E-LIFO and Minmax 
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Search  Strategy,  STR(NC3, VC1) 

First Integer Solution Best Integer Solution 
Name 

 no. nodes obj. value no. nodes obj. value 

no. of 
int feas 
   sols. 

Total. 
no. of 
nodes 

MODGLOB 44 21464525.0 2202~ 20763860.0 21 9980 

EGOUT 46 601.44 8559 568.1 9 9250 

KHB05250 23 129115788.0 9012~  116836089.0 50 3980 

FIXNET3 70 55845.0 8305~ 55845.0 1 9980 

P0040 6 62119.0 27 62027.0 4 134 

P0201 29 7735.0 38 7615.0 3 3692 

P0291 78 59946.2 5223 5223.74 44 6779 

MAT3B 170 79646.0 7806 72023.7 43 9876 

PROBLEM 1 24 52.27 36 53.36 4 43 

PROBLEM2 24 52.28 36 53.36 5 43 

MOZIGEN 4 95.16 4 95.16 1 11 

BEALE 1305 100.0 1305 100.0 1 9767 

S2MATRIX --- --- --- --- 0 9980 

GAS1 5 -6.49 9 -6.65 2 23 

MICHSC 918 5209.0 4043 5177.86 12 4171 

HYPERPL 280 1336.5 280 1336.5 1 323 

AIR02 3 8416.0 29 7810.0 3 47 

STEIN 15 9 9.0 9 9.0 1 277 

GRAY2IN 10 212.39 166 202.34 5 192 

SAMPLE2 20 505.0 293 375.0 5 333 

GRAY9IN 19 300.19 168 280.9 7 665 

Table  7.7 - BP and  Minmin 
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    Search Strategy, STR(NC3, VC2) 

First Integer Solution Best Integer Solution 
Name 

no. nodes obj. value no. nodes obj. value 

no. of 
int feas 

sols. 

Total, 
no. of 
nodes 

MODGLOB   31   20751102.1   8243~   20745508.0   18   9980 

EGOUT   39   631.54   672~   602.32   4   9980 

KHB05250   20   116800424.0   5158  106940226.0   13   3322 

FIXNET3   59   76085.0   5931~  75213.0  13   9980 

P0040   7   62119.0   68   62027.0   3   122 

P0201  18   7805.0   47   7615.0   3   735 

P0291   30   35072.0   327   26869.0   3   9980 

MAT3B   83   76313.0   4303~   72986.6   16   9980 

PROBLEM 1   24   52.27   34   53.36   4   47 

PROBLEM2   24   52.28   34   53.36   4   47 

MOZIGEN   4   95.16   4   95.16  1   11 

BEALE  1296  100.0   7697~   100.0  8   9980 

S2MATRIX   894 197.3   6305~   187.9  17   9980 

GAS1   6 -6.49   12   -6.65   2   19 

MICHSC   14  5189.13   16   5177.8   2   4759 

HYPERPL   81 1336.4   81   1336.4  1   134 

AIR02   4  26048.0   59   7810.0 4   63 

STEIN15   9  9.0   9   9.0 1   273 

GRAY2IN  11  224.3   100   202.3 5   145 

SAMPLE2  16  415.0   66   375.0 1   235 

GRAY9IN  10  298.2   618   280.9 6  1041 

                                                        Table  7.8 – BP   and   Minmax 
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A Discussion of Test Results 

In this section we discuss our results reported in the previous section. We have 
prepared table (7.9) which presents the best performance and the worst performance of the 
strategies used for solving each test problem. We have compiled this table by considering 
each test problem and looking up tables (7.3) to (7.8) and extracting the best and the worst 
performing heuristics. Our measure of search performance is based on the number of nodes 
processed and the difference between the optimal integer solution to the problem and the best 
solution found so far. 

Table (7.9) together with tables (7.3) to (7.8) demonstrate the erratic behaviour of 
different variable choice and node choice criterion. For example problem MODGLOB is 
solved only by STR(NC2,VC1) which scores the maximum number of worst performances 
(6 cases) in the table. STR(NC3, VC2) seems to produce the best result although it cannot 
produce any solution for problem BEALE which was solved by other  strategies. 

