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A Method of Treating Boundary Singularities

in Time-Dependent Problems

GRAHAM E. BELL*
Department of Mathematics, Brunel University, Uxbridge

A method is presented for treating singularities which
occur in solutions of Parabolic partial differential
equations due to sharp corners in the boundary.

The method is essentially an extension of the method
due to Motz (1946) for solving Elliptic problems and
approximates to the analytical form of the singularity
in terms of neighbouring function values at each time
step. It is used in conjunction with the simple explicit
finite-difference scheme and subsequently the overall

method is explicit.

This work was sponsored by a Science Research Council (CAPS)
Award in conjunction with the Gas Council.



1. Introduction.

In recent years much attention has been given to elliptic
partial differential equations in domains which contain re-entrant
corners but little work has been done on corresponding parabolic
problems. Standard finite difference and, to a lesser extent,
finite element methods fail to produce accurate approximations

to the exact solution in the neighbourhood of a singularity.

In the following method the finite difference approximation
in such a neighbourhood is replaced by a truncated series repre-
sentation of the exact solution at points close to the corner.

The coefficients of this truncated series are estimated at each
time step in terms of the solution values at points where the
influence of the singularity is neglected and which have been
derived by an explicit finite difference process from the
previous time step. It is also possible to implement the
method with an implicit scheme but it is computationally
desirable to avoid the solution of awkward systems of equations
at each time increment. The analytical form of the exact
solution around a general sharp corner for the transient heat
flow or diffusion equation is derived in section 2 and is
applied in section 3 with reference to the re-entrant corner.
The number of terms included in the truncated form of the
solution is optional and is discussed later in terms of two

model problems.



2. Singularities in Time-Dependent Problems.

Consider the two dimensional, time-dependent, diffusion
equation in a bounded domain containing boundary singularities

due to the presence of sharp corners in the boundary where

viu 2@ (x,y) eR, t>0, 2.1
ot
u = f(x,y) (x,y) €0R, t=>0, (22
% =0 (x,y) €0R,, t=0 (23)
ou
ag+b(u—v) =0, (x,y) € OR,, t=0, 24)

and a, b v are constants.

The region R is a bounded domain with boundary
OR =0Rj{UORy, where ORj is that part of the boundary which

contains the singularities.

Taking a typical sharp corner P, we can express
(2.1) in polar coordinates r, # centred at P, (Fig. 1), in

the form
g L0 _ & 2.9

The boundary conditions (2.3) in the neighbourhood of

P become

&y at o =0, 0, (2.6)
00
Letting the solution of (2.5) have the form

0= e ER@E) y (0 Wr.0)



Fig. 1. Typical Corner.

where w(r,0) is a solution of Laplace's equation and represents
the steady-state form of the singularity, we obtain the following

equations for R and y

w o= - o7y, (2.7)
2

R' IR +R@2-2 )= o (2.8)
r 2

Equation (2.7) has a solution

w =A cos wf + B sin wb,
and (2.8) is Bessel’s equation with solution
R =ClJo(ar) , W >0,

which is finite at P.
Thus, a separation of variables solution of (2.5) is

U@ 0t = e Jo@ N [A cos ®0 + B sin of] + w(, 0).

2.9)



Imposing the boundary conditions (2.6) on the above solution

we obtain

B=0 ,

o = kn/0, k=0,1,2,....
where (Motz 1946)

w(r, 0) :chrkk cos kAG ,
k=0

with A=n/6, a solution of (2.5) and (2.6) becomes

u(r,6,t) = ZAk e Tk (ar) cos kk9+2ckrkxcos kAG. (2.10)
K=0 A K=0
A general solution in the neighbourhood of P will be

u=> > Aj e“”hjkk (ar)cos kLG + D c,r'™  cos kr6. (2.11)

j=0 K=0 K=0
The ocj's are the zeros of some function of Beasel functions

determined by the conditions on another part of the boundary.

The solution, (2.11), at point 0 is finite but
successive derivatives with respect to r at P may not be
finite. In fact, If 80 > n (A< 1) then all derivatives
of u with respect to r will contain singular terms. This
indicates the necessity for replacing the finite-difference

approximation at P.
3. Numerical Treatment of Singularities.
The method to be described is essentially that of

Motz (1946) and is applied to the problem of the re-entrant

corner, defined by



Therefore equation (2.11) becomes

© 0 0 2k
u(r,0,t) = Z ZAk] gt 2k ;k (oqr)cos% + chr cos 1;(9

j=0 K=0 K=0

Since we are interested in approximating to the solution in
the neighbourhood of P we express equation (3.1) as a single
power series in r by expanding the Bessel functions and

collecting terms of like powers in r. Thus
2k

—+2m
; o (—Dm( J
2k(2) _ z 2
3 m=0 m! r(23k + m + lj

and (3-1) can be written

0 23

u = ag(t) + a (t)cosz?r 4/3

+ a, (t)cos%r

r2 a5 (t)c0s20 —bo ()] +0(r5/3),

where the a s are functions of t and represent the
coefficients of the leading term in each Bessel function
expansion. The term ag is the coefficient of the first

term of J, ~and is given by

a, () =co + ) Aje™

=0

(3.1)

(3.2)



Similarly a; corresponds to the leading term of the
expansion of Jjand etc. The b's are the coefficients
of the second terra in each Bessel function expansion

and so on.

