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Summary 

We consider the diffraction of the dominant plane wave mode which propagates 

out of the end of a semi-infinite waveguide. This waveguide is made up of a half plane 

with a Dirichlet boundary condition and a half plane with a Neumann boundary    

condition. This semi-infinite waveguide is symmetrically located inside another infinite 

waveguide one of whose infinite plates has a Dirichlet and the other a Neumann    

boundary condition. A closed form solution of the resulting matrix Weiner-Hopf     

equation is obtained. 

 

 

 

 

 



 

1.    Introduction 

 
In a previous publication, Rawlins [5], a mathematical model to predict noise in             

an exhaust system was proposed. This model resulted in a matrix Wiener-Hopf problem. 

Fortunately the matrix could be explicitly factorized. In the present work we consider 

another possible mathematical model of an exhaust system. This again results in a         

matrix Wiener-Hopf problem which is solved exactly. For the justification of the 

mathematical model see [5]. 

 
The trifurcated waveguide problem under consideration is shown in fig. 1. The 

plates which make up the waveguide have Neumann or Dirichlet boundary conditions    

on them. The plates are symmetrically positioned relative to the centre line of the 

system. A fundamental mode is assumed to propagate out of the month of the semi-

infinite waveguide. Although some related trifucated waveguide problems can be solved 

as a result of their symmetry by a direct application of the normal scalar Wiener-Hopf 

technique, see Rawlins [5], the present problem results in a non-trivial matrix Wiener-

Hopf problem. Fortunately we are able to solve this matrix Wiener-Hopf problem 

explicitly. 

 
To be specific we shall consider an acoustic problem and in section 2 we shall 

formulate the mathematical problem that we intend to solve. In section 3 we shall solve 

the problem formulated in section 2. The solution will be expressed as complex contour 

integrals. In section 4 we shall analytically convert these integrals to infinite series of 

modes which propagate in the waveguide region. In order not to disrupt the flow of the 

solution in the main text an appendix has been included at the end of the paper. This 

appendix includes analytical details required in the main text. 
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Formulation of the boundary value problem 

 
We shall consider the acoustic diffraction of a plane wave mode propagating out of 

the open end of a semi-infinite duct; this semi-infinite duct consists of one plate 

which is rigid and the other which is soft. The semi-infinite duct is situated 

symmetrically between two infinite plates one of which is soft and the other rigid. The 

geometry of the problem is shown in fig. 1. 

fig. l 

The sound source field, which is located at y = y0, x = x0 (x0 < 0, -a < y0 < a) and 

propagates modes along the semi-infinite duct. We shall introduce a scalar potential 

function (x,y,t) which defines the acoustic pressure and velocity by φ ,t/p 0 ∂∂−= φρ and 

u = gradφ  respectively, where ρ0 is the density of the undisturbed medium. 

The incident sound field is assumed to have time harmonic variation e-iωt, where 

the wave number k = ω/c, and c is the speed of sound. In the remainder of this paper  

we shall drop the time dependence, it being tacitly understood that φ (x,y,t) = e-iωtφ (x,y). 

To this end we require a representation for the solution φ (x,y) of the two-dimensional 

Helmholtz equation 

 

    (1) 0k 2
yyxx =φ+φ+φ

in the trifurcated duct system which satisfies the following boundary conditions (see fig.l) 
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   (2a,b,c,d) 

where i t  i s  assumed that  b  > a .  
 
To these boundary conditions we add those conditions at infinity which are 

relevant to the nature of the propagating modes which various duct regions can sustain. 

From Rawlins [5] it is not difficult to show that 

For x → , -a ≤ y ≤ a ∞−
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If we restrict π/4 < ka < 3π/4 then  α1> 0 and  ,k)a4/3(i 22
2 −π=α  so that Imαn > 

0, Reαn = 0, n > 1. Thus in the semi-infinite duct region -∞< x < 0, -a ≤ y ≤ a can 

only sustain the lowest incident and reflected mode. 

For x → , -b ≤ y ≤ b ∞+
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For x  → , a ≤ y ≤ b ∞−
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,)))ab/(πn(k(~,)))ab/(π2(k(~,)))ab/((k(~ 22
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22
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n = 1,2,... . 

For x → , -b ≤ y ≤ -a ∞−

    ),e(0
)ab(

)ay(coseTeT)y,x( xxi
3

ikx
3

21 α−α− +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
π

++=φ   (6) 

Where 

 

,)))ab/(n(k(~,)))ab/(2(k(~,)))ab/((k(~,k~ 22
n

22
2

22
10 −π−=α−π−=α−π−=α=α  

 
n = 0,1,2,... . 

