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1. Introuduction

Given a finite set of ©points S = {xl,....,xk}c A", the standard

n-1 simplex in R" , we define :

1. di(S):rnaxﬂxji —Xmi‘ 1V jme k},i €n

Where x; - {xji N },J ek.
Note that the distributions for d; (S)are the same V ien.
2. d(S) =max{d; (S):1€n}

It is an easy exercise in Crofton's Theorem (2.2 of [2] or
Chapter 5 of [3]) to obtain expressions for the probability
distribution of d;i(S).

We present these in section 2 below.

The main purpose of this paper is to obtain an expression for the
cumulative probability distribution of d(S) for a given n > 2 and
k>2 (see 3.4).

This is achieved in section 3 by a crucial use of the agreement or
clustering measure c(S) , see [1], for a finite set S c A",

In 3.5 we provide calculations of the above probabilities for some
values of n for k = 2.

The rather messy expressions for the probabilities contrasts with
the same measure d(S) for S = k points in [0,1]"c R" .

It is easy to show, using the independence of the coordinates,
probability d(S)<i = A"* D (k-(k-1)1)"

Notation

The only non-standard notation we use is to denote for n € IN,
n:{x e IN: 1£x£n}:{1,2,..,n}

2. Distribution of d, (S)

n-1
Suppose that we have k points S = XX JE A Choose a
coordinate, say the ith.

Let d,(S) = max {‘xﬁ—xmi‘:v j,mek}, ien

where Xxj - (in,....,Xjn),_]Ek



We can apply Crofton's Theorem to obtain the following expression

for the cumulative probability p’, of di(S).
A < 1 nr | k-1 (n—1)r _ nk—nr—k—I+r k(n-1)
PL =kn-DY | D"[5 Jr-x""x dx [+ otk

k-l ¢ qynr+l [k—]]
D" [
nk—k-1
=1 nr—r

Where o =

T

If both n and k are odd then a=0.This is left as a pleasant
Exercise for the reader.
Examples
1. Py = 6A° —8L° +30°
-l 2n—2—r] r
S JA
2. P, =1-2(1-2)" [“” }
: T

2n-2

r= n-1

3. The p.d.f. for d,(S) in the <case k = 2 can be calculated

Directly and we obtain:

n—

N2
2n-1* x| —(1222)2 dz

or by differentiating 2. we obtain the equivalent expression for
the p.d.f.

2n=DIA=X)"" [ [onral s
(2n-3)! {Z i ]X}

4. The mth moment about zero for d,(S)in the case k=2 is

_2(n-D’mi(n-2)!
" (Mm+2n-2)(m+n=1)!




3.Distribution of d(S)

First we outline some basic results needed in this section.
3.1 Agreement Measure Background

Let S = {X;..x,} € A" where X;= (Xj,»X,),j € k be arandom
set of k not necessarily distinct points.
Let a, =min {X itVijek }
n
In [1] we defined < (S) =1- z a, and it was shown there that
i=I

cS) was distributed as a beta distribution with parameters
(n-1)(k-1), n.

Furthermore, given S we obtain an ordered k-partition of n,
Ai,...,Ax , where Aj ={i € n : a =x,} .(we have to assume that

S is in general position-see 2.5 in [l] - also at least two of
the sets Aj,...Ax are non empty.)

If rj:‘Aj

, J=1..,k, then the probability that S has the
ordered k-partition IT={A,.,A,} associated to it is

(nk-n-k) ! (n-1!) *

P(IT) =
m-r-D!(n-r,-D!.(n-1r —1)!(nk-k)!

(see theorem 20 in [1])

3.2 Subsets of A" and their measures.

Our approach in this section is to find probabilities by considering

the measures of subjects of A",

Let B :{(xl,...,xn): Z x; <1, 0<x, <1,Vie n},

i=1
then given xeB",x=(x,,...x_ ) we define the unique regular

subsimplex A (X)of An_lspanned by x(i)=(y,,...v,),1 €n where

V=% , J# 1,

n

y. = l—z X5 +X,

i=

see 2.4 1in [1]).



or given, €n, a€ IR,

LetH(LR= (ye R" y=(y,5e.,y,) » ¥ 22 A
We then have for x=(x,..,x, )eB"
A(x)=A"NH(L,x,)N..NH(n,x_) or

A(x) = {y eENT vy =(V0nV,), V. 2 Xi}. ........... 1.
Also we have that the measure or volume of A(X) 1is

V(A(x)):%(l—z x,)"", regarded as a subset of R".
n .

o1
Definition

Let a , b € R" where a=(a,,...,a,) b=(b,,....,b,)

We define a®b=(c,,..,c,) where ¢; = max {a;, bi}.

Note that it is possible for a,beB” but a®@b¢B".