The series (3.2) is used, at time t, to obtain function
values at points near to the corner in terms of those at
points further away. The two sets of points will be referred
to as Near and Far points. The number of terms considered
in the series determines the number of Near and Far points
used as one Hear and one Far point are required to eliminate
each unknown coefficient. Inspection of (3.2) reveals that
for only three terms to be taken account of, three Near and
three Far points are required, whereas, if four terms are

used five pairs of points are needed.

In the case of just three terms "being used in the

approximation, we have

3 3

_ 20 40 4
u = a, + a cos?r + a, cos?r ,

which can be rewritten as
u = {1, cos%rm,cos%r“} [a,a,,a,]: (3.3)

In figure 2 Ny, N, N3 are the Near points and
F,, F,, F3 are the Far points.
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Fig.2. Near and Far Points

From (3.3) we can obtain the relationships:-

where u, and u, are vectors of the function values at

Near and Far points respectively, and
a = [ag, a], ap]"

Eliminating a from the equations (3.4) gives

uy = NF ' up (3.5)
and this relationship is used whenever function values at
N, N or N3 are required by the explicit finite—difference
process. Since this scheme uses only function values at
time t to compute values at t + &t, the application of
(3.5) at t, when required, will in no way alter the

explicit nature of the scheme.



Any number of terms can be used in the approximation.
The more terms considered, the better the analytical
representation of the singularity, but a. higher order
approximation does not necessarily imply greater numerical
accuracy, since the gain from a better approximation is
offset by the enlarged region needed to represent it.
Ideally, to improve accuracy we need to increase the order
of the approximation without substantially increasing the
region of application, that is, try to restrict Near and

Far points to the neighbourhood of P.

One way of achieving this is to introduce a finer
mesh just around the re-entrant corner, but the method
becomes cumbersome when programmed. Another, is to
choose some Near points at non-tabular points and then

ignore them when applying the difference scheme.

For example, consider an approximation containing six
terms, by further inspection of (3.2) it is found
that nine Near and Par points are required. Arranging them
as shown in figure 3 gives greater accuracy for the same
number of mesh points as are required for the normal

application of a five term approximation.



10.

06‘
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Far points denoted by x, Near points denoted by.

(Total number of mesh points used is 14 as opposed to 18)

fig.3

The Near points numbered 6, 7, 8 and 9 in figure 3 are
used solely for the elimination of coefficients in the
approximation and play no other part in the step by step

finite-difference process.



4, Model Problems.
4.1. First Problem.

Consider the problem, u(x,y,t) satisfying the

11.

equation
v2u :@ , t>0,
ot
in the region R, shown in figure 4, with the boundary conditions
u(o, y, t) = 1000 ,
u(l,y,t) = 0 ,

and % = 0 on all other boundaries, where iis the derivative

ov

normal to the boundary .The initial condition is a small time

solution in a plane medium and is taken to be

u(x,y,0) = erfc (;Tj

where t = 0.0005 and is equivalent to one time step in the

numerical solution which follows.

]

(1,0- 5)

(c,0-5)

1000 (0-3,0+2) (0-7,0-2)

o (o-3,0) (0-7,0)

Fig 4. solution Domain

(1,0



1000

1000

1000

1000

1000

TABLE 1

Solution corresponding to a time of 0.1 ( 200 time steps)

842 842 688 687 539 404 403 287 286 192 192 120,120 68 68 30 30
LI (2424 5.0 L07 286 1952 120 68 30
846 {845 694 |692 546|544, 408 |4,06 288 [287 192 [191 119 [119 66 |66 29|29
BLG 694 545 407 287 191 118 66 29
856 [855 714 I711 568|565 418 16 291 [290 190 [190 112 [112 6061 26|27
857 715 566 216 250 190 112 5G] 26
874 871 756 (749 6351622 427 W23 293 [292 189 a7 ag {91 46148 21|21
ars 758 635 424 291 188 26 45 20
891 [gse  so1fyos 72|72 38la 30|31 1516
892 805 767 36 28 14
898 |895 818 813 787|780 29 131 24 (25 13113
899 822 791 5 Term Simple 27 23 12
Approx. Explicit
2 Term
TOX,
{with pom{nt dx = dy = 0,05
‘;}“ﬁs"‘?}““ dt = 0.0005
N

Q00

Qoo

Q0o



The problem was solved with three, five and six term
approximations at the two singular points. A mesh length of
0.05 was used, and the results presented in Table 1 are after
200 time steps of 0.0005. For comparison the results obtained
from the standard application of the explicit finite-difference
scheme with no special regard for the corner singularities are

also shown.

