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1.    Introduction

The  purpose  of  this  paper  Is  to derive  error bounds  for 

the finite  element  analysis  of  elliptic  boundary value  problems. 

As  shown in Section 2, the  interpolation remainder  is  an upper 

bound on the finite element  remainder  in the appropriate  norm. 

Error bounds  are derived for  the interpolation remainder by 

means  of  extensions of  the Sard  kernel  theorems. The  Sard kernel 

theorems  provide  a  representation  of  admissible  linear  functionals 

on  spaces  of  functions  with  a  prescribed  smoothness.   If appropriate 

derivatives  of  the  solution   u  of  the  boundary value  problem  can 

be  found,  then  these  theorems  yield  computable  error bounds. 

These  theorems  have  been applied  to  cubatures by  Stroud [10]  and 

by   Barnhill  and  Pilcher  [1]. 

The  solutions  of  elliptic  boundary  value  problems  are  usually 

assumed  to be in a Sobolev  space. The  Sobolev  and Sard  spaces 

are  not  the  same.  If  (a,b)  is  the  point  about which  Taylor 

expansions  are  taken  in  the  Sard  space,  then the  Sobolev  spaces 

are  contained  in  the  Sard  spaces  of  the  same  order for  almost 

all  a   and for  almost  all   b.     In Section  3,  we  show  that  the 

derivatives  occurring  in  the  Sard  spaces  can be  generalized 

derivatives,  so  that the  derivatives  in   the   two  types  of  spaces 

are  of the same kind. 

Some  of  the  functionals  of  finite  element  interest  are  not, 

in  general,  admissible  for  Sard  spaces.    A precise  statement  of 

this  is  given in Section 2.    This problem was  avoided by Birkhoff, 

Schultz  and  Varga  [4]  in a  way  that  is  appropriate  for  rectangles, 

but  is  inappropriate  for  triangles  because  it  implies  the  use  of 

derivatives  outside  the  original  region of  interest.   In  Section  4, 
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we  extend  the  kernel  theorems  and  show  how  to  choose  the 

point   (a,b)   so   that    the   finite  element   functionals    can   be  applied 

in   an   arbitrary   triangle.     The   method  can  also be  used  for  more 

general  regions. 

The   finite  element   functionals   do   not  involve   all  possible 

derivatives  of   a   certain  order.     In Section 5,   we   prove   a   Zero 

Kernel   Theorem   that   states   sufficient   conditions  for   certain    of 

the  Sard  kernels  to  be  identically  zero.    The   Zero  Kernel   Theorem 

has   various    applications,   one    being   that   certain   mesh  restrictions 

in   Birkhoff,  Schultz  and  Varga   can   be  avoided. 

We  conclude    in  Section  6 with  computed  examples  of  the 

constants  in    the   error  bound   for   piecewise  linear   and   piecewise 

quadratic    interpolation. 

The  Galerkin  Method   and   Its  Relationship   to   Interpolation. 

Finite  element  analysis   means  piecