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as a ratio of polynomials then the matrix G(α)can be explicitly  Wiener- 

Hopf factorized. The Wiener-Hopf  factors will also have algebraic 

growth at infinity. 
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1.     Introduction 

   Recently there have appeared a number of papers dealing with the 
explicit Wiener-Hopf factorization of special types of matrices. 
Lebre[l]uses a rather elaborate procedure to factorize  the  matrix 
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where a(α) is an arbitrary function and p(α) is a rational   polynomial. 
Meister and Speck[2][3] factorized the matrix 

G2(α)= β1(α)R1(α)+β2(α)R2(α) 
(1.2)

where ß1(α) and ß2(α) are arbitrary scalar functions and R1(α)and  R2(α) 
are  matrices  with rational elements such that

   R12 =  R1  ,  R2 = I - R1   . (1.3)
 
Meister and Speck applied these results to the explicit factorization of 
the matrix 
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Kupradze[4]. Hurd and Luneburg[5]carried out a rather complicated 

factorization procedure for the matrix (which occurs in a problem of 

diffraction  by  an  anisotropic   impedance half  plane) 
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al[6] they did realise that this matrix could be diagonalized by means 
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   Of  polynomial  matrices.   In  the  paper* [6] they simply state the 

factorization of the matrix(which occurs in a diffraction problem by a 

partially coated dialectric slab): 
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G5(α)  =  T-1(α)∧(α)T(α) 
 (1.7) 
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The present paper shows that all the above matrices Gj(α), j=l,2,3,4,5 

fall into a more general class which can be Wiener-Hopf factorized by 

elementary means. We also give a simple criterion on the coefficients 
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which will ensure that the matrix can  be polynomially  diagonalized. 

That  is  that  G(a)   can  be  represented  in  the  form 

G(α)   =  P(α)D(α)PI(α)                      (1.10) 

where P(α) and PI(α) have only polynomial  elements. PI(α) = det(P)P- 

( ) ( ) ( ) ( )αTαΛαG,αΛ1(T(αGasfactorstheserepresentThey* +=+−−=− )α)  

Their factorization would seem to be not strictly correct because 

T-1(α) will have poles at a = ±ik. However, in the application they 

eventually only require G+ α) and  G_-1(α) = ∧(α)T(α) to be analytic 

and regular in their regions of reguality, and hence their procedure 

gives the correct results. 
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is the "formal inverse", and D(α) = diag{d,(α),d2(α)} where d,(α) and 

d2 (α) are arbitrary functions of α. Obviously once such a decomposition 

as (1.10) has been achieved then the Wiener-Hopf factorization can be 

carried  out  quite   simply  as 

G(α)   =  G+(α)G-(α) (1-11) 

where 
G+(α)  =  P(α)D+(α) G_(α) =  D_(α)PI(α) (1.12) 

( ) ( ) ( ) ( ) ( ) ( ) ( )αd,α1diag{dD d},α d dα d,α dα2dα= + − += − 2 1 1 1 2 2±±=±  

We also observe that the factorization processes ensures that the 

factors will have algebraic growth at infinity, and thus enable complete 

solution  of  the  relevant  Wiener-Hopf  problem  to  be  carried  out. 

2.     Polynomial  diagonalization 

Consider  the  matrix 
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The characteristic equation of this matrix is given by det(G-λI) = 0, 

i.e. λ2-λ(a+d)+ad-bc=0. Thus the characteristic values of G are given 

by 
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The corresponding eigenvetors are given by the solutions of the equations 

(a-λ1)v11+bv21 = 0,   cv11 +(d-λ1)v21= 0 for λ1   (2.3) 

(a-λ2)v12+ bv22 = 0,  cv12 +(d-λ2)v22 = 0       for λ2.   (2.4) 

Since the determinant of G-λI vanishes,the 2 equations  in (2.3) are 

linearly dependent. Hence taking any one, say (2.3), we have  
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Now, if we can diagonalise, the first column of the transformation 

matrix will consist of v11 (α) and v 1 2 (α), and we require them to be 

polynomials.  Thus   if 
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where  P11(α) and P21 (α)are polynomials, then we can choose 

 v11(α)= P11(α),     v21(α) = P21(α). 

Similarly, solving  either  of  the  equations (2.4)  we  get  for   the 

components of the eigenvector corresponding to λ2 that 
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where  P12(α) and  P22(α)are polynomials then we can  choose 

v12(α)= P 12(α),  v22(α)= P22 (α).   (2.9) 

Thus if (2.6) and (2.8) (where these expressions must have distinct 

values in order to be able to diagonalize) are satisfied then G(α) can 

be   represented  by 

G(α)   =  P(α)D(α)PI(α)  (2.10) 

where 
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and the Wiener-Hopf factorization can be carried  out to give (1.11) 
and (1.12). 

3.    Special cases of the general matrix 

(a) If we let a(α)=l, d(a)=l, b(α)=c(α)p2(α) where p(α) is a rational 
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polynomial then  we  get  the  matrix   considered  by  Lebre[l].    The 

expressions (2.5) and (2.7) now become 
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 so clearly we can polynomially diagonalize. 

 (b) If we let                                                      (3.2) 
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R2 respectively, then  we obtain the matrix (1.2).The condition (1.3) 

requires that the elements of R1 and R2 satisfy: 
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 already in diagonal form (this corresponds to v11/v21 =v12 /v22 =0). 
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Clearly (3.6) satisfies the conditions (2.6) and (2.8) and therefore 

polynomial diagonalization can be carried out. The remaining matrices 

Gi,i=3,4,5 can also be shown to satisfy the conditions (2.6) and (2.8) 

and  thus  be Wiener-Hopf  factorized by  polynomial  diagonalization. 

In conclusion we suggest that given any 2x2 matrix that is required 

to be Wiener-Hopf factorized, the first test one should apply is that 

the elements satisfy (2.6) and (2.8). If these conditions are not 

satisfied, then consider the more sophisticated methods of 

factorization, see for example Heins[7], Daniele[8], Jones[9], 

Krapkov[10), Hurd[ll], Rawlins  and Williams[12], Rawlins[13], 

Williams[ 15]. A similar approach can be carried out for 3x3 matrices, 

however, although the cubic characteristic equation can be solved 

explicitly, the resulting formulae are complicated. It is probably 

better to apply the general principle of section 2 of this paper to 3x3 

or indeed nxn matrices. This principle being that when one is solving 

the eigenvector equations one should choose the elements vij(α) of the 

transformation matrix such that they solve the eigenvalue equations and 

they  are  polynomials. 
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