Clearly, if a ,b ,...,w € IR" then a®b®..®w is well defined.
Lemma 1

Leta,b,...,weB",

L,a(a)Na)N..Na(w) = A (a@b@. .@w) if a@bD. . ®weB”
2.0 (a)NAM)N..NA(w) = ¢gif a ® b @..® w ¢B"

Proof

Follows directly from (1) above.

E.O.P.

As an application of lemma 1 we consider the problem of finding
the volume of the wunion of s subsets S cA , ies , in the
special case where each of the S; is a particular regular

subsimplex of A=A"",

If T < swe let V1 be the volume of ﬂSi, where V¢=o,and o(T) be
ieT

the number of elements or order of T. Let V be the volume of

s,U...U s..

By the combinatorial principle of inclusion-exclusion, Chapter 5

Of [4], we have

V= z (_l)O(T)+1 VT )

Tcs
Now let e = (0,0,.10,,0) ,v ien , be the standard unit vector
with ith coordinate =1 and the rest 0.
Fix A,0< X <1, and let S, = A(Ae;), i = 1,.,n.
Jn
n—1)
4

Not that the volume of A(Aei):( 1-2)""



It is easy to see that
S, = {x,, ..., x)en"" x> A}

1

Then, in this case, we have

LnJSi —{(x,,nx,) € A" 3 j such that x, > 1. }

—{ e xpen™ i A L (2)
Now V1 = volume of ﬂSiZ volume of ﬂA()\ei)

ieT ieT

1
Note that @ Xe, —)\.Ze €B" iff Ao (T )<1i.eo(T)sX
ieT

ieT

Hence V1t = volume of ﬂA()\ei)=Volume of A()\Zei)

ieT ieT

= n (1—o(T)"" if 1—-0o(T)A>0
(n—1)

=0 i+l1-o(T)A<o0
Thus v=) (-1)°™" Z 1y [ ]2 —eax
Tcn (n— 1) 'rzl

Where:
m € IN is such that m = min{n, b}

. 1
and b e IN is such that bSX<b+l.

] 1
We write b:[x}

The following Lemma is well known, (see 2.14 of[2])
however the proof we present here is, we believe, new and is
elementary depending only upon Lemma 1 and the inclusion-exclusion
principle of combinatorics



Lemma 2
Let x =(X,,....x,)be a random point in A",

Then the probability that max {xl,...,xn} < A s

m

Z(—l)r[?](l—r?x?i“l, m=min{n,[i} }.
Proof
Now we have from (2) that given a random point (x,,.,x )e A", the

n

probability that at least one of it coordinates is > A 1is

r=1
Hence the probability that none of its coordinates is > A is

P(A(=l-g(AE Zm:(—l)r[;](l—r)\){“l, m=min {n, [%} }.

r=o

E.O.P
3.3 Simplexes and Barycentric Coordinates
Let A={V,,..,V }be an affine independent set of vectors inIR".

Then they span a simplex A(A) of dimension q-1 given by

g
A(a) = AV, +.+A v D A =1,0<X, <1,Vieq)

i=1
If xeA(n)andx = A v, +.. AV, then (A, ,...,N,) are called
the barycentric coordinates of x.
Using the barycentric coordinates gives an affine linear
isomorphism from A(A)to the standard simplex A®".

We then have

Lemma 3 (Notation as above)
Let x be a random point in A(A)with barycentric coordinates
(A, yuA,). Then the probability that max {A . A} <A is

m

(—1)r[f](1—r2\?€1‘1, m=min{q, E} b
=0

r



3.4 Calculations for D(S)

n-1

Let S = {x,,.,x,}c A" where x,=(x;,  x,.),je€k

and furthermore we assume that c(S)c=1—Zai where

a; =min {x;; :Viek}.

Also we assume that the associated k-partition II={A ,.A}
where rj:‘Aj‘.

Note that at least two of the sets {A, ,..,A,} are non empty.

If we let a(p)= (&, ,...,ap_l,l—Zai+ap, ...,a,),P=1.n

Then the set A = {a(l),a(2),..,a(n)} is an affine independent set
spanning the simplex A(A) which is the smallest regular subsimplex
of A" containing S.

Let o,=<{a(i):ieAf}> vV jek, and we then have:

1. X, € Int(Oj)

2. Since |AS|>2, o, is a regular simplex of edge length V2c¢, (see
J J

2.4 of [1])
3. Ye€O;,y=(Y-¥,) =Y =8, Vi€A,.

Fix jek.

Let d, =max {|x,, —x,[:1<i<n,1<s<k)

Also, since X, € 0,=A(AS) we have:

X, = z Aa (i) where the A, are the barycentric coordinates of
ieA?

x,in A(AS),i.e. D) A =1 and 0<A, <1,ViehS

J
s _ncC
lEA]



Lemma 4 (Notation as above)
d;=c max { A;:i € Aj}

Proof

We have x,= Z)\i a(i).

