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Abstract 

The present work gives a mathematical model for an acoustically 

penetrable or electromagnetically dielectric half plane. An approximate 

boundary condition is derived which depends on the thickness of, and the 

material constants which constitutes, the half plane. A solution is 

obtained, using the approximate boundary condition, for the problem of a 

line source field diffracted by a semi-infinite penetrable/dielectric 

half plane. The asymmetry of the approximate boundary condition results 

in  a  matrix  Wiener-Hopf  problem,   which  is   solved  explicitly. 

1.     Introduction 

The present work arose in connection with noise reduction by means 

of barriers. Noise reduction by barriers is a common method of reducing 

noise pollution in heavily built up areas, Kurze[1]. Traffic noise from 

motorways, railways and airports, and other outdoor noises from heavy 

construction machinery or stationery installations, such as large 

transformers or plants, can be shielded by a barrier which intercepts 

the line-of-sight from source to receiver. Noise in open plan offices 

can also be reduced by means of barrier partitions. In most of the 

calculations with noise barriers, the field in the shadow region of the 

barrier is assumed to be solely due to diffraction at the edge. This 

assumption supposes that the barrier is perfectly rigid and therefore 

does not transmit sound. However, most practical barriers are made of 

wood   or   plastic   and   will   consequently   transmit   some   of   the   noise   through 



the barrier. The object of the present work is to make some allowance 

for  the  transmitted  field. 

The present work also has applications in electromagnetism when 

considering diffraction by a dielectric half plane. Where appropriate 

the  connection  with  electromagnetism will  be  outlined. 

There have been a number of works* dealing with a penetrable 

barrier, including an earlier model of the authors, see Rawlins[2] where 

one can find an outline of the work carried out up to 1977 and a 

bibliography. Since that time the only other papers known to the author 

on this subject are by Anderson[3], Chakrabarti[4] and Volakis and 

Senior[5]. Chakrabarti's work was subsequently found to be in error, 

see Volakis and Senior[5]. These three authors use a boundary condition 

which makes the barrier almost transparent. The present work uses an 

alternative boundary condition which results in a matrix Wiener-Hopf 

problem. Matrix    Wiener-Hopf     problems     are     generally     intractable. 

However, the present problem can be solved exactly. An interesting 

feature of the present solution is that the normal Weiner-Hopf arguments 

yield an unknown constant which must be determined from an analysis of 

the edge field behaviour. The edge field behaviour is also interesting 

in that it depends on the material constants of the half plane, and is 

more complex than the usual singular behaviour associated with a 

perfectly rigid or soft half plane in acoustics, or a perfectly 

conducting  half  plane  in  electromagnetics. 

In section two the approximate boundary condition is derived. This 

is achieved by looking at the canonical problem of reflection and 

transmission  of  a  plane  wave  incident  upon   a  penetrable   slab   which   is 

*(It  is  planned,   in  a  future  publication,   to  give  numerical  comparisons 

between  the  various  mathematical  models.) 



assumed to be thin compared with the incident wavelength. A matching 

technique is used to obtain the approximate boundary condition from the 

canonical problem. In section three a scalar boundary value problem for 

the field diffracted by a penetrable barrier is formulated. The field 

being an acoustic potential function, or a component of a polarized 

electromagnetic wave. In section four the scalar boundary value problem 

is solved. In section five some asymptotic expressions for the far 

field in terms of sources and a diffracted field are given. An appendix 

consists of the calculation of the edge field behaviour which it is 

necessary   to   know   in   order   to   carry   out   the   solution   in   section   4. 

