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UNIFORM SUBDIVISION ALGORITHVS FOR CURVES AND SURFACES

N. DYN', J.A. GREGORY and D. LEVIN'
'School of Mathematical Sciences

Tel-Aviv University
" Department of Mathematics and Statistics

Brunel University

Abstract A convergence analysis for studying the continuity and
differentiability of 1limit curves generated by uniform subdivision
algorithms is ©presented. The analysis 1s based on the study of
corresponding difference and divided difference algorithms. The
alternative process of "integrating" the algorithms 1is considered. A
specific example of a 4-point interpolatory curve algorithm is
described and its generalization to a surface algorithm defined over
a subdivision of a regular triangular partition is illustrated.

Key words: Subdivision algorithms, Control polygon, Interpolation,

Shape control.

1. Introduction

Subdivision algorithms which generate curves and surfaces play an
important role in the subject of computer aided geometric design.
The basic idea 1s that a given initial "control polygon"™ 1is
successively refined so that, in the 1limit, it approaches a smooth
curve or surface. We will consider uniform binary subdivision

algorithms for curves of the following form:

At the k+l'st step of the algorithm, k = 0,1,2,..., let f* denote



the control polygon in R' with "control point" vertices fE&zRN,ieZ
1

Then the control polygon f*! has vertices defined by the rule

m
fk:+1 . a_ﬂ< |
21 .:Kjl-l-j
] " ie?z, (1)
fk.+ 1 _ 5 b.fk |
2i +1 , Ji+ 3!
j=4

Where { <m

Our motivation for studying uniform subdivision schemes of the
form (1) is based on the particular example of a 4-point interpol-

atory rule defined by

k+1 _ .k

577 =1,

k+1 1 k k k k (2)
+1 _

Hif = [5 + w] [f;““ £ —wifig + £

see Dyn, Gregory, Levin (1987) .Here, w acts as a shape control

parameter. The case w = 0, namely
k+1
FET Lk
g (3)
k+1 _ k k
£21 %1 —g[fi 5 ]
has control polygons f*' = f* for all k, hence in this case the
limit curve is the initial control polygon £f% . The need to construct

a convergence theory for the more general case o # 0 leads us to

consider the more general form (1).

Figure 1 illustrates the application of the interpolatory sub-
division scheme defined by (2) to a finite open polygon in R?, where
w = 1/16. (The case w =1/16 is of significance, since it gives a rule
which reproduces cubic polynomials with respect to data defined on a

diadic point parameterization.) It should be noted that, since the



binary subdivision scheme is local, the scheme is well defined in the
case of finite initial data, where control points at each end of the

initial polygon act as end conditions on the final 1limit curve.

.

Figure 1. Example of 4-point interpolatory algorithm

Subdivision algorithms have been studied in a general setting by
Micchelli and Prautzsch (1987a, 1987b, 1987c). Here, however, we
review a convergence analysis presented in Dyn, Gregory and Levin
(1988), for schemes defined by a rule of the specific form (1). The
reader is referred to the 1988 paper for many of the proofs and this
allows us to simplify the presentation. Also, our approach here is
different 1in that the analysis 1is presented as a study of a
fundamental solution of the scheme. In the final section a new

interpolatory subdivision scheme for surfaces is introduced.

For the purposes of the analysis we will consider, without loss of

generality, the basic scheme (1) with ¢ = 0. This scheme with
coefficients a = [ag...,am] and b =[bo....,bm] will be denoted
symbolically by S(a,b). Thus S(a,b) with initial data {fg e R/

i € 72} is defined by the rule



21 i+l
i e 2z, kx =0,1,2, (4)
M
k+1 _ k
210 = 2 Pyt

2. The fundamental solution

In order to study the limiting behaviour of the sequence of control

o0

polygons {ﬁﬂK:O

produced by the scheme S(a,b) applied to the initial
Data {ff/ieZ} we will consider the special case of initial data

{di,0/1 € Z} We first, however, describe a parameterization by

which the control polygons can be represented in function form.

Since the process is one of binary subdivision, the initial con-
troll points fg are associated wthi the integer mesh points tg:=i,
i € Z, and in general, the control points ff are associated with the
diadic mesh points
tf =i/2", 1 €23, k=01,2,... . (5)

The polygon f* can now be represented by the piecewise linear Inter-polant

k
k. -t t—-t
k tTi+1 k i k k k
£5(t) @ = {tk __tk]fl + = fi+l,1:e(ti,ti+lj, i e z (6)
i+1 ' t, k

1

and properties of the limit process can be studied with respect to

the parameterization t.

