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ABSTRACT  

Energy policy is driving renewable energy deployment with most of the developed 

countries having some form of renewable energy portfolio standard and emissions 

reduction target. To deliver upon these ambitious targets, those renewable energy 

technologies that are commercially available, such as wind and solar, are being 

deployed, but inherently have issues with intermittency of supply. 

To overcome these issues, storage options will need to be introduced into the 

distribution network with benefits for both demand management and power systems 

quality. How this can be utilised most effectively within the distribution network will 

allow for an even greater proportion of our energy demand to be met through renewable 

resources and meet the aspirational targets set.   

The distribution network will become a network of smart-grids, but to work efficiently 

and effectively, power quality issues surrounding intermittency must be overcome, with 

storage being a major factor in this solution. 
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INTRODUCTION 

The energy sector has forecasted significant increases in demand over the next decade 

along with rapid growth in renewable energy deployment within the grid. Most of this 

growth will be within distribution rather than transmission networks and as a result we 

will see network providers review their current grid operations and upgrade to provide 

for greater two-way energy flows. As most commercially available renewable 

technologies are intermittent by nature, additional demand management controls and 

battery storage options will be an emerging component of the roll-out of new ‘smart 

grids’. 

In managing peak energy flows, demand management options can only be considered 

part of the solution, completed when coupled with storage and distributed generation 

with appropriate control systems.  Depending on the needs of the grid, storage can be 

used to shape demand or improve power system quality – key issues created through the 

deployment of intermittent technologies. 

The University of Queensland (UQ) as part of the 1.22MW solar array, has deployed a 

400kWh RedFlow zinc bromine flow battery connected to a 390kWp sub array to model 

the effect that storage will have on the distribution grid. UQ provides an ideal test site, 
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with peak demand exceeding 20MW and the photovoltaic (PV) array being able to 

deliver ~ 5% of this demand, using solar resources. 

This paper discusses the preliminary results of storage testing undertaken and the 

impacts that will flow through to future distribution grid design, with a particular 

emphasis on peak load shaving. 

Initially we need to consider why storage is needed with the introduction of a greater 

amount of renewable energy generation into the current mix. 

 

 
Figure 1 - NEM Capacity and Generation by Fuel Source 2009/2010 

Source: (AEMO 2010) 

Figure 1 sets out both the capacity and generation by fuel type currently within the 

National Electricity Market (NEM), which indicates that whilst coal only represents 

57.76% of our energy capacity, it results in 81.72% of generation. This is further 

highlighted with the renewable resources representing 20.15% of capacity and 8.3% 

generation and gas providing 20.60% of capacity and 9.91% of generation. This 

highlights the intermittency of renewable generation and the extent of the stand-by gas 

plant. 

Australia has a portfolio standard that requires 20% of generation be sourced from 

renewable resources by 2020 (although this has been set at 45,000 GWh, with 41,000 

GWh attributed to large-scale generation) and without commenting on the likelihood of 

achieving this target, the above indicates that we will have considerable additional 

capacity compared to generation. 

 

BATTERY STORAGE SYSTEM 

The battery system is connected into the mains switch board for the PV array in the 

second of two identical carparks having identical number of panels and layout 

(providing a ‘business as usual’ case). This way the point of connection between the 

energy systems in the carpark and the University power grid is a composite of 

electricity generated from the PV and Storage. To facilitate this, the Switch Board and 

Sub Mains had to be upsized to cater for the possible case of simultaneous generation of 
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PV and final battery power configeration; in this case 339kW of PV and 

120kW/360kWh of battery storage. High resolution energy and power quality metering 

has been installed on the carpark PV array and battery supplies at the carpark mains 

switch board. Another high resolution energy and power quality meter is installed at the 

UQ grid connection point at the relevant UQ substation. At the substation equivalent 

meters are installed to monitor the grid connection point of the carpark PV (also 339 

kW) and the two distribution transformers (11kv/415V) which couple the PV output to 

the UQ high voltage network. At the local supply authority’s connection point a further 

meter is installed on the particular UQ high voltage feeder feeding the substation. 