Finally, in order to ensure uniqueness of the solution to the problem we need to 

specify the "edge condition" at the end of the semi-infinite planes, that is 

 
   .0xas)x(0)a,x(and)x(0)a,x( 2

1
2

1

y →=±φ=±φ −   (7) 

Solution of the boundary value problem 

For analytic convenience we shall assume that k = Rek + iImk(Rek > Imk ≥ 0). 

A suitable representation for the total field φ (x,y) in all space by,x ≤∞<<∞−  

which satisfies (1) and (2) is given by: 

);x,ayb(,d)(
)ab(κsin
)yb(κcose

i2
1)y,x( 1

i

i
xi ∞<<∞−−≤≤−ααφ

−κ
+

π
−=φ −τ+∞

τ+∞−
α∫         (8) 

ααφ+κκ+−κ
κκπ

−=φ −τ+∞

τ+∞−

α

∫ d)}()ay(cos)ay({sin
a2cos

e
i2

1)y,x( 2

i

i

xi

 

)9(
);x,aya(,

a4
)ay(cose xi 1 ∞<<∞−≤≤⎥⎦

⎤
⎢⎣
⎡ π

++ α  

)10().,bya(,d)(
)ab(sin
)yb(sin

i2
1)y,x(

i

i 2 ∞<∞−≤≤ααφ
−κ

κ −
π

=φ ∫
τ+∞

τ+∞−
 

In the expressions (8) to (10), κ  = (k2 - α2)1/2 and the branch cuts are taken to be from 

k to i∞  and from –k to –i∞ .  The cut sheet on which we shall work is defined by 
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0 ≤  argk ≤ , see fig. 2. The real parameter T is restricted by requiring that the            π

asymptotic behaviour (3), (4) and (5) be achieved. This necessitates that the contour of 

integration in (8) to (10) lies in the strip: 

 
     max{-Imk, -Im -Im ,} < ,1α 1

~α τ  < min{Imk, Im ,} 1
~α

fig.2 

It can be shown, see Rawlins [5], that the inequality (11) is certainly satisfied by 

-Imk < T < Imk. No singularities of the integrands of (8) to (10) lie within the strip 

-Imk  < T < Imk. The unknown functions (−φ1 α ) and ( ) are functions which are −φ2 α

analytic and regular in the region Im  < Imk. We must now ensure that two remaining α

boundary conditions are satisfied; namely that the field and its normal derivative are 

continuous across y = -a and y = a, (x>0) respectively, that is 

     0x),a,x(
y

)a,x(
y

),a,x()a,x( >
∂
φ∂

=
∂
φ∂

−φ=−φ +−+− .                        (11) 

By substituting (8) to (10) into (11) we get 
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1

21xi
i

i
>=α

⎪⎭
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)(e
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where = . 1κ )a4(/π
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A solution of (12) and (13) is given by 

 

            )(
a2cos)ab(sin
)()ab(cos

a2cos
)(

1
1

121 αφ=
α−α

κ−
κ−κ
αφ+κκ+

κ
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   (14) 

)(1
a2cos
)(

a2cos)ab(sin
)()ab(cos

2
1

21 αφ=
α−α

+
κ
αφ

+
κ−κκ

αφ+κ +
−−

,   (15) 

 
where are functions that are analytic and regular in the region Im  > -lmk.   )(),( 21 αφαφ ++ α

The equations (14) and (15) constitute a coupled system of Wiener-Hopf 

equations which we can write in matrix form as: 

 
)/(D)()(K)( 1α−α+αψα=αψ −+     (16) 

where 

;
1

D,
)(

)(
)( 1

2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ κ−
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

αφ

αφ
=αψ

±

±
±     (17) 
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1
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)ab(cos

)ab(sin
)ab(cos1

a2cos
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⎟
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⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−κκ
+κ

−κ
+κκ

κ
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The usual Wiener-Hopf technique can be applied in a straightforward manner if the                

system (16) can be uncoupled into separate Wiener-Hopf equations. However the                   

present problem requires that the matrix function K )(α  be factorized as a product of two 

matrices, one analytic in Im  > -Imk and the other analytic in Ima < Imk. This is a                    α

nontrivial procedure and it is not always obvious how to achieve it explicitly, at least in      

the classical sense, Noble [4] (where the elements of the matrix factors have algebraic 

behaviour at infinity). The matrix K(α) given by (18) is of a special form that can be 

factorized by a method of Daniele [1], and see Rawlins [6]. Without going into the             

details we obtain           



)(K)(K)(K αα=α −+       (19) 
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Explicit expressions for  and ±K )(α ±t )(α  are derived in the appendix. They are: 
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The Wiener-Hopf equation (16) may now be solved by using (19) to rewrite (16)             

as 

)/(D)](K)(K[)()(K)/(D)(K)(K 11
111

11
1 α−αα−α−αψα=α−αα+αψ −

+
−
+

+−
+

−
+

−
− .(25) 