Let ¢® (t) be the control polygon with vertices { @f/ iez } for the

process S(a,b) applied to the initial data {¢$::6i O/j_ez}. Thus
4



k+1_ & |k
$2i = jzoaj¢i+j

, i € 72, x=0,1,2, , (7)
k+1 _ & k
P2i+1 = 2 P3P
=0
where
l1fori=0
0) = (8)
Qotherwise
Then
fRe)= 3 £ p*(t-1) (9)

iez

is the control polygon with wvertices {ff/i ez} for arbitrary initial
data {ff/i ez} Suppose

. k _
kl_l)rgo e (t) = o(t) (10)

uniformly on C(-«,«). Then we call ¢ (t) the Ffundamental solution of
the binary subdivision process S(a,b) and o¢"(t) the k'th discrete

fundamental solution of the process.
The local nature of the subdivision process is reflected in the
fact that ¢f and ¢ have local support. The support of ¢f 1is

contained in the support of ¢ which is at most

(=2m, 1) for ap #0
(11)
(—2m+1),1)for ap =0

(In calculating the support we assume b, # 0 without loss of

generality since otherwise the equivalent process S(b,a) can be

considered.) It follows that if lim ¢* = ¢, then



linfX (t)= £ ¢ (£ -1) (12)
lez

Hence the convergence properties of the algorithm for arbitrary
initial data are determined by the nature of the convergence of the

sequence @kfbk=0to¢}
3. Conditions for a C° limit

We consider conditions under which the sequence of control polygons
@k}qﬁ<=0 converges uniformly to a continuous limit curve ¢. From (7)

we immediately obtain:

Lemma 1. A. necessary condition for wuniform convergence to a
continuous 1limit curve with respect to the diadic point parameter-
ization is that

m m

> ay= > bj:l (13)

=0 - =0

Assuming the necessary condition (13), we then obtain from (7) the

difference scheme

k+1 _ & k

A<02:I_ _jéoch(pi-i-j
n , 1 €272 , k=0,1, 2,..., (14)

k+1 _ k

bpoi 1= 2 93805
j:
where

= d b d J b + 15

Cj—izo(ai j_)/ jiz=:O( i ai) aj- ( )

Here



k. k k (16)
ROy =011~

defines a forward difference and we denote the scheme symbolically

by AS(a,b) := S(c,d). We now have the following convergence
theorem:
Theorem 2 (convergence) The process S (a,b) has a discrete fund-

amental solution sequence %kyp]<=0 which converges uniformly to a

con-tinuous fundamental solution ¢, 1f and only if the difference
process AS(a,b) has a discrete fundamental sequence %kyp]<20 say,

which con-

verges uniformly to the zero function 6(t) = 0.

Proof. It is sufficient to consider the function sequences defined
on the largest possible domain of local support [-2m,1].
Observe

also that the difference process (14) has control polygons

© “(t+1/2%) - o*(t) = 6 *(t+l) - 6°(t) , k = 0,1,2.. . (17)
Suppose lim ¢* = ¢ uniformlyin C[-2m,1l]. Then, from (17),

6% (t+1) - 6%(t) converges uniformly to zero. Now

k k k : 2m k : k : :

B (t) = 6°(t) - 6" (t+2m+i) = > {0 (t+i) -6°(t+i+i)}, t € [-2m, 1]

i=0

since 6% (t+2m+1l) has local support within (1,2m+2). Hence 6*(t)
converges uniformly to zero. Conversely, suppose 1lim o*=0,
6(t) = 0, uniformly in C[-2m,1]. Then the control polygons (17) of

the difference process (14) converge uniformly to zero. Consider
this difference process from level k to k+L. Then the control

polygon at level k+L can be represented as

Kbt 4172kt pk* () = ¥ npfoel(t2* -1

lez

®»

ct. (9)). 1In particular,



2ot = 3 npkel(ththok-1),

] lez J
jo+2m
=y npfeb(y/2b-1)
l:jo
where jo = [J/2"] and the summation is restricted to a finite set of
2m+1l integers since 6" has local support within (-2m,1l). Since 6°F

converges uniformly to zero it follows that given 0 < o < 1, there

exists L such that

max |A ga]j<+L|< o ma}x ‘A (p%{
] ) (18)

It can now be shown that this contractive property of the differences

o0

implies that{¢k}k_odefines a Cauchy sequence in C[-2m,1] (see Dyn,

Gregory, Levin (1988)) which completes the proof.