Results obtained using a three term approximation are not
tabulated as they proved to be totally inadequate and it would
appear that on such a grid three terms are not sufficient to

represent the solution around each singularity.

4.2 Second Problem.

Consider the first problem again, but in the region
illustrated in figure 5. Here, the singularities are closer
together and this severely restricts the number of terms that can
be used in the approximation. It was found, using the same mesh
as in the first problem, that any approximation with more than
five terms failed to give an acceptable solution, except for the
special case of the six term approximation with the point

arrangement of figure 3. To use a higher order approximation a

13.

smaller mesh is required which increases computation time considerably.

Table 2 shows the results obtained using a six term
approximation, firstly, applied in the usual way but with a finer
mesh, and secondly, using the point configuration of figure 3 on

the same mesh as in the previous problem.



unless stated otherwise.

dx =dy = 0.05

Finite Element
dx =dy = 0,1

6 Term Approx.
dx=dy = 0,025

dt =0.000125

Solution corresponding to a time of 0-1

TABEL 2
531 535 LE4] 468 399|402 335337 276|277 223(223 177|176 139|137 108|106
536 | 540 473 4081408 342 282|280 224 1781175 136 110{105
. 539 | 546 4750 482 411|414 3411343 278|279 221|221 170|170 133(129 103{100
552 490 424, 352 282 220 165 126 98
551 | 560 493 506 434|449 34T|37 279|279 218|219 156|148 122114 9792
555 | 566 54, 46461 359 285 283 216 156{142 112 100190
562 | 574 517] 633 492|515 119]105 10798 50|84
578 537 520 104 97 e
5671 578 525541 507|527 109 |98 102 93 87 |a1
571 582 546 505 532 118 96 91 90 80
Simple Fxplicit 6 Term Approx.
dt = 0,0005 dx =dy = 0.05 (with Fig.3 point configuration)

vl
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A
(0,0.5) (1,0.5)
R
u = 1000 u=0
© (004,001) (006,0°1)
° (0°4,0) (0:6,0) (1,0)

Fig.5.

Also tabulated are results obtained using the standard explicit
method and the finite element scheme of Wilson and Nickell (1966).
In this scheme triangular elements of side 0'1 were used with linear

trial functions.

Table 2 only shows results around the two corners as values

further away were consistent with each other.

4.3 Discussion of Results.

The results of both problems clearly illustrate the inadequacies
of standard numerical methods in obtaining accurate approximations
in the neighbourhood of boundary singularities, although the explicit
method is surprisingly good especially in the first problem. This is

because the five point finite-difference replacement inadvertently
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takes account of the first singular term in the exact solution

for the re-entrant corner.

For example, consider the first two typical terms of equation

(3.1). We have the form

. , 2
u(r,f,t) = A ,e’OtjthO((ljr)-i- Alje*aﬁtjzm(ajr)cos Te

9)
2
+c, +c,r’"? cos —,
3

corresponding to k being equal to zero and one in (3.1). We
can now write down the form of the function values in the

five points replacement, letting

T, = A, e T, (ajh), for i=0,,
3
we have,
u(h,o,t) = T0+T1+co+clh2/3,
T 273
u(h, ,t] = T,+—=T,+c, +—=c,h
u(h.w,t) =T,-—T,+c¢, ——c,h?"?,
u(h,3n,tj = T,-T,+ ¢,—-c, h*" |
and
u(o,0,t) = T +c, with  h=0in T .

Therefore, on substituting for Ty, the five point finite-

difference replacement becomes
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i A _e_ajz{Jomjh)hz—Jo(o)}

o]

which can be written, after expanding the Bessel functions,

as

4Aojemz{<1—<ai2h) o ))—(1)} |

2
2 -0yt 2
ie. —Ag(a;)e + o(h”)
and as h becomes small, this expression approaches

% given by (3.1) at r = 0. Therefore, the explicit

finite-difference process satisfies the two leading terms

of the exact solution.

The effect of treating the singularities is shown
in the first problem and the results emphasize the gain
in representation from the addition of an extra term for

the same number of Near and Far mesh points.

The second problem not only contain two singularities
but the distance between them is relatively small. Although
it is desirable to include as many terms as possible in an
approximation the close proximity of the corners restricts
the number of neighbouring mesh points available. Table 2
shows the results obtained from the application of two
six term approximations. Naturally, the values obtained

from the normal application on a finer mesh (dx = 0.025, dt= 0.000125)



are more accurate but the computation time is more than
tenfold that of the special six term scheme on the usual

mesh (dx = 0.05, dt = 0.0005).

5. Conclusions

The results presented indicate the need to treat
boundary singularities in Parabolic partial differential
equations, if an accurate evaluation of function values
in such regions is needed. The method described is one

way of tackling this problem.

If, on the other hand, accurate values around a
singularity are not required then the simple explicit
method is probably adequate, as the results of both
problems suggest that inaccuracies due to sharp corners

are not propagated throughout the solution domain.

The author is indebted to Professor J. Crank for his

guidance during the preparation of this paper.
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