The left-hand side of the above equation is analytic in Imα  < Imk, the right-hand side                  

is analytic in Im > -Imk. Consequently each side is equal to an entire function E(α α ), 
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that is, a matrix with polynomial entries.  Hence letting 

D)(K
c
c

c 1
1

2

1 α=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

+      (26) 

we have 

 .              (27) )](E)/(C)[(K)( 1
1 α+α−α−α=αψ −

−
−

The determination of E(α) depends on the asymptotic behaviour of various functions.              

In the appendix it is shown that as  ∞→α  in Imα < Imk:                     

)(0ni)(t),(02)(K 11 −
−

−
− α+α

α
−=αα+=α l .              (28) 

Hence 

⎟⎟
⎠

⎞
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=α
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2
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The asymptotic behaviour of (α) may be found from the edge conditions (7); it is not .ψ

difficult to show that 

,)(0)(),(0)( 2/2
1

2/1
1

−−−− α=αφα=αφ                               (30) 

as  ∞→α  in Imα < Imk: 

It is now not difficult to show that by substituting (29), and (30) into the expression (27)         

that the entire matrix E(α) is given by 

E(α)             (31) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

0
1

ic2

in order that the asymptotic behaviour (30) be obtained from (27). 

The solution can be written after a bit of algebra in a very simple form by introducing         

the following functions 

 

F(u,l) = ,luul1 +                                                       (32) 
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∞
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⎝
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⎟
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⎞
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Thus one obtains: 

⎟⎟
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⎝

⎛
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)(
)1,u(P)(

1

11 .     (34) 

It is not difficult to show that P(l,u), P(l,-u) have neither zeros nor poles in Imα < imk. 

They do have branch points at α = -k, but the particular combinations in (34) are 

invariant under the transformation u → -u which means that ψ-(α) is indeed analytic in 

Imα < Imk. 

We now substitute the expression (34) into the integral representaitons (8) to (10) 

and obtain the field representations for the different regions as: 

Region A (-b < y < -a, x < 0) 

  ∫
τ+∞

τ+∞−
α
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−κκ
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Region B (-a < y < a, x < 0) 
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π
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i

i
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.
)(
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1α−α

α
κ−+κ+−κ+   (36) 

Region C (a < y < b, x < 0) 

      ∫
τ+∞

τ+∞−
α

α−α
α
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−κ
−κ

π
=φ

i

i
1

xi11

)(
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Region D (-b < y < b, x > 0) 

 

∫
τ+∞

τ+∞−
α −−π−π+

−
π

=φ
i

i
xi11 )1,u(P/)1,u(F)4/bκcos()4/aκ{[cos(
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  .
)(
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α
π+π−−         (38) 

In the expressions (35) to (38) the pole α = α1 lies above the contour of integration, that 

is T  < Imα1. We also note that the term in the curley bracket { } of (35) to (37) has no 

singularities in Imα > -Imk. Thus the only singularities in Imα < Imk of the integrands 

of (35) and (37) occur at the zeros of sin (b-a) = 0, that is α = κ κ ),))ab/(n(k( 22
n

~ −−= πα−  

n = 1,2,... . The only singularities of the integrand of (36) occur at the zeros of cos2ka 

= 0 that is α = -α2n-1 = √  are the only singularities in Imα < Imk. ))a4/)1n2((k( 22 π−−

The only singularities in Imα > -Imk of the integrand (38) occur at the zeros of cos2kb 

= 0, that is α = √  n = 1,2,..., and also the pole α = α=−1n2
^α ,)))b4/()1n2(k( 22 π−− 1. 

 

4. Mode field representation 

An application of Cauchy's residue theorem to the complex integrals (35) to (38) then 

gives the field in the various regions as a sum of waveguide modes. 

Region A (-b < y < -a, x < 0) 
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1

111 ikx
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~
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~
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~
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αα+α

−
−

− ∑
∞

=

α−

    (39) 
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Region B (-a < y < a, x < 0) 

]a4/π)ay[(cose)y,x( x1i +=φ α  

 

 ∑
∞

=
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+
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mmmmmm
1mm

nxmi
11 )u,l(F)l,u(P))ay(κcos)ay(κ{[(sin

)(
)(e

a2
)l,u(P  

     )]},u,l(F)l,u(P))ay(κcos)ay(κ(sin mmmmmm −−++−+ (m=2n-1). (40) 

Region C (a < y < b, x < 0) 
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)(
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Region D (-b ≤ y ≤ b, x > 0) 
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b2

)l,u(P)y,x( 1n
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^
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^
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^
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^

m
^

m
^xm

^i]
2
n[

11 π−+
−
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∞
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(42) 

where [x] denotes the largest integer ≤ x. 