4. A matrix analysis of convergence

Observe from (15) that ¢, = 0 and d, = a, in the difference scheme

(14) and define the nji;; difference vector

A k= [Afk .....  AEK }T (19)
where

2m—1ifam¢0.

nl= (20)

2m—2ifam=O.

Then the difference scheme (14) gives the two "even" and "odd" matrix

transformations
Boi 41 =Col4 k82441 k41 =C184 kv (21)

Where



(22)

We call the (ni+1l) x (nitl) matrices Cy and C; the control point
matrices of the difference scheme AS(a,b). (Here, n; has been
calculated to give square matrices of lowest possible order.)

From (21) it follows that all transformations between the k'th and
k+L'th differences can be accomplished by transformation matrices
consisting of all permutations of products of length L of the
matrices Cy and C;. The contractive property (18) in the proof of

Theorem 2 then leads to the following:

Theorem 3 (convergence) The discrete fundamental solutions of

AS(a,b) converge uniformly to zero if and only if given 0 < o < 1,

there exists a positive integer L such that

@)
@

L

Corollary 4 A necessary condition that the discrete fundamental

solutions converge uniformly to zero is that the spectral radii of
Co
and C; satisfy

p(Co) < 1 and p(Cy) < 1 . (24)

The analysis is, in fact, very rich in matrix theory. For example
Co and C; share nearly all common eigenvalues. They also share
common eigenvalues with the (ni+2) x (ni+2) control matrices, Ay and
A, say, of the basic scheme S(a,b) (excluding the one eigenvalue
unity given by the necessary condition (13)). For details of these

results we refer the reader to Dyn et al (1988). (See also



Micchelli and Prautzsch (1987a) for their treatment in terms of

invariant subspaces.)

The difference scheme AS(a,b) has control point matrices of one
less order than the basic scheme S(a,b). Likewise, 1f there exist
higher order difference schemes these will have control point
matrices of lower order. This suggests the application of Theorem 3

to such higher order difference schemes since we have:

Theorem 5 Assume the necessary condition (24) and that there exists
the difference scheme A{S(a,b),{>1. Then the difference process
AS(a,b) has discrete fundamental solutions which converge uniformly
to zero if and only if A¢S(a,b) has discrete fundamental solutions

which converge uniformly to zero.

Remarks 6. Given Al{S(a,b), the existence of AlS(a,b) requires that

the sum of the coefficient wvectors of A“lS(a,b) be identical.For
example, if Ycj = 2dj for the difference scheme AS(a,b) = S(c,d),
then there exists the scheme Azs(a,b) = AS(c,d) . Moreover, these
sums will be eigenvalues of the control point matrices Cy and C; and

must thus have magnitude less than unity by the necessary condition

(24) .

5. Conditions for a C' limit

To study differentiability of the 1limit process we consider the

behaviour of the divided differences

a]i{::[(/’i{#l_(/’f}/[t]i{+1_t]i<}:2kﬂ‘/’]i{ (25)

of the vertices of the control polygon ¢°. From (14) it follows that the

divided differences satisfy the scheme



where

(27)

Thus there exists the divided difference scheme which we denote by
DS(a,b) := S(a,b) = 2S(c,d), where the necessary condition (13) has

been assumed. We then have:

Theorem 7. (C! convergence) If the divided difference scheme has

discrete fundamental solutions which converge uniformly to a C°
limit, then the basic scheme S (a,b) has discrete fundamental
solutions which converge uniformly to a cl 1imit ¢©. Moreover, the

limit of the divided difference process (26) (i.e. with initial data
0_Ar,0O - '
{di-—A¢i,1ezbls¢7.
Theorem 7 suggests that the C" convergence theory of sections 3
and 4 can be applied to the divided difference process in order to
analyse differentiability. For C° convergence of this process, with

respect to the diadic point parameterization, it is necessary that

m—1 m
> aj(l)= 3 bi(l)=1. (28)
3=0 j=0 -

This condition together with (11) is equivalent to:

Proposition 8. A necessary condition for uniform convergence of the

divided difference process to a C° limit with respect to the diadic

point parameterization is that

m m m 1
s= = 70 2

It can be shown that if (29) holds, then the diadic point



parameterization defined Dby (5) is an appropriate one for the

analysis.If (29) does not hold, there may be some parameterization

defined by differentpoints &f} in which the limit curve may be diff-

erentiable. (The equivalent condition to (29) is then
m m m
_ _ k _ _ +k+1 L k+l

for parametric points {tk

1} which become dense in the limit.)

