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1.   Introduction 
This paper is a sequel to a recent paper [14], concerning a domain decomposition method 

(hereafter referred to as DDM ) for the conformal mapping of a certain class of quadrilaterals. For the 

description of the DDM we proceed exactly as in [14:§1], by introducing the following terminology         

and notations. 

Let G be a simply-connected Jordan domain in the complex z - plane (z = x + iy), and con-

sider a system consisting of G and four distinct points z1, z2, z3, z4 in counter-clockwise order on its 

boundary . Such a system is said to be a quadrilateral Q and is denoted by G∂

Q  = {G ; z1, z2, z3, z4 }. The conformal module m (Q) of Q is defined as follows: 

Let R be a rectangle of the form 

 

 R := { ( ηξ, ) : a  < ξ  < b, c < η  < d } ,               (1.1) 

 

in the w -plane ), and let h  denote its aspect ratio, i.e. h iηξ  (w += a).(b / c)(d: −−=  Then,  m (Q) 

is the unique value of h for which Q is conformally equivalent to a rectangle of the form (1.1), in the 

sense that for h = m(Q) and for this value only there exists a unique conformal map R→G which 

takes the four comers a + ic, b + ic, b + id, and a + id, of R respectively onto the four points 

z1,z2,z3, z4. In particular, h = m (Q) is the only value of h for which Q is conformally equivalent to 

a rectangle of the form 

 
                              }{{a}Rh hαηα,1ξ0:)η,ξ(: +<<<<= .    (1.2) 

 

 The DDM is a method for computing approximations to the conformal modules and associ-

ated conformal maps of quadrilaterals of the form illustrated in Figure 1.1 (b). That is, the method is 

concerned with the mapping of quadilaterals 

 
                       (1.3a) },z,z,zzG{Q 4321,;:=
 
where: 
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 ● The domain G is bounded by the straight lines x = 0 and x = 1 and two Jordan arcs with 

cartesian equations  and)(τ1 xy = (x)τy 2= , where   j = 1, 2, are positive in [0,1],  i.e. ;jτ

  .}xτyxτ,xyx,({G 21 )()(10:): <<−<<=                 (1.3b) 
 
● The points z1, z2, z3, z4 are the corners where the arcs intersect the straight lines, i.e. 

 
 (0).iτz(1),iτ1z(1),iτ1z(0),τiz 24231211 =+=−=−=                 (1.3c) 
 

Let Q be of the form (1.3) and let 
 
 ,})x(,xyx,{G 0y10:)(: 11 <<τ−<<=                  (1.4a) 
 
and 

 
 ,}x,xyx,{G2 )(y010:)(: 2τ<<<<=                   (1.4b) 

 
so that  .21 GGG ∪=  Also, let Q1 and Q2  denote the quadrilaterals 
 

 Q 1 : = {G1 ; z1,z2, 1, 0} and Q 2 := {G2; 0,1,z3,z4} ,               (1.4c) 

 

and let h := m (Q) and hj :=m (Qj); j =1,2; see Figures 1.2(b) and 1.3(b). Finally, let g and 

gj ;  j =1,2, denote the conformal maps 

 
 g := Rh {-h1}→G ,                 (1.5) 

 
 22111 0:and:

21
G}{RgG}h{Rg hh →→−  ,                  (1.6) 

 
where, with the notation (1.2), 
 
 ,10:: 111 }hhh,),({}h{Rh −<η<−<ξ<ηξ=−  

 }h,,{}h{Rh 010:)(: 111
<η<−<ξ<ηξ=−   , 

 ;010:)(:0 22
}hη,,{}{Rh <<<ξ<ηξ=  

 
see Figures 1.1-1.3. Then, the DDM consists of the following: 
 

(a) Subdividing the quadrilateral Q, given by (1.3), into the two smaller quadrilaterals Q1  and 

Q2,  given by (1.4). 
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 (b)   Approximating the conformal module of  Q  by the sum of the conformal modules of Q1 and 

Q2, i.e. approximating h by 

 .hhh 21: +=−                   (1.7a) 

(c) Approximating the rectangle }h{Rh 1− and the conformal map  respec-G}h{Rg h →− 1:
tively by 

 