The most difficult problems amongst our test problems are the first four test 
problems. This includes FIXNET3 which was not solved by any of the above strategies 
however, STR(NC3, VC1) finds a very close integer feasible solution to its integer optimal 
solution. The least difficult problem is AIR02 which is a scheduling problem with 6774 
binary variables. 
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Worst and Best Performing Strategies 

Worst Performance Best Performance 
Name 

Strategy no. nodes obj. value Strategy no. nodes obj. value 

MODGLOB NC1-VC1 46967~ 264679978.0 NC2-VC1 30204 20740508.0 

EGOUT NC2-VC2 41519~ 568.4 NC1-VC1 1333 568.1 

KHB05250 NC2-VC1 17783~ 114538541.0 NC3-VC2 5158 106940226.0 

FIXNET3 NC1-VC2 10119~ 208771.7 NC3-VC1 8305~ 55845.0 

P0040 NC2-VC1 131 62027.0 NC1-VC1 8 62027.0 

P0201 NC2-VC2 15657 7615.0 NC3-VC1 38 7615.0 

P0291 NC2-VC2 15614~ 41361.0 NC1-VC1 614 5223.0 

MAT3B NC2-VC1 49801 ~ — NC3-VC1 7806 72023.7 

PROBLEM 1 NC2-VC1 42 53.36 NC1-VC2 27 53.36 

PROBLEM2 NC2-VC1 64 53.36 NC3-VC2 34 53.36 

MOZIGEN NC1-VC2 9 95.16 NC3-VC1 4 95.16 

BEALE NC3-VC2 7697~ 100.00 NC2-VC1 17 100.00 

S2MATRIX NC3-VC1 9980~ ... NC2-VC2 39 157.9 

GAS1 NC1-VC1 39 -6.65 NC1-VC2 2 -6.65 

MICHSC NC1-VC2 29855~ 5279.1 NC3-VC2 16 5177.8 

HYPERPL NC3-VC1 1280 1336.5 NC3-VC2 81 1336.5 

AIR02 NC2-VC2 1850 7810.0 NC2-VC1 16 7810.0 

STEIN15 NC3-VC1 9 9.0 NC2-VC2 7 9.0 

GRAY2IN NC2-VC1 224 202.34 NC3-VC2 100 203.3 

SAMPLE2 NC1-VC2 297 375.0 NC2-VC2 29 375.0 

GRAY9IN NC2-VC2 925 280.9 NC3-VC2 168 280.9 

Table 6.4.1 - Performance Table 
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Appendix  1.  Input   Data   Definition   for  The  General   Discrete  Programming  Problems. 

The  Input  data  definition  for  the  general  discrete  programming  problems  is  shown  by  an 

example,  consider   the   following  model, 

Min:    X0 =  3X1  +  4X2  +  5X3  -  X4  +  2X5  +  3X6  +  4X7  +  3X8  +  2X9  + 2X11 + 2X12

 +X13  +   10X14  +   25X15  -  7.5X16

subject  to: 
2Xl   +   3X2   -   4X3   +   X4   +   X17   +   2X18    +   3X19    ≤   25 

5X2  +  3X3  -  X4  +  3X18  ≥ 50 

                                             6X1 +  3X2   +  2X17  +  Xl9  = 100 

 X1  - 100 X4  ≤  0 

X6   +  2X7   +  3X8  +  4X9  -  X17   = 0 

 2X11  +  3X12  -  X18  =  0 

X13  +  5X14  +  10X15  +  15X16  -  X19  =  0 

 X5   +  X6   +  X7   +  X8   +  X9   =   1 

X10   +  X11  +  X12  =  1 

 X13  +  X14   +  X15   +  X16  =  1 

   0  ≤  X1  ≤  100 

 0  ≤   X2   ≤   20 ,  and  integer 
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1 ≤ X3 ≤ 10 
X3 = 0 
 

         X   0 or 1 4  = 

X17  ’    X18  ’  X19    ≥ 0 

Only one of the set variables X5,...,X9 can be non-zero 

 
Not more than 2 adjacent variables from set 
zero. 

{X10,...,X12} and set {X13,...,X16} can be  non- 

The  input  data  definition  of  the  above  model  in  the  extended  mathematical  programming  
format   (MPSX)   is  as   following, 

NAME MGINT 
ROWS   
N  OBJ   
N  ’MARKER’   
L  COS1 
G  COS2   
E  COS3 
E  CON1 
E  CON2   
E  CON3   
E  REF1 
E  REF2   
E  REF3   
COLUMNS   

X1 OBJ 3.0 
X1 COS1 2.0 
X1 COS3 6.0 
X2 OBJ 4.0 
X2 COS1 3.0 
X2 COS2 5.0 
X2 COS3 3.0 
X3 OBJ 5.0
X3 COS1 -4.0 
X3 COS2 3.0 
X4 OBJ -1.0 
X4 COS1 1.0 
X4 COS2 -1.0 
X17 COS1 1.0 
X17 COS3 2 . 0
X17 REF1 -1.0 
X18 COS1 2.0 
X18 COS2 3.0 
X18 REF2 -1.0 
X19 COS1 3.0 
X19 COS3 1.0 
X19 REF3 -1.0 