 

Conclusion 

We have solved a new diffraction problem in closed form by using matrix factorization. 

The present approach would not be substantially changed if we included a flow in the 

region -a < y < a. This would be a possible model for an exhaust system, where exhaust 

gases flow out of the system. It is hoped to present this solution in the near future. 
 

We also remark that if we considered the same duct geometry and boundary 

conditions, but with the incident wave propagating in the region x > 0, | y | < b from 

z = ∞, see fig. 3, then we would obtain a similar matrix Wiener-Hopf problem which can 

be solved exactly. As a special case of this latter problem by letting a → 0 one would 

obtain the solution to the problem considered by Lüneburg and Hurd [3]. 
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fig. 3 
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Appendix 

Here we shall carry out the explicit factorization of (23) and (24), and give their 

asymptotic behaviour as | α | → ∞. For K(α) given by (23) we can write it in a more 

convenient form 

)ab(κsin)4/aκcos()4/aκcos(
)4/bκcos()4/bκcos()(K 2 −π−π+

π−π+
−=α  

and if we let 

)a,(K)a,(K)4/aκ(cos)4/aκcos()a,(K αα=π−π+=α −+  

    , )ab(,(S))ab(,(S)ab(κsin)ab(,(S 2 −−α=−=−α −+ α

)ab,(S)a,(K
)b,(Ki)(K
−

=
±±

±
± αα

αα  

Now from Rawlins [5] it has been shown that 

  ∏
∞

=
−−−−+− +−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
π−

=−=
1n

1n41n41n41n4

2

)ullu()ullu(
k)1n2(

a)a,(K)a,(K αα  

)ullu()ullu( 3n43n43n43n4 −−−− −−× ; 

And that 

  in Imα > -Imk and Imα  < Imk respectively. ∞→=α± ||as)e(0)a,(K ||a αα

From the well known product for the sine function 

∏
∞

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π

−=
1n

22

2

n
z1zzsin  

it is not difficult to show that 

.))ul()lu((
kn2

)ab(1)ab())ab(,(S))ab(,(S 22
n

~2
n

~
2

1n

2 −⎟
⎠
⎞

⎜
⎝
⎛

π
−

−=−−=− ∏
∞

=
+− αα  

 
Thus 
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∏
∞

=
−−−−

−−−−
−

−−−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
π

−
=

1n 22
n

~2
n

~2
3n4

2
3n4

2
1n4

2
1n4

2
3n4

^2
3n4

^2
1n4

^2
1n4

^2

2
))ul()lu)(()ul()u)(()ul()u((

))ul()lu)(()ul()lu((
)ab(a

bkn2
1)ab(

i)(K α . 

 

Now since K(-α) = K(α) then by Radlow and Kranzer [2] we have since K(α) = 4+0(1) 

that 

K±(α) = 2 + o(l) . 

The factorization  of 

⎥
⎦

⎤
⎢
⎣

⎡
−π+π
+π−π

=
π

)aκ4/cos()bκ/cos(
)aκ4/cos()bκ4/cos(en1

κ
1)(t

i
α  

follows directly from Rawlins [5], as 

⎢
⎢
⎢

⎣

⎡

+−−+

−++−−
+⎟
⎠
⎞

⎜
⎝
⎛ −α−−

=α ∏
∞

=
−−−−−−−−

−−−−−−−−
−

1n
3n43n41n41n43n4

^
3n4

^
1n4

^
1n4

^

3n43n41n41n43n4
^

3n4
^

1n4
^

1n4
^

)ullu)(ullu)(ullu()ullu(

)ullu)(ullu)(ullu()ullu(
n1

κ
1

k
ikin

κ
1)(t

where 

t+ (α) = t -(-α) 

and 

,)k(l,)k(l,)k(u)k(u 2
1

n
2

1
2

1
n

2
1

αααα −=−=+=+=  

2
122

n
^

n
^

n
^

n
^

n
^2

122
n )))b4/(n(k(),k(l),k(u,)))a4/n(k( π−=−=+=π−=α ααα . 

The behaviour of t -(α) as α → ∞ in Imα < Imk can be shown to be 

)(0)(ni)(t 1−
− +

α
−= ααα l . 

 

 

 

 

 

 

 