2.     Approximate  boundary  condition 

Consider the situation when an infinite slab occupies -∞ < x < <∞, 

-h < y < h, where the y axis is normal to slab faces. When a plane wave 

e-ik(xcosθ0+ysinθ0)-iwt * (*The factor e-iwt will be dropped in the rest 

of the work) is incident upon an infinite penetrable medium of width 2h, 

which has a material propagation constant kn=k,, the field above and 

below   the   slab   is   given  by  (see   Brekhovskikh[6]   p.45,    and   Rawlins[2]), 

u(x,y)   =  e-ik(xcosθ
o

+ysinθ
o

)     +    Re-ik(xcosθ
o

-ysinθ
o

),       y ≥ h,  (1) 

=  Te-ik(xcosθ
o

+ysinθ
o

),     y ≤ -h,                                                           (2) 

where  the  reflection  coefficient  R  is  given  by 
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and  the  transmission  coefficient  T  is  given  by 
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For an acoustically penetrable slab n = c/c1, N = K1p/kp1sinθo) 

(where p, c and p1, c1 are the density and sonic velocity of the media 

∣y∣>h and ∣y∣h respectively) and u represents the acoustic pressure. 

For   a   dielectric   slab  n  =  ),1θsin1ε/(kεk,N,2
1

)]με)/(1μ1ε[( =   (for   u=Hz

magnetic vector parallel to the z axis), N = k1μ/(kμ, sinθ0) (for u=Ez 

electric vector parallel to z-axis) where u, ε and μ,1 , ε, are the 

permeability   and   permitlivity   of   the   media  ∣y∣>h   and    ∣y∣<h   respectively. 

We shall now use the results (1) to (4) to obtain an approximate 

boundary condition for a penetrable slab whose width is small compared 

to the incident wave length, i.e. 2kh<<l. From the equations (1) and 

(2)   we  have 

   

).20((kh)Nh1i2k1~h1iNsin2kh1cos2k

0θikhsinTe
0θikhsinRe0ikhsin θe

h)(x,
y
u

(x,h)
y
u

τ

)20((kh)h/N12ik1~h/(iN)1sin2kh1cos2k

0ikhsin θTe
0θikhsinRe0θikhsine

h)u(x,
u(x,h)

σ

+−−=

−
+−−=

−
∂
∂

∂
∂

=

+−+=

+−
=

−
=

(5) 

                                                                                              (6)
 

Now assuming 2kh<<l then as far as the external field is concerned the 

slab is very thin and therefore can be modelled by the approximate 

boundary  conditions 

u(x,0+)   =  σu(x,0-). 

).(x,0
y
uτ)(x,0

y
u −

∂
∂=+

∂
∂                                        (7) 

                                    τ  =   1-i2k1  Nh,   σ =  1-2ik1  h/N   .  

3.  Formulation   of   the   problem   of   line  source  field    diffraction    by    a  

semi-infinite  penetrable  plane. 

We   consider   the   situation   where    a   penetrable   half   plane    occupies 

x≤0,   y=0.      The   line   source   is   situated    at    (x0,y0),    y0>0.       The   problem 



is   solved  by  finding  a  solution  of  the  wave  equation. 
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subject  to  the  boundary  conditions 
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For     a     unique     solution     to     the     problem     we      also      require      the 

satisfaction   of   the   radiation   condition 
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and  the  edge  condition 
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For  the  value  of  λ  see  appendix. 

4.     Solution  of  the  boundary  value  problem 

We    shall   assume,    for   analytical   convenience,    that    k=kr+iki,    kr>0, 

ki≥0.     At  the  end  of  the  analysis  we  can  set  ki=0. 

Define  U(α,y),   where  a  is   a   complex   variable   by 

∫
∞

∞−

= )13(.dxe)y,x(u)y,(U xiαα  

The radiation condition requires that the phase dependence of u(x,y), as 

lxl→∞, behave like eik
i∣×∣ . In view of this it can be seen that U(α,y) 

will exist for -ki < Im(α) < ki. Then it follows from (8) that U(α,y) 

satisfies 
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i

eU2k2dy
U2d >°°−°=+

xα

 



0.αwhenkkwhichforbranchthatbetodefinedis2
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Then K will always have a positive imaginary part in the region |Im(α)| 

< ki. A solution of (14) for α in the strip |Im(α)| < ki, which decays 

as   lyl→∞,   is  given  by 

U(α,y)   =  A(α)exp[iky]   +  exp[i(αx0  +k ∣ y-y0 ∣)]/(2ik),   (y>0) (15) 

=  B(α)exp[-iky], (y<0). (16) 