S1 S1SET1 ’MARKER’ ’SETORG
X5 OBJ 2.0 
X5 CON1 1.0 
X6 OBJ 3.0 
X6 CON1 1.0 
X7 OBJ 4.0 
X7 CON1 1.0 
X8 OBJ 3.0 
X8 CON1 1.0 
X9 OBJ 2.0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
REF1 
 
REF1 
 
REF1 
 
REF1 
 
REF1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 . 0 
 
1 . 0  
 
2 . 0  
 
3 . 0 
 
4 . 0 

either
or {
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X9 CON1 1.0 
S1SET1E ’MARKER’ ’SETEND’

S1 SISET2 ’MARKER’ ’SETORG’
X10 CON2 1.0 
Xll OBJ 2.0 
Xll CON2 1.0 
X12 OBJ 1.0 
X12 CON2 1.0 
S1SET2E ’MARKER’ ’SETEND’

S1 SISET3 ’MARKER’ ’SETORG’
X13 OBJ 1.0 
X13 CON3 1.0 
X14 OBJ 10.0 
X14 CON3 1.0 
X15 OBJ 25.0 
X15 CON3 1.0 
X16 OBJ -7.5 
X16 CON3 1.0 
S1SET3E ’MARKER’ ’SETEND’

RHS   
M0Z1 COS1 25.0 
MOZ1 COS2 50.0 
MOZ1 COS3 100.0 

BOUNDS   
 UP MOZ2 X1 100.0 
 UI MOZ2 X2 20.0 
 SC MOZ2 X3 10.0 
 BV MOZ2 X4 1.0 
ENDATA   

REF2 

REF2 

REF2 

REF3 
REF3 

REF3 

REF3 

REF3 

1.0 

2.0 

3.0 

’E‘ 
1.0 
1.0 

5.0 

10.0 

15.0 

’E’ 

where UP presents the continuous variable X1 with upper bound of 100.0, UI is presenting 

the general integer variable X2 with upper bound of 20.0, SC is the semi-continuous variable 

X3 with upper bound of 10.0 and default lower bound of 1.0, and X4 is the binary variable. 
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A ppendix 2. Table  of  Test Problems 

NAME ROWS COLS BV UI SC S1,2 IP obj. LP obj. 

   EGOUT        98 141 55 — — —    568.1        149.58 

   MODGLOB        291 422 98 — — — 20740508.0 20430947.0 

   BEALE       171 303 38 — — 11    100.00        100.00 

  MOZIGEN       11       19 1 1 1 3    95.16         93.43 

   S2MATRIX        51 450 — — — 25   157.9         225.88 

   SOUZA       191 194 11  — 11   100.00        100.00 

   KHB05250       101 1350 24 — — — 106940226.0 95919464.0 

   MICHA       90 127 64 — 63 —    5177.8        5167.0 

   BPGAS1 211 75 12 — — —    -6.65       6.79 

  GRAY2IN        35 48 24 — — —     202.30        185.5 

  GRAY9IN        63 96 48 — — —     280.95         256.01 

  HYPERPL 128  68 63 — — —     1336.5         333.33 

  SAMPLE2 46  67 21 — — —      375.0         247.0 

  MAT1A 176  202 10 — — 22      5.68         0.0 

  MAT1B 262  435 16 — — 25      6.7        0.0 

  MAT1C 615  676 38 — — 38      9.7        0.0 

  MAT2A 102   1092 12 — — 90      72037.8       66150.5 

  MAT2B         83 710 10 — — 70      60733.0       55500.5 

  MAT2C 118   1515 15 — — 100     76843.1       71950.5 

  MAT2D        70  714 14 — — 50     41360.2       39019.1 

  MAT2E        66 411 11 — — 40     34437.9        33209.2 

  MAT3A 114   1134 14 — — 80      73864.5        64566.9 

  MAT3B         96   1515 10 — — 70     72023.76       60728.3 

  MAT3C 92 732 6 — — 60     56274.1       50199.9 

  PROBLEM1 534 632 7 — — 3     53.36       54.40 

  PROBLEM2 652 643 18 — — 3     53.36       54.40 

  PROBLEM3 652 643 18  — 3     51.02       52.45 

  PROBLEM4 652 643 144  — 3     53.36        54.40 

  PROBLEM5 700 678    18  — 4    -5.93        11.08 

  PROBLEM6 652 643    144  — 3     50.05 F       52.45 

  PROBLEM7 1500 1129     2  — 11     28.46       2934 

  AIR01       23     771     771 — — —     6796        6743.0 

  AIR02       50 6774 6774 — — —    7810        7640.0 

  AIR03       124 10757 10757 — — —   340160 338864.25 

  AIR04 8223 8904 8904 — — —   56138 55535.43 
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NAME ROWS COLS BV UI SC S1.2 IP obj. LP obj. 