  ,}hηh1,ξ0:η)(ξξ{:}h{-R 211h <<−<<=−                        (1.7b) 
and 
 

                  (1.7c) 
⎪⎩

⎪
⎨
⎧

−∈→−

∈→
=−

.}h{RwforG}h{R:(w)g

,{0}Rwfor,G{0}R:(w)g
:(w)g

1h1,1h1

h2h2

11

22

The initial motivation for considering the above method came from : (a) The intuitive observa-

tion that if the constituent quadrilterals Q1 and Q 2 are both "long" then h is close to h. (b) Experi-

mental evidence indicating that h  is close to h even when Q1 and Q2 are only moderately 

long; see [12:§5] and [14:§1]. (It is important to note that h ≥h1+h2 and equality occurs only in the two 

trivial cases where G is a rectangle or [ ]10)()( ,x,xx 21 τ= ∈τ ; see e.g. [9:p.437]. ) 

The treatment of the DDM contained in [14] is a theoretical investigation leading to estimates 

of the errors in the approximations (1.7). These error estimates are derived by assuming that the func-

tions  ;  j  =  1,2 , satisfy the following: jτ

 
Assumptions A1. 1 
 

(i) ; j = 1,2, are absolutely continuous in [0,1], and jτ
                                                              

 .)(:
10

∞<=
≤≤

x'τsupessd j
x

j                    (1.8) 

(ii) If 
 1,2,;))((expmax:

10
=−=

≤≤
j}xτπ{m j

x
j                (1.9a) 

then 
.2,1;1)}1/()1{((: =<−+= jmmd jjjjε □             (1.9b)    
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In addition to the theory, [14] also contains two numerical examples comparing the actual errors in the 

DDM approximations with those predicted by the theoretical estimates. 

The present paper is concerned with the numerical performance of the DDM and, in particular, 

with the performance of the method in cases where the functions ; j = 1,2, do not fulfil the rather jτ

restrictive condition (1.9) needed for the theory of [14]. More specifically, the main purpose of this 

paper is to show by means of numerical examples that some of the theoretical results of [14] remain 

valid even when the condition (1.9) is violated, and thus to provide experimental support for certain 

conjectures made in [14]. 

We end this introductory section by making the following remarks concerning the DDM and 

related matters: 

• A survey of available methods for computing approximations to the conformal modules and 

the associated conformal maps of general quadrilaterals is given in [12], where also several areas of 

application of the conformal maps are discussed; see also [4] - [7] and [9:§16.11].  □ 

• Although this is not considered here, the DDM can also be applied to quadrilaterals of the 

form illustrated in Figure 1.4, provided that the crosscut c of subdivision is taken to be a circular arc; 

see [14:Remark 4.7]. In other words, the application of the DDM is restricted to quadrilaterals that 

have one of the two special forms illustrated in Figures 1.1 and 1.4. We note however that the mapping 

of such quadrilaterals has received considerable attention recently; see e.g. [2], [8], [11], [12],  

[15] and [17].   □  

• A more general form of the DDM involves subdividing the original quadrilateral Q into two 

quadrilaterals Q1 and Q2 of the form (1.4) at the lower and upper ends, and a rectangle in the middle. 

This can be described more precisely as follows: 

Let 
 
 G := { (x,y) : 0 <x < 1, - 1τ  (x) < y < 2τ  (x) + c }  , 
where c > 0, let 
 
   G 1 : = { ( x , y ) : 0 < x < 1 , - τ 1 ( x ) < y < 0 } ,  
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and 
 
 G2  : ={ (x ,y) : 0 <x < 1,c <y < 2τ (x) + c } , 
 
so that ,0 2c1 G}{RGG ∪∪= and let 
 
 .c)τiz  ,cτiz,iτz,iτz 24231211 +=++=−=−= (0)()(1)(1(1)1(0)  
 

Then the general form of the DDM consists of the following: 

 (a) Subdividing the quadrilateral Q : = { G; z1,z2,z3,z4} into three smaller quadrilaterals, 

i.e. the quadrilaterals Q1 := { G1 ; z1,z2, 1, 0} and Q2 := { G2 ; ic, 1 + ic, z3, z4}, at the lower and 

top ends, and the rectangular quadrilateral { Rc {0} ; 0, 1, 1 + ic, ic }, in the middle. 

(b) Approximating the conformal module h := m (Q ) by 

 ,: 21 chhh ++=−                   (1.10) 
where hj := m (Qj ) ;  j = 1,2. 
 