Let 

[ ] ( )

( )

[ ] ( )

( )

( ) foranalyticare)(α1,2ψand,ik)Im( αforanalyticareα1,2ΦThen

20
0

dx,xiαe)(x,0
y
uσ)(x,0

y
u)(α2ψ

19
0

dx,xiαe)σu(x,0)u(x,0)(α1ψ

18
0

dx,xiαe)(x,0
y
u)(x,0

y
u)(α2Φ

17
0

dx,xiαe)u(x,0)u(x,0)(α1Φ

+<−

∫
∞− ⎥

⎦

⎤
⎢
⎣

⎡ −
∂
∂

−+
∂
∂

=+

∫
∞−

−−+=+

∫
∞− ⎥

⎦

⎤
⎢
⎣

⎡ −
∂
∂

−+
∂
∂

=−

∫
∞−

−−+=−

 

Im(α)>-ki. Throughout     the      rest     of      this     work      a      superscript      (or 

subscript) plus or minus sign attached to any function will mean that 

the function is analytic in lm(α)>-ki or Im(α)<ki, respectively. Using 

the expressions (9),(10),(13),(15) and (16) in the expressions (17) to 

(20)   gives 
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Eliminating  A(α)   and  B(α)   from   (21)   to   (24)  gives  the  matrix  Wiener- 

Hopf  equation 

ψ+  (α)  = K(α)Φ - (α)  + D(α)   (25) 
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The matrix equation (25) constitutes a coupled system of Wiener-Hopf 

equations. The standard Wiener-Hopf technique can only be applied if 

the system (25) can be uncoupled into two separate Wiener-Hopf 

equations.       This     requires     that     the     matrix     function     K(α)      can     be 

factorized. This is a nontrivial operation and it is not always obvious 

that one can in fact factorize the matrix. In the present problem we 

note  that  K(α)   can  be  written  as 

K(α)   =   CG        (α) (29) 

where 
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The   matrix   G(α)    given   by     (30)     is    of    a    special    form    which    can    be 

factorized  immediately,   (see  Daniele[7]   and  Rawlins[8]),   to  give 

G(α)   =  G+   (α)G-(α) (31) 

where 
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and  the  logarithms  take  values  on  the  principle  branch   ℓn(1)   =  0, 

- π < arg (   ) ≤  π . 



         In  order  to  be  able  to  apply  the  usual  Wiener-Hopf  method  we  shall       

need  some asymptotic growth estimates for the elements appearing in the 

matrices  G±(a).     It  is  not  difficult  to  show  that 

χ+(α)   =  i/(2π)ℓn[(l+ε)/(l-ε)]ℓn(2α/k)   +  0(α-2),   as   |α|→∞,Ima→-ki                (34) 

and  hence 
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Similarly  it  can  be  shown  that 

coshχ  (α)  =  0(αλ  ), sinhχ  (α)  =  0(αλ  ),   for   |α|→∞,   Ima→ki.     (37) 

By  using  results   (29)  and  (31)   in  equation  (25)  we  have 
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is  non  singular  since  σ  ≠  -1  and  τ  ≠  -1.     Thus  CG+(ct)  has   an   inverse  and 

we  can  multiply  across  equation   (38)  by   (CG+(a))"'   to  give 
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We   can   now   express   (42),   by  means   of   the   Cauchy   integral   theorem,    see 

Noble[9],   as 

∆(α)   = ∆+(α)   +  ∆-(α), (43) 

where                                             
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The   edge   condition    (12)    requires    that    the    transformed    functions    must 

have   the   following   asymptotic   behaviour 
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By using the above asymptotic estimates (35),(37),(45) and (49) it can 

be shown that the left hand side of the equation (47) is regular, 

analytic and asymptotic to 0(α-1) as ∣α∣→∞ in Imα>-ki. Similarly the 

right hand side is regular, analytic and asymptotic to o(α-1) as ∣α∣→∞ 

in Imα<ki. Hence by Liouville's theorem the analytic continuation of 

both  sides  in  the  entire  complex  plane  is  the  constant  zero.     Hence 
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Dealing with the equation (48) in a similar fashion it can be shown that 

the right and left hand side of this equation is asymptotic to 0(1) a 

constant in their respective regions of analycity. Hence by Liouville's 

theorem  we  have 
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unknown  constant. 