The metering and system topology will allow for detailed monitoring of the relative 

effects of PV with storage and PV without storage under any number of trial scenarios. 

Discussions with the local supply authority with respect to demand side management 

have indicated they require guaranteed dispatch of power and time shifting of power 

demand. As has been well documented, PV by itself is unsuitable to meet these 

demands (Hadjipaschalis, Poullikkas et al. 2009; Toledo, Oliveira Filho et al. 2010). 

The promise of storage is the ability to smooth the power generation (ride through or 

moderate short term power reductions due to passing clouds) and or move the power 

generation to coincide with network peak demand (generally 5 pm to 7 pm). 

With regards approval for network connection the supply authority required compliance 

with a rigorous set of protection requirements including an extended delay before re-

energisation after a power outage. In accordance with the operation of generating 

systems, the battery system was required to monitor mains and auto isolate in the event 

of loss of mains. Once mains power was restored the battery system is required to delay 

for a period of five minutes before any power flow to mains can occur. 

The storage system being used (RedFlow ZBM) was designed for day-in day-out deep 

cycling – that is, storing electricity and then releasing it.  It has a three to eight hour 

charge and discharge time, well matched to a daily charge and discharge cycle.  This 

characteristic means it is ideally suited for use in large scale electricity storage, as so 

much of our daily generation and use of electricity also has a predictable daily rhythm: 

 Daily peak usage of electricity in evening hours followed by minimal 

consumption in the early hours of the morning when consumers are asleep and 

factories and offices are closed; and 

 A daily rhythm of the sun rising and setting, which means solar PV generation is 

also cyclical. 

Zinc-bromine batteries are secondary flow batteries in which at the negative electrode 

Zinc is plated/dissolved according to the following reaction:  

            
       

Conversely, at the positive electrode bromine is reversibly reduced to bromide, 

following the reaction: 

 
                    

  

The overall cell reaction is therefore: 
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The measured potential difference is around 1.67 V per cell, with the advanced battery 

design features carbon nanotube enhanced conductive plastic electrodes and complexing 

agent improved electrolyte.  

 

INITIAL TESTING RESULTS 

In establishing the system, a RedFlow Generation 2.0 ZBM, pictured in Figure 2(a) has 

been installed which is rated at 5kW and 10kWh. It typically has a design Coulombic 

charge/discharge cycle efficiency of more than 85% and an overall energy efficiency of 

76%, as depicted in Figure 2(b). 

 

Figure 2 - RedFlow M15  

The M15 unit installed at UQ features six ZBMs interfaced to the grid through SMA, 

Enatel and Outback power electronics. During the day, part of the energy provided by 

the sun is stored in the M15 system, with the initial testing set at the M15 charging 

phase selected between 8:00 AM to 5:00 PM when the photovoltaic power is generated. 

At 5:00 PM, the ZBMs are fully charged while the power contribution from the solar 

array to the grid is slowly decreasing.  

The system then starts the discharge phase in which a controlled power of 15 kW is fed 

into the grid reducing the net power consumption of the UQ facilities. Figure 3 shows 

the power flow from two weeks of the M15 cycling at UQ.  

The average length of the charge phase is 10 hours correspondent to the sunlight hours 

in an average day. This choice consents to select a conservative charging rate extending 

the battery life. Conversely, the discharge phase is carried out at higher power, on 

average 2.5kW per ZBM for the first 2 hours (15kW) and a slowly reducing power for 

the next 4 hours.  

During the period 14 to 16 of August 2011, the overall delivered power is reduced to 

12.5kW. This is due to the scheduled servicing of one ZBM during normal operation. 

As can be observed, the system continued to work demonstrating the redundancy and 

robustness of the architecture based on multiple 5 kW Zinc-Bromine modules. 

 

Solar2011, the 49th AuSES Annual Conference
30th November -2nd December 2011

4



 

Solar2011, the 49th AuSES Annual Conference 
30 November - 2 December 2011 

5 

 

Figure 3 - Power flow during charge and discharge for the M15. The violet line is the power measured by the 

meter and it is positive during charge and negative during discharge. Conversely, the black line is the power 

measured by the inverter (used only in discharge) and it is positive during discharge. 