(c) Approximating the rectangle Rh {-h1} and the conformal map g : Rh {-h1} → G respec-

tively by }h{Rh 1− and 

 

 

{ }
,

}.h{Rw,G}h{Rwg
}{Rw,w

,cRw,G{c}Rwg

wg

hh

c

hh

⎪
⎩

⎪
⎨

⎧

−∈→−
∈

∈→

=−

1111

22

for:)(
0for

for:)(

:)(

1

22

 □             (1.11) 

 
• The DDM is of practical interest for the following reasons: 

 (i) Given the conformal modules and associated conformals maps of two quadrilaterals Q1 

and Q2 of the form (1.4), the method provides approximations to the conformal module and associ-

ated conformal map of any quadrilateral consisting of Q1and Q2, at the lower and top ends, and a 

rectangle of any height in the middle. 

(ii) The method can be used to overcome the “crowding“ difficulties associated with the 

numerical conformal mapping of “long” quadrilaterals of the form (1.3). (Full details of the 

crowding phenomenon and its damaging effects on numerical procedures for the mapping of “long” 
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quadrilaterals can be found in [12], [13] and [10]; see also [4:p.l79], [9:p.428] and [16 :p.4]. ) 
 

(iii) Numerical methods for approximating the conformal maps of quadrilaterals of the form 

(1.4) are often substantially simpler than those for quadrilaterals of the more general form (1.3); see 

e.g. [8], and [12:§3.4]. □  

• Of the two conditions involved in the assumptions A 1.1, only Al. l(ii) is restrictive from the 

practical point of view. This condition is more or less equivalent to requiring that the slopes of the 

two curves are numerically less than unity in [0,1]. This is so, because the values ,2,1;)( == jxτy 1

mj ; j = l,2, given by (1.9a) are "small", even when the quadrilaterals Qj,; j = 12, are only 

moderately "long".  □ 

2.   Theoretical error estimates 
 

As in Section 1, let Q and Qj  :  j = 1,2, denote the three quadrilaterals defined by (1.3) and 

(1.4), let h := m (Q) hj :=m(Qj) ; j = 1,2, and let g, gj, j = 1,2, be the associated conformal maps 

(1.5) and (1.6). Also, let 

)),((Re:)(x̂),(Re:)(x 11 hhigihg −+ξ=ξ−ξ=ξ  
and 
 

,)(Re:)(x̂),(Re:)(x 222111 ihgihg +ξ=ξ−ξ=ξ  

and let Eh and Eg { j },  EX  { j },  j = 1,2, denote the following domain decomposition errors:  -},j{Eτ
 
 )(: 21 hhhEh +−=  ,         (2.1) 

 
    ,}}{-hRwwgw g{}{E hg 111 :)()(max:1 ∈−=        (2.2a) 

 
 ,}{0}RwwgEiwg{}{E hhg 12 :)()(max:2 ∈−+=        (2.2b)
    

 
1010

,)(x)(xmax:2x.)(x)(xmax:1 21x
≤ξ≤≤ξ≤

ξ−ξ=ξ−ξ= ∧∧}{E}{E         (2.3) 

and 
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                  (2.4) .))(())((max:2,))(())((max:1 222
10

111
10

ξτ−ξτ=ξτ−ξτ=
≤ξ≤

τ
≤ξ≤

τ XX}{EXX}{E

 
Finally, assume that the functions  ;  jτ j  =1,2, satisfy the assumptions A1. 1, and let 
 

            ,1,2j;}){/, α 2
1

jj =−−= 2ε1()ε1(2:ε)(ε                          (2.5a) 
and 
 

 ,2,1;)ε1()ε1(/8:)εε(β 2
, =−−= j}{ 2

1

jj                   (2.5b) 

where the  j  =  1,2, are given by (1.9), and  := max (;ε j ε 21, εε ). Then, the main results of [14] are the 
following estimates of the errors Eh and = 1,2, in the DDM approximations (1.7): j{j}Eg ;
  
 ,                (2.6) }ee{αdπ}ee{ε,εαdπE πh2ππ

2
1πh2ππ

1
1

h
21 −−−−−− +++≤ 122211 εε)ε,ε(εε)(

and 
 
 ,2,1;max =≤ j}NM{{j}E jj,g                 (2.7a) 
where  
 

3
2

3
2 2

1
εεεεε)(εβ)1(: 2

1
2

1

}je{}{dπM πhej
πh

jπhejjj,j
1/2

j −−
−− −+−++= ,                (2.7b) 