From  (50)  and  (51)  we  have 

  

{ }
{ }

{ }[
{ } ]

[ ] (54)/(2ik),)0ky0xi(αexpτ)(σ
τ)(σ

)/γ0a)(α2(Δ)(ατ)coshχσ(1)(ασ)δsinhχτ(1

)(α1Δ)/δ(ατ)sinhχσ(1)(ασ)coshχτ(1
τ)(σ

1)A(α

thereforehavewe(24)an(23)equationtheFrom

(53).0a)(α2)(Δ(αcoshχ)/δ(α1)Δ(αγsinhχτ)(1)(α2ψ

(52),)/δ0a)(α2)(Δ(αδsinhχ)(α1)Δ(αcoshχσ)(1)(α1ψ

+
+
−+

++
++−+++

+
++−++

+
=

++
+++

++=+

++
+++

++=+

 

{ }[

{ } ]
[ ] (55)τ)ik)./((σ)0ky0xi(αexp

)/γ0a)(α2(Δ)(ατ)coshχ(1)(ασ)δsinhχ(1

)(α1Δ)/δ(ατ)sinhχ(1)(ασ)coshχ(1
τ)(σ

1)B(α

+++

++
++++++

+
+++++

+
−

=

 

  
   



 

Hence we have solved the problem completely once we know the constant 

a0. To determine this constant we analyse the edge field behaviour of 

the   solution.      We  know  from  the  appendix  that  the  field  near  the  edge 
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If we exclude the trivial or non physical situations: σ=τ=0; σ=1, and 

τ=-l; σ=l and τ=-1; σ=-1, τ=1; we must choose for the correct edge field 

behaviour 

./δ1Δ0a +−= ~

                                                    
(58) 

Hence  the  solution  to  the  boundary  value  problem  is  given  by  
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The physical interpretation of the solution given by (59) and (60) 

is made more apparent by asymptotically evaluating the integrals for the 

receiver    point    (x,y)    such    that   .2
1

)2y2k(x ∞→+    This    corresponds    to   the 

observer at (x,y) being in the far field. In practice if the line 

source at (x0,y0) and the receiver at (x,y) are more than two 

wavelengths from the edge (0,0) of the barrier then to a good 

approximation we can assume that we are in the far field, and the 

incident  field  in  a  plane  wave. 

5.     Asymptotic  expressions  for  the  fax  field 

The asymptotic methods though straightforward are tedious. We shall 

merely give an outline of the calculations, more details of the 

techniques   can   be   found  in   Noble[9].     Consider   first  )( α1,2Δ +
 as   given  by 

(4.4); let k be real, then c=0 and the integration path along the real 

axis     is     indented     below     the     point     t=α. Substitute     x0      =      r0cosθ0, 

y0 = r0sinθ0, 0<θo<π; t= kcosξ, 0 < Reξ < π, then the integrand has 

a saddle point at ξ = θ0 . The integration path is now deformed into the 

steepest descent-path S(60) described by Re[cos{ξ-θ0)]=1, Imlcos(ξ-θ0)] 

≥ 0. In performing the deformation the pole at kcosξ=a is intercepted 

if α < kcosθ0. The integral along S(θ0) is asymptotically expanded as 

kr0→∞  by  means  of  the  saddle  point  method.     Thus   it   is   found  that 
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and where H[x] = 1 for x >0, H[x] = 0 for x < 0 (Heaviside step 

function); the results are valid for kr0→∞, -k < α <k; the term 

involving   the   functions   D 1,2    arise   from   the   residue   contribution. 