. _ncC
lEA]

Now we have x,,=a,,VSeA, e (3)
stz{zkiagi| + }\’S(I_Zat)
ieAJCv t=1
=a,+A;c,VseA] i (4)

Since ag = min {x.,:1< t<k}, Sen
We clearly have

:1<i<n,1 <S<k}

d; =max { ‘xji —Xg;
=max {x,;,—a,;:1<i<n}
=max {N\;c:seAl} (from(3),(4)above)

=c max {A,:s €Af}

Hence result.
E.O.P

Lemma 5§
Let P’ be the probability that d,< A.Then we have:

P :i(—l)r[f](l—rg)q’l, m=min {q, EJ }.

r=0 C

Where g=n-r,.

Proof
We have

c
Aj

=n-r, hence o, is an n—-r,—1 simplex.

The result then follows from Lemmas 3,4.
E.O.P



N.B. All of the above probabilities are conditional in that we
assume fixed c and partition II.

We let pn’c(}\) be the probability that d(S) <A given ¢ = ¢c(S) and
the partition II.

Lemma 6

k
P =]]e"
j=1

Proof
The only condition we need to check is independence, as it is
clear that d(S) £ A& d,; <A,VJjek.

But each x, is random point in o, and so can take any barycentric

coordinates independently of the other points.

E.O.P.
_ | ~Dk-n-k _ n-1
The p.d.f. for c is (nk—k) e (1-c) as ¢ is distributed as a
(nk—n—-k) (n—1)!

beta distribution with parameters (n-1)(k-1), n .

Hence ,given the partition II, let p"(A) be the probability that
d(s)<A. We then have

1 nk—k) '¢™ " (1-c)""
Pl_[ )\ — II,c }\\(
=[ "0 (nk—n—k) (n—1) !
(nk—k) !

- ' e n-1
~ (nk-n-k) !(n—l)!.Lp (AX) (=c)" de

k
Where p"™*(2) = [] p}° and
=1

pj”’c=zm:(—l)r[f](c—r}\)q_l , m = min {q,[iJ} ,q =n-r,



The probability that we have the partition IT is

p () = (nk—n—-k) '((n-1) !)k
(n-r,-1) (n-r,-1)!....(n- -1) (nk-k)!

The number of such partions is ———
r'r!.. !

Let p()\) be the probability that d(s) < A

THEOREM (Notation as above)

. rlrlrn!
n-1 n-1 1 e ol
0> ([Tl T [ PTe(N1-c)"de
Sum over all ordered partitions Il = {r; ,..,rx} of n such that

k

I.Z:r1 =n

1=1
2. <n-1,Vlek.
Proof

The set of all such partitions are exclusive and exhaustive. The
Results follows afrer a small amount of algebraic manipulation.
E.O.P

3.5 Examples

We consider the case k=2 and compute p(A)for some valurs of n.

Let e = [EJ
2

1
SAL—/s1<m<e.

We have for
m+1 m
n-l n-1 n—1 1
p()\):nz& rj (n_rJ ple(a)1-c) ldcj
r=1
Where

10



[P —cf ac=3 [ b () B (AL o) M ac
t=0

and

pi,t(?\)=i(—l){z}(c—s)\)r1 , w=min{n-r-1,r-1,m}.

a=0

1
Foro £ A< —we use the abovewithm=e
e

We used REDUCE running on an IBM PS2 to obtain the cumulative
probability function p(A) for n=3 to n = 10 (all for k = 2 i.e. 2
points in A™").

Some sample results are shown below.

n=3
[0, 1] x?(3x2-8X+6)
n =4
[0, 1/2] -§x3(88x3-29 x?+225X-80)
[ 1/2, 1] % (16X°-108X°+270X*-920X°+180X*-36x+3)

4 Application

One application of d(S),where k = 2 ,is given by decision
making techniques using pairwise comparisons between n options.
The resulting decision is then usually expressed in normalized

1

n
form as scores (Xxi,..,X,) where in =1, x,20, Vien i.e.
i=1

as a point in A" .

If the number of options is large then samples of the pairwise
comparisons are usually taken. The resulting normalised scores from
the sample can be considered as approximations to the score
ideally obtained from using all the comparisons.

One method by which the sample scores can be assessed is to
measure the consistency of the comparisons using weighted
transitivity. If the consistency is good then it is reasonable to
infer that all the comparisons follow from the sample and that

11



the normalised scores from the sample are reliable.

However, it is clear that a notion of distance is needed which
allows statements to be made concerning the link between
consistency of the sample and the likely consequent error. Also
different sampling schemes need to be assessed.

d(S) gives a clear idea of the error in that if

S = {x,y} , then d(S)<.05 means that no two components differ
more than .05 or 5%.

See[5] for more details..

12
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