An immediate generalization of Theorem 7 is:

Theorem 9. (C! convergence) Suppose there exist the v'th divided
difference schemes DYS(a,b) = DS{a (" '),b(" ™)) = s(a(Y),b()),
v =0,...,1, where

zag") +Zbgv)=l,v=0,...,€ (30)

Then if D'-S(a,b) has discrete fundamental solutions which converge
uniformly to a c? limit, the basic scheme S(a,b) has discrete fund-

amental solutions which converge uniformly to a C' 1limit e¢.

Remark 10. Condition (30) implies that each v'th divided difference

scheme has control point matrices with one eigenvalue unity. Since

DS (a,b) = 2AYS(a,b),1t can then be shown that the control matrices
c® and C: of the difference scheme AS(a,b) (and hence of the basic
scheme S(a,b)) must have eigenvalues 1/2Y, v=1,...,1¢.

6. A calculus of schemes

Given the basic scheme
S(arb) ; a = [aOI"'Iam] ’ b = [bOI---rbm] (31)

where Za; = ¥b; = 1, we have defined the divided difference scheme

DS(a,b) := S(a,b) , a® =[a0(1), ....... , a(n}_)l],b(lb[bom, ....... , b <1)},



with coefficients given by (27), Conversely, there exists an

integral scheme

IS (2,0) 1= 5 (@0, Al =fagth L an ™|

b (—1)=[b0(‘1), e .,bm+1(_l)} , (33)

whose divided difference scheme is the Dbasic scheme,

i.e.
DIS(a,b) = S(a,b). The coefficients of this scheme are given by
_ 1 .
a]( 1)=§(aj+bj),j20,...., m
(34)
(-1) _1 -1) _1 L
bo _Ebolbj _E(aj_l+bj)’j_1’....’ m+1
Given that S{a,b) has fundamental solution ¢,let DS (a,b) and
IS(a,b) have fundamental solutions x and ¥ respectively. From

Theorems 7 and 9 we have that if x ¢ Co(w,w), then ¢ ¢ ct (o, >)and

’

U € C? (—o0, ) More precisely, we can relate the fundamental

solutions in the following way:

Consider the divided difference scheme applied to the initial data

A¢€ = A3i,0/1 € z Then the limit curve is

o' (t) = X(t+1> - X(t) (35)
Thus, noting the local support of X,
p(t) = E+lx(s)ds: ﬁzjx(t—-s)Bl(s)ds = x * Bl(t), (36)
where
1,<s<0,
Bl (s)= (37)

O,otherwise

Applying this convolution result to the integral scheme thus gives:



Theorem 11. Let S (a,b) have discrete fundamental solutions which

converge uniformly to ¢ € C(-«,«). Then IS(a,b) has discrete fund-

amental solutions which converge uniformly to

Yy =¢ * B (38)

and, in general, 1's (a,b), ¢ > 1, has discrete fundamental solutions

which converge uniformly to
v * B, :=¢ * By * . . . * B . (39)
We thus see that {' th order integral schemes (and C’ basic
schemes) have fundamental solutions which are defined by convolutions
with £'th order B-splines, which confirms a conjecture of
C.A. Micchelli.

7. An interpolatory subdivision scheme for surfaces

We have so far described a theory for the analysis of convergence of

univariate uniform subdivision algorithms defined by a rule of the

form (1). The motivation for this work is the specific example of
the 4-point interpolatory curve scheme defined by (2). Application
of the theory to this specific case (with L = 2 in the matrix

analysis of section 4) gives -0.375 < w < 0.39 and 0 < w < 0.154 as
sufficient conditions for a C° and C' limit curve respectively, see
Dyn et al (1988). Taking higher wvalues of L and using similarity
transformations on the control point matrices suggested by
M.J.D. Powell gives improved ranges for w. For example numerical
experiments indicate that |w|< 1/2 is a sufficient condition for a
o limit, where for negative w we have used the result of Micchelli
and Prautzsch (1987b) using the positivity of the coefficients in (2)
(lwl])L < 1/2 is also necessary by application of Corollary 5).