 
 

;                 (2.7c) εεε)(εε3ε5ε)(0,β:
2
1 }eje{,απ}je

je{πN πh
j3

2ππ
jjj

1)hπ(h
j3

πh
jj d2

1 −
−

−−−−
−

−
+++=

−

 
 
see [14:Thms 4.1, 4.4]. Since ,21 hhh +≥  the above estimates show that if the functions j= 1,2, ;jτ

satisfy the assumptions Al. l, then 

 
                  (2.8) ,}2ππ{expOE *

h )( −=
and 
 
 1,2,j }*πh{expO}{jEg =−= ;)(                 (2.9) 
 
where h* := min (h1, h2 ). 
 

In addition to (2.6) and (2.7), [14] also contains estimates of the errors {j}EX and 
j{j}E ;τ  = 1,2; see Theorem 4.2 and Remark 4.2 in [14]. These estimates show that under the 

assumptions A1.1,  
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                  (2.10) ,2,1;and)( =−=−= j)}πh(exp{O{j}E}πhexp{O{j}E *
τ

*
X

 

where as before h* := min ( h1, h2 ). Finally, [14] contains a theorem (Theorem 4.3), which shows 

that if Q1and Q2 are both "long " quadrilaterals, then at points sufficiently far from the two sides 

η η= -h1 and = h - h1 of Rh {-h1 }, the conformal map g can be approximated closely by the iden-

tity map. In particular, this theorem of [14] shows that 

 }πh exp{Oξiξg *)()0(max
10

−=−+
≤ξ≤

               (2.11) 

 
The method of analysis used hi [14] for deriving the above results makes extensive use of the 

theory given in [3: Kap.V, §3], in connection with the integral equation method of Garrick, for 

the conformal mapping of doubly-connected domains. This involves expressing the three problems 

for the conformal maps g and gj ; j = 1,2, as equivalent problems for the conformal maps of three 

symmetric doubly-connected domains; see [8], [12:§3.2,3.4] and [13:§3]. (With reference to the 

above comment, readers who are familiar with the method of Garrick will recognize the very close 

similarity between the condition (1.9), which is needed for the analysis used in [14], and the so-

called - condition needed for the theory of the Garrick method. ) δε

We end this section by observing that the results of [14] simplify considerably in the case 

where one of the two subdomains G1 or G2 is a rectangle. For example, let 1τ (x) = c > 0 , x∈[0, 1], 

i.e. let 

 .c}{R}yc ,xyx,{G c −=<<−<<= 010):(:1                 (2.12) 
 
Then, (w) = w , h1g 1 = c , d1 =  = 0 and, for any value c > 0, the results (2.8)-(2.10) simplify as 1ε

follows: 

 
   ,} )2ππ( {exp O)h(chE 22   h −=+−=:                (2.13) 

 ,2,1; =−= j } )πh( {exp O{j}E 2 g                (2.14) 

 1,2.;)()( 22X =−=−= j }πh exp{O}j{E,}πhexp{O}j{E τ               (2.15) 

Also, in place of (2.11) we now have that for any point ,c}{Rη iξw c −∈+=:  
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 .}ηh(πexp{Ow(w)g 2 ))( −−=−                     (2.16)  
 
Furthermore, all the above simplified results hold under the less restrictive assumptions obtained by 

replacing the inequalities (1.9) of A1. 1 (ii) by 

 
                    (2.17) ;1)1(/)2(1:ε 2

2
2

22 <−+= }mm{d
 
see [14:Remark4.5]. 
 
 
3.   Numerical results and discussion 

In addition to the theoretical estimates summarized in Section 2, [14:§5] contains two numer-

ical examples in which the quadrilaterals are chosen so that the functions = 1,2, satisfy the jτ j ;

assumptions A1.1. The numerical results of these examples confirm the theory of [14], and indicate 

that the DDM is capable of producing approximations of high accuracy, even when the quadrilaterals 

under consideration are only moderately long. 