AIR05 426 7195 7195 — 
— ... 

 26402   25877.6 

AIR06 825 8627 8627 — 
— — 

 49649   49616.3 

BELL3A 123 133 39 32 
— — 

 878430.3   862578.6 

BELL3B 123 133 39 32 
— — 

 11786160.6   11404143.8 

BELL4 105 117 34 30 
— — 

 18541484.2   17984775.9 

BELL5 91 104 30 28 
— — 

 8966406.4   8608417.9 

BM23 20 27 27 — 
— — 

 34   20.57 

CRACPB1 143 572 572 — 
— — 

 22199   22199.0 

DIAMOND 4 2 2 — 
— — 

 INF  - 1.0 

DSBMIP 1182 1886 160 32 
— — 

 -305.19   -305.1 

EGOUT 98 141 55 — 
— — 

 568.10   149.58 

ENIGMA 21 100 100 — 
... — 

 0.0   0.0 

FIXNET3 478 878 378 — 
— — 

 51973   40717.01 

FIXNET4 479 878 378 ... 
— ... 

 8936   4257.97 

FIXNET6 479 878 378 — 
— — 

 3983   1200.0 

FLUGPL 18 18 — 11 
— ... 

 1201500   1167185.7 

GEN 780 870 144 6 
— — 

 112313   112130.0 

KHB05250 101 1350 24 — 
— ... 

 106940226   95919464.0 

L152LAV 97 1989 1989 — 
— — 

 4750 F    4656.3 

LP41 85 1086 1086 — 
— ... 

 2967   2942.5 

ISEU 28 89 89 — 
— ___ 

 1120   834.68 

MODGLOB 291 422 98 — 
— — 

 20740508   20430947.0 

MISC01 54 83 82 — 
— — 

 563.5   5 7.0 

MISC02 39 59 58 — 
— — 

 1690   1010.0 

MISC03 96 160 159 — 
— — 

 3360   1910.0 

MISC04 1725 4897 30 — 
— — 

 2666.69   2656.42 

MISC05 300 136 74 — 
— — 

 2984.5   2930.9 

MISC06 820 1808 112 — 
— — 

 12850.8  12841.6 

MISC07 212 260 259 — 
— — 

 2810   1415.0 

MOD008 6 319 319 — 
— — 

 307   290.9 

MOD010 146 2655 2655 — 
— — 

 6548   6532.08 

MOD011 4480 10958 96 — 
— — 

 -54558535 -  62121982.5 

MOD013 62 96 48 — 
— — 

 280.9   256.02 

NOSWOT 182 128 75 25 
— — 

 -43   -43.0 

P0033 16 33 33 — 
— — 

 3089   2520.5 
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NAME ROWS COLS BV UI SC S1.2 IP obj. LP obj. 

P0040   23 40  40 — — — 62027 61796.5 

P0201   133 201   201 — — — 7615 6875.0 

P0282   241 282  282 — — ._ 258411 176867.5 

P0291   252 291  291 — — — 5223.7 1705.1 

P0548   176 548  548 — — — 8691 315.2 

P2756   755 2756  2756 — — — 3124 2688.7 

P6000   2095 5872  5872 — — ___ -2350544 -2351871.3 

PIPEX   25 48  48 — — — 788.2 773.75 

RENTACAR   6803 9557  55 — — — 30356761 28806137.6 

RGN   24 180  100 — — — 82.19 48.79 

SAMPLE2   45 67  21 — — — 375 247.0 

SENTOY   30 60  60 — — — -7772 -7839.2 

SET1AL   493 712   240 — — — 15869.7 11145.6 

SET1CH   493 712  240 — — — 54537.7 32007.7 

SET1CL   493 712  240 — — — 6484.25 1671.96 

STEIN 15   36 15   15 — — — 9 7.0 

STEIN27   118 27  27 — — — 18 13.0 

STEIN45   331 45  45 — — — 30 22.0 

STEIN9  13 9   9 — — — 5 4.0 

VPM1  234 378 168 — — — 20 15.4 

Explanation   of   columns: 

NAME - name   of   the   problem 
ROWS - number   of   constraints   in   the   problem,   not including   free   rows 
COLS - total   number   of   variables   in   the   problem 
BV - number   of   variables   that   are   binary 
UI - number    of    general    integer    variables 
SC - number   of    semi-continuous    variables 
S1,2 - number   of   special   ordered   sets   of   type   one   and   two 
IP obj. - best    known    integer   solution    to    the   problem, 

INF,    no    integer    feasible    solution    found 
F,   indicates   that   the   given   solution   is   not   integer  optimal 
if   there   is   no   qualifier   defined   the   given   solution   is   optimum 

LP obj. - optimal    solution    to    the    linear    relaxation   of   the   problem 
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