 

Figure 4 provides more detail, with voltage and the current curves during the charge and 

discharge phase for two ZBMs in the M15. As can be observed, the ZBM voltage is 62-

64 V during the charge at 30 A and 56 to 50 V during the discharge. At the end of the 

discharge, the ZBM is completely emptied (stripped) by performing a full discharge 

down to 0 V. This process removes any residual zinc deposited on the electrodes 

ensuring the restoration of the long-time operating conditions and extending the battery 

life. 

  

 

Figure 4 – Voltages and currents during charge and discharge of Zinc-Bromine batteries 1 and 2 in M15. 
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During the strip the battery is isolated from the circuit and fully discharged therefore 

high currents, up to 60 A as reported in the graph can be observed. 

The system is completely automated, with performance and diagnostic real-time 

parameters logged continuously on the RedFlow server. The system health and 

performance are continuously evaluated allowing the detection of failures in the early 

stages and therefore avoiding breakdowns and loss of power.  

This has allowed the battery storage designers to scope the design for the M120, an 

improved version of the M15. The fundamental changes regarding the system 

architecture and the power electronic firmware (designed for RedFlow by SMA) assure 

superior performance and extended features which include: - 

 120kW / 360 kWh; 

 Full four quadrant operation; 

 Phase balancing (Tri-Phase connected system); and 

 Run mode (Solar power instantaneous backup to reduce renewables well-known 

intermittency). 

Figure 5 shows the system architecture designed in order to fit in a 20-foot Hi-Cube 

shipping container. Side doors allow lateral access for the battery loading. The system 

features 24 SMA Sunny Backups and 36 ZBMs. The new firmware reduces the power 

electronics and simplifies the hardware.  

  

Figure 5 – RedFlow M120 3D view. Six racks of batteries each containing six ZBMs are interfaced to a Tri-

Phase grid through SMA power electronics. 

 

FURTHER RESEARCH 

The battery storage system currently in place has performed in accordance with 

expectations whilst also ensuring that any potential grid integration problems have been 

resolved prior to the installation of the larger M120 unit. 
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Figure 6 – Effects of Storage 

Source: (Perez, Hoff et al. 2003) 

Once the new unit is installed, it will be used primarily for research purposes, with the 

timing of the periods of charge and discharge varied to determine the optimum use of 

storage with potential options shown in Figure 6. The battery maybe charged overnight 

when grid demand is at its lowest (from 12:00 AM) and discharged mid-morning 

(noting that UQ peak demand is at mid-day) and recharged during the day for discharge 

during the grid peak in early evening. 

Apart from looking at peak load shifting, further research will be undertaken to look at 

power systems quality issues. Looking at UQ’s solar array generation, the intermittency 

issues due to clouding are evident (refer to www.uq.edu.au/solarenergy ). 

By undertaking a number of research projects covering both peak load shifting and 

power quality issues, the optimal use of battery storage for both the user and the supply 

authority can be determined. 

 
CONCLUSION 
 

For large scale deployment of intermittent renewable energy technologies, such as solar 

and wind, storage is a necessity. There will also be significant benefits for wave and 

ocean technologies currently being developed that also have significant power quality 

issues).  As the above technologies continue to be commercially developed and 

deployed on a larger scale, grid integration, primarily through supply authority 

requirements, will be limited if storage is not included as part of the initial connection 

proposal. 

We have already seen in the United States that as a result of high levels of solar and 

wind deployment and low levels of grid inter-connectors between the states (particularly 

in the south-west), electric companies are requiring integrated storage solutions as part 

of any proposed large-scale renewable energy projects prior to negotiating an off-take 

agreement. 

Whilst there are benefits in storage for both the owners of the generating plant and the 

supply authority, this research will quantify those benefits and determine how storage 

can be optimally integrated into grid connected renewable energy systems. 

For renewable energy to reach portfolio standards set and allow us to move towards 

establishing localized smart-grids, not only in Australia but also internationally, storage 

will not be an optional extra, but a necessity. 
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