In this section we study further the numerical performance of the DDM. but here we consider 

its application to quadrilaterals that do not satisfy the condition (1.9) of the assumptions A1.1. That is, 

we are concerned with cases for which the theory of [14] does not apply. Our main purpose is to 

provide experimental evidence supporting the following two conjectures made in [14]: 

C3.1 :  The results (2.8)-(2.9) hold even when the condition (1.9) is not fulfilled; see 

[14:Remark 5.4]. More specifically, the claim here is that 

 
                     (3.1) ,}πhexp{OE *

h )2(−=
and 
 ,                  (3.2) ,j}πhexp{O}j{E *

g 21;)( =−=
 

with h*  := min ( h1, h2 ), even when dj   ≥  1 ;  j = 1,2, where dj are the values given by (1.8). □ 
 
 C3.2  :  The   errors   }j{XE and  j  = l,2,   are   O { exp  (-2πh* ) },  rather   than       
O {exp ( -πh*  ) } as predicted by the theory of [14]; see (2.10) and [14:Remark 5.2]. That is, the 

; {j}Eτ
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claim here is that 

1,2,;2πand2π}j{ =−=−= j} )h ( exp {  O}j  { E})h(exp{OE *
τ

*
X      (3.3) 

and that the above results hold even when the condition (1.9) is violated.    □ 

Each of the three examples considered below involves the mapping of a quadrilateral Q of the 

form (1.3) and, in each case, the decomposition is performed by subdividing Q into two quadrila-

terals Qj  ;  j  = 1,2, of the form (1.4). In presenting the numerical results we use the following nota-

tions: 

●  2,1;and =j  {j}E {j}, E {j}, EE  τXgh : As before these denote the actual DDM errors 

(2.1)-(2.4). More precisely, the values listed in the examples are reliable estimates of the errors (2.1)-

(2.4). They are determined, as in [14:§5], from accurate approximations to and ,2,1; =jhh, j

g , gj ; j = 1.2, which  are computed by using  the iterative  algorithms of [8]. In particular, 

j;E {j}
g   = 1,2, are the maxima of two sets of values which are obtained by sampling respectively the 

approximations to the functions g (w) - g1(w) and g (w + iEh ) — g2 (w) at a number of test points 

on the boundary segments η = -h1, 0 of }h{R 1h1
− and η= 0, h2 of Rh2 { 0 }. The values {j}

XE  and 

{j}
τE are determined in a similar manner, by sampling the approximations to the functions 

),(ˆ)(ˆ),()( 21 ξ−ξξ−ξ XXXX  e.t.c. at a number of test points in 10 ≤ξ≤ . (The only exception to the 

above are the values of Eh given in Example 3.1, in which Q is a trapezium and the subdivision con-

sists of a smaller trapezium Q2 and a rectangle Q1 := Rc {-c }. In this case, h :=m(Q) and h2 

:= m(Q2) are known exactly in terms of elliptic integrals. Hence Eh :=h -(c -h2) is also 

known exactly.) 

  ●      j = 1, 2: These denote the values used for testing the validity ;{ j }δδδandδ τX gh  },j  { },j  { 

of (3.1)-(3.3). zhey are determined from the computed values of the errors Eh and 

}j  { E },j  {E},j  { E τXg   j  = 1,2, as follows: 

In each of the Examples 3.2 and 3.3, the functions τj ;  j = 1,2, are of the form 
 

, 1,2;)(:)( =+= j  lxσxτ jj  
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where l ≥ 0, and in each case the values of the conformal modules and the errors in the DDM approx-

imations are computed for several values of the parameter l. Let h1(l) and h2(l) denote the conformal 

modules of Q1 and Q2 corresponding to the value l, and let h*(l) := min ( h1(l), h2(l) ). Also, let 

E denote any of the errors Eh, Eg { j }, EX { j } or Eτ { j }, and let E (l) be the value of E corresponding 

to l. Then, the validity of (3.1) - (3.3) is checked by assuming that 

 

),(min :; ) δ( exp 21,
** h hh  }πh { OE =−=  

and computing various values of  δ ( i.e. of ) by means of the formula ) }j  { }j  {  },j  {  , rXgh δorδδδ

 

.}lhlh π { / l E / l E{δ ** ])()([ ])()([ log 2121 −−=  

 (In the examples, l1 and l2 are taken to be successive values of the parameter l for which numerical 

results are listed. ) 

In the first example, i.e. in Example 3.1, we consider only the error Eh and, because of the 

form of Q, we check the validity of (2.13) rather than (3.1). That is we assume that 

 

,}h {  OE hh )πδ(exp 2=  

and determine  from the listed values of Ehδ h, by modifying in an obvious manner the procedure 

described above. 