We   can   deal    in   a   similar    manner    with ),(α1Δ
+~

  the    only    difference 

being  that  there  is  no  pole  contribution  to  worry  about.     Thus 1A~1Δ
~+  
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The  results   (61)   and   (62)   for  ++
1Δand)(α1,2Δ ~   when   inserted   into   (59)   and 

(60)   give 
u(x,y)   =  ud(x,y)   +  ug(x,y)                                     (63) 

where 
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exp[-iα x+ikY]dα,   Y >  0 ,                                                        (64) 
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   - exp[-iαx-i]dα,      Y <  0;                                                        (65) 
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The  above  expressions   (66)   can  be  considerably  simplified  to  give 
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The integrals in the expressions (64) and (65) can be asymptotically 

expanded    for     kr→∞  by  the  saddle   point   method   following   the   usual   steps:  

Substitute x = rcosθ, Y=rsinθ, -π<θ<π; a=kcosξ, 0<Reξ<π, then the 

integrand has a saddle point at ξ=π-6 and ξ=π+θ, respectively; deform 

the path of integration into S(π-6) and S(π+6), respectively; apply the 

saddle  point  formula.     This  gives 
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for  0<θ,  .2   <π,   0<θ0<π   we  can  rewrite  the  above  expression  for  ug  as 
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                                                          -π<π<π,   kR1 →∞   kR2  →∞   .     (72) 

If   the   expressions    (69)    and    (72)   ae   substituted   into   (63)    we   have 

finally  the  expression  for  the  far  field 
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(73)    kr→∞,   kr0→∞,   π<θ<π,   0< θ0  <π,   θ ≠ ±(π- θ0  + π) ,   

   

where the diffraction coefficient D(6,90) is given by (70) and (71) and 

the Hankel functions in (73) are understood to represent their 

asymptotic       form. 

The  physical   interpretation   of   the   result    (73)    in   conjunction    with 

Fig    1.     is     now      obvious.          The     first     term     represents        the     incident 

cylindrical wave due to a line source at (x0/y0). The second term is 

the     wave     reflected     from     the     upper     face     of    the      half      plane.     This 

reflected wave appears to radiate from an image line source at (X0,-Y0) 

the reflection coefficient being (σ-τ)/(σ-τ). The third term represents 

a wave transmitted through the barrier. This wave appears to eminate 

from the line source at (X0,Y0); however its transmission coefficient is 

not unity, but 2/(σ-τ). The first three terms represent the geometrical 

acoustic field and they will not exist everywhere. The regions where 

they are present are governed by the Heaviside step functions which 

multiply the Hankel functions. Physically these regions correspond to 

the shadow region behind the screen, and the insonified regions. On the 

boundary between these regions the arguments of the Heaviside step 

functions vanish. The last term of the expression (73) represents the 

diffracted field, which is a cylindrical wave which appears to radiate 

from  the  edge  of   the   half  plane,   to  all  points   of   space. 
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-  π <  θ <  0  .           (71) 

In a similar fashion the integrals appearing in the expressions (67) and 

(68) can be asymptotically evaluated by the saddle point method. In the 

integrand of  the   expression  (67)  let  x-x0   =  R2  cos θ2  , Y+Y0  =  R2   sin θ2, 0 < θ2 < π, 

α=kcosξ, 0<Reξ<π; and in the expression (68) let x-x0=R1, cosθ1, 

Y-Y0 = _R, sinθ, , 0<θ,<π, 0=kcosξ, 0<Reξ<π, (see fig 1). The saddle point 

of (67) and (68) is then given by ξ=π-θ2 and ξ=π-θ1 respectively. 

Deforming     the     path    of     integration      into      S(π-θ2)      and      S(π-θ1), 

respectively,    and    applying    the   saddle    point    formula    gives 
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where  we    have    used     the  asymptotic   expression   exp  [i (z-π/4)])
1
2πz/2(~(z)(1)H

°
   
aslzl →∞.     By  using  the  fact  that   

                              H[cosθo   +   cosθo   ]   -   1   =   -H[θ+θo   -π] 
 

          H[cosθo   +   cosθ1   ]   =  H[θ-θo  + π ] H [-θ] 
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Appendix 

Here   we   derive   the   behaviour   of   the   field   near   the   edge   of    the    half 

plane.     We     use    the     technique     of    Meixner [10]     in    assuming    a    series 

expansion  in  the  low  frequency  situation  kp→0,   which   satisfies   Laplace's 

equation.     Thus     the    problem   can  be   posed  thus : 

Given 
u(r, θ)   =  C(θ)   +  F(θ)rλ (1) 

Find    the    smallest    value    of    Reλ   such   that 
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Imσ  ≠  0,    Imτ   ≠  0 . 