We conclude by describing a bivariate interpolatory subdivision
scheme for surfaces whose parameterization can be defined on a "type

1" regular triangulation. Clearly, tensor product type surface



schemes can be derived immediately from the univariate theory but our
interest here is in the development of triangular based schemes. The
scheme is defined as follows:

Let f* denote a control polygon in R’ with control points

k
£

,J € R3 ,  (i,3) € z°, and consisting of triangular faces with

. . k+1
vertices {fi,j/fi+l,jrfi,j+l) and {fi+1,j,fi+1,1fl,j+1}.Then f

has vertices defined by the rule

f%f,lzj zfj}_{,j
fk+12i+1,2j=%[fj]_<,j+fj]_<+1,j}+2w[ff,j+l+fik+1,j_1}
‘m{ff—1,3+1+fj}_<+1,j+1+fj}_<,j‘1+ff+2,j—1}
fécit%j +1 :%[fj]_{,j+fj}_<,j+1}+2m[ff+l,j+ff—l,j+l} (1, 3) € 2% (40)
_w[ff+l,j—l+fik+l,j+ff+l,j+2}
55 11,25 +1Z%[fj]_<+1,j+fj]_<,j+1}+2w[fi{+l,j+l}
_m[fj}_i—l,j+l+fj]_{+l,j—l+fik,j+2+fik+2,j}

As with the univariate rule (2), varying w in (40) gives some control
on the shape of the limit surface. The case w = 0 gives f*' = fk
for all k and hence the limit surface is the initial control polygon
f% . The case w = 1/16 corresponds to a rule which has bivariate

cubic polynomial precision with respect to the diadic point para-

meterization: ffj being defined at

K 10k 50k
tf 4=(1/25,3/2 (41)

The scheme (40) then corresponds to a symmetric rule defined on a



uniform subdivision of a "type 1" regular triangulation.

A convergence analysis of this algorithm is currently being
developed which suggests that the limit surface will be C' for a
range of w which includes w = 1/16. This indicates the existence of
a C' interpolant on a regular triangulation whose fundamental
solutions (i.e. <cardinal basis functions) have local support. The
subdivision algorithm is illustrated by the following example:

The first figure of Figures 2 shows a set of control points
defined on the surface of a sphere with two control points pulled
away from the spherical surface to give the initial control polygon
f%. The remaining Figures show a shaded picture description of the
results of the subdivision algorithm through four levels of recursion
with w = 1/16 and where appropriate additional control points have
been defined as boundary conditions on the algorithm external to the
surface shown. The results indicate a smoothing process suggested by

a C'! limit.

Acknowledgements

This work was supported by the U.K. Science and Engineering
Research Council grants GR/E/25139 and 26594; the U.S.A.-Israel
Binational Science Foundation grant 86-00243; and the Israel Academy
of Science and Humanities grant 548-86. We are also pleased to
acknowledge A.Betashvilli in Israel and R.Qu 1in the U.K.for their

contribution to this work.

References

Dyn, N.,Gregory, J.A., and Levin, D. (1987), A 4-point interpolatory
subdivision scheme for curve design, Computer Aided Geometric
Design 4, pp 257-268.

Dyn, N., Gregory, J.A. and Levin, D. (1988), Analysis of uniform
binary subdivision schemes for curve design, Brunei University

preprint.



Micchelli, C.A. and Prautzsch, H. (1987a), Uniform refinement of

curves, IBM Research Centre

preprint.
Micchelli, C.A.

and Prautzsch, H. (1987b), Refinement and

for spaces of integer translates of a compactly
function,

subdivision

supported
proceedings of the Dundee Numerical

Analysis
Conference.

Prautzsch, H. and Micchelli, C.A. (1987c),

Computing curves invariant
under halving. Computer Aided Geometric Design 4,

pp 133-140.




%
e = SRR
s o e
SEse E SRR

o
RS,

A s
Ry bt R
sr"“;:'ﬁ,‘\, = % ’(;.,JG;? s, _7’ “@"%{’ﬁv_,
el

5 -@"’fé R
STy

S

T
e
R . R
SRR
L
AN
‘_:%?k";‘

Figures 2. Example of interpolatory surface algorithm
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