Example 3.1 (See also [12:§5]) Q is the trapezium illustrated in Figure 3.1. That is, Q is defined 

by the functions 

,l1)(τand)(τ 21 +−== xxcx  

where c > 0 and l > 0. Here, d2 = 1 and, because of this, the theory of [14] does not apply. 

 

As was previously remarked, in this case the conformal modules h := m (Q) and h2 := m (Q2) 

are known in terms of elliptic integrals. Thus, Table 3.1 contains the exact values of h and h2 

corresponding to the parameters l = 1.25, 2.00, 2.50, 4.00, 5.00, and c = 0.75, 0.50, 1.50, 1.00, 5.00. 

( These were determined correct to twelve decimal places, by using the formulae of Bowman 

[1:p.l04].  )  The table also contains the values of the error Eh  := h -( h2+c) and, where possible, 
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the corresponding  values  of δh.  These values of δh indicate clearly that, for any c > 0, 

Eh = O { exp ( -2πh2) } . □ 

 
Figure 3.1 

 
 
 

l      c h2 h Eh δh

1.25 0.75 0.516 810 878 029 1.279 261 571 171 1.2 E-02 - 
2.00 0.50 1.279 261 571 171 1.779 359 959 478 9.8 E-05 2.021 
2.50 1.50 1.779 359 959 478 3.279 364 399 489 4.4 E-06 1.972 
4.00 1.00 3.279 364 399 489 4.279 364 399 847 3.6 E-10 1.999 
5.00 5.00 4.279 364 399 847 9.279 364 399 847 - - 

 

Table 3.1 
 
Example 3.2   Q and Qj  ; 1,2, are defined by (1.3) and (1.4) with 

lxx ++= )0.25cos(2π1)(τ1     and    lxxx ++−= 10.50.25)(τ 24
2

Since d1 = π /2 > 1, the above two functions do not satisfy the condition (1.9) needed for the theory 

of [14]. 

                    The numerical results corresponding to the values l = 0.0( 0.5 ) 2.5 are listed in Tables 3.2(a)- 
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3.2(c). Table 3.2(a) contains the computed values of the conformal modules, together with the esti-

mates of Eh := h - ( h1+ h2 ) and the corresponding values of δh . (The values of h and hj listed in the 

table are expected to be correct to all the figures quoted. The algorithms of [8] achieve this 

remarkable accuracy, because the two curves y = τj (x ) ; j = 1,2, intersect the straight lines x = 0 and x 

= 1 at right angles; see [8:§6] ) Tables 3.2(b) and (3.2c) contain respectively the estimates of the 

errors Eg  { j } ; j = 1,2, and EX  { j } , Eτ  { j } ;  j = 1,2, together with the values δg { j } ; j = 1,2, and  

 □  .2,1;δδ =j }j  {  ,}j  { τX

 

 
l h1 h2 h Eh δh

0.0 0.864 086 763 083 0.859 360 128 944 1.723 659 400 858 2.1 E-04 - 

0.5 1.364 089 626 994 1.359 560 053 306 2.723 658 669 419 9.0 E-06 2.013

1.0 1.864 089 632 342 1.859 568 647 619 3.723 658 668 053 3.9 E-07 2.001

1.5 2.364 089 632 352 2.359 569 018 929 4.723 658 668 050 1.7 E-08 2.000

2.0 2.864 089 632 352 2.859 569 034 974 5.723 658 668 050 7.2 E-10 2.000

2.5 3.364 089 632 352 3.359 569 035 668 6.723 658 668 050 3.1 E-11 2.000
 

Table 3.2(a) 
 
 
 

l } {
gE 1  } {

 g
 1δ }  { Eg

2  }  { g
2δ  

 0.0 1.2 E-02 - 1.2 E-02 - 
0.5 2.4 E-03 1.022 2.4 E.03 1.018 
1.0 5.0 E-04 1.004 5.0 E-04 1003 

1.5 1.0 E-04 1.000 1.0 E-04 1.000 

2.0 2.1 E-05 1.000 2.1 E-05 1.000 
2.5 4.5 E-05 1.000 4.5 E-06 1.000 

 
Table 3.2(b) 
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l } {
XE 1  }{