Reλ  >  0    and r∇u (r, θ)  =  0(1). 
0ρ

lim
→ (4)

Substituting   (1)    into   (2)    gives   on   equating   powers   of   p    to    zero 

                      C" (θ)   =  0,     ⇒  C(θ)   =  Aθ+B 

                           F"{θ)+λ2F(θ)   =0,     ⇒     F(θ)   -   Ccosλθ+Dsinλθ 

Hence                         u(r,6)   =   Aθ+B+(Ccosλθ + Dsinλθ)rλ

Substituting   (5)   into   the   boundary    conditions   (3)   give (5)
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 This    equation     can     only  be  satisfied  by 
                            (1-σ)(1-τ)   =  0     or    A   =  B   =   0                                           (6) 
and 

tan2  λπ    =  -ε2     or     C  =  D  =  0.                                              (7)



Since  Imσ    ≠    0,   and  Imτ   ≠    0,     the   only   possible   solution   for    (6)    is    the 

trivial   case   A  =  B  =  0 .    For   non  trivial   solutions   to  (7)    we     must     have 

                                              
⎟
⎠
⎞

⎜
⎝
⎛

−
+

±=

⎟
⎠
⎞

⎜
⎝
⎛
−
+

±=

ε1
ε1arg

2π
1Reλ

.
ε1
ε1n

2ππ
1λ l

Hence 

and  since  Reλ>0  we  have 

.
2
1

ε1
ε1arg

2π
1Reλ ≤⎟

⎠
⎞

⎜
⎝
⎛
−
+

=  

References 

[1]   Kurze,   V.J.   Noise    reduction    by  Barriers  J.   Acoust.   Soc.   Amer  
55   (1974)     504-518. 

[2] Rawlins, A.D. Diffraction by an acoustically penetrable or an 
electromagnetically dielectric half plane. Int. J. Engng. Sci. 15 
(1977)  569-598. 

[3] Anderson, I. Plane wave diffraction by a thin dielectric half 
plane.    IEEE    Trans.   Ann.   Prop.   AP-27   (1979)    584-589. 

[4] Chakraborti, A Diffraction by a dielectric half plane. IEEE Trans. 
Ann.   prop.    AP-34     (1986)    830-833. 

[5] Volkasis, J.L. and Senior, T.B.A. Diffraction by a thin dielectric 
 half     plane    IEEE    Trans    Ann.  and  Prop.  AP-35  (1987),  1483-1487. 

[6] Brekhovskikh, L.M. Waves in Layered Media Academic Press, New York 
(1960). 

[7] Daniele, V.G. On the factorization of Wiener-Hopf matrices in 
problems solvable with Hurd's method. I.E.E.E. Trans. AP-26 (1978), 
pp    614-616. 

[8] Rawlins, A.D. A note on the factorization of matrices occurring in 
Wiener-Hopf     problems.    I.E.E.E.    Trns.    AP-28     (1980),     pp    933-934. 

[9]   Noble,   B.     The  Wiener - Hopf   Technique   Pergamon   London  1958. 

 [10] Meixner, J. The behaviour of electromagnetic  fields at edges. New 
York   University   research   report  No. EM-72(1954). 



  
 
 
 
 
 
 



 
 
 
 
2 WEFK  LOAN 


	Diffraction  by  an  acoustically  penetrable  or  an  electromagnetically 
	Department  of  Mathematics  and  Statistics 
	The  above  expressions   (66)   can  be  considerably  simplified  to  give 
	Appendix 
	Given 
	Find    the    smallest    value    of    Re(   such   that 
	Substituting   (5)   into   the   boundary    conditions   (3)   give 
	 This    equation     can     only  be  satisfied  by 