X
1δ  }  {

XE 2  }  {
X

2δ }  {
τE 1  }{

τ
1δ }{E 2

τ  }{ 2δτ

0.0 4.9 E-04 - 1.1 E-03 - 5.2 E-04 - 4.1 E-04 - 
0.5 2.1 E-05 1.999 4.6 E-05 2.001 2.2 E-05 2.005 1.7 E-05 2.002 
1.0 9.1 E-07 2.000 2.0 E-06 2.000 9.6 E-07 2.000 7.6 E-07 2.000 
1.5 3.9 E-08 2.000 8.6 E-08 2.000 4.2 E-08 2.000 3.3 E-08 2.000 
2.0 1.7 E-09 2.000 3.7 E-09 2.000 1.8 E-09 2.000 1.4 E-09 2.000 
2.5 7.3 E-11 2.000 1.6 E-10 2.000 7.8 E-11 2.000 6.1 E-11 2.000 

 
Table 3.2(c) 

 
 

Example 3.3   Q and Qj  ;  j = 1,2, are defined by (1.3) and (1.4) with 

lxx τ ++= )5.2(hsec2.075.0)( 2
1     and   .  lx xxτ ++−= 1)1()(2  

In this case, the condition (1.9) is not fulfilled because d2 = 1 . 

The numerical results corresponding to the values l = 0.00 (0.25 ) 1.25 are listed in Tables 

3.3(a)-3.3(c). ( In this example, the values of h and hj ; j = 1,2, listed in Table 3.3(a) are expected to 

be correct to eight significant figures.) □ 

                                                           

Table 3.3 (a) 

l h1 h2 h Eh δh

0.00 0.815 399 73 1.121 813 26 1.937 329 02 1.2 E-04 - 

0.25 1.065 491 74 1.371 813 33 2.437 329 08 2.4 E-05 2.005 

0.50 1.315 510 77 1.621 813 33 2.937 329 08 5.0 E-06 2.001 

0.75 1.565 514 72 1.871 813 33 3.437 329 08 1.0 E-06 2.000 

1.00 1.815 515 54 2.121 813 33 3.937 329 08 2.1 E-07 2.000 

1.25 2.065 515 71 2.371 813 33 4.437 329 08 4.5 E-08 2.000 
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l }  {gE 1  }  {
g

2δ }  {gE 2  }  {g 2δ  

0.00 8.9 E-03 - 8.8 E-03 - 
0.25 4.0 E-03 1.027 3.9 E-03 1.017 
0.50 1.8 E-03 1.011 1.8 E-03 1.007 
0.75 8.1 E-04 1.005 8.1 E-04 1.003 
1.00 3.7 E-04 1.002 3.7 E-04 1.001 
1.25 1.7 E-04 1.000 1.7 E-04 1.000 

 
Table 3.3 (b) 

 
 

L } {
XE 1  }{X 1δ  }  {XE 2  }{

X
2δ  }  {E 1

τ  } { 1δτ  }{ E 2
τ  }{ 2δτ  

0.00 8.2 E-04 - 6.8 E -04 - 2.4 E-04 - 2.2 E-04 - 
0.25 1.7 E-04 2.003 1.4 E-04 1.999 5.0 E-05 2.007 4.5 E-05 2.000 
0.50 3.5 E-05 2.000 2.9 E-05 2.000 1.0 E-05 2.001 9.4 E-06 2.000 
0.75 7.3 E-06 2.000 6.1 E-06 2.000 2.2 E-06 2.000 1.9 E-06 2.000 
1.00 1.5 E-06 2.000 1.3 E-06 2.000 4.5 E-07 2.000 4.0 E-07 2.000 
1.25 3.2 E-07 2.000 2.6 E-07 2.000 9.4 E-08 2.000 8.4 E-08 2.000 
 

Table 3.3 (c) 
 
 
 

The numerical results of Tables 3.1-3.3 indicate clearly that in the three examples considered 

above 

.2,1;2δδand,2,1;1δ,2δ ===== τ j   j  }j  {,}j  {}j  {
Xgh  

 
Thus, the numerical results provide experimental support for the conjectures C3.1 and C3.2, which 

were made in Remarks 5.2 and 5.4 of [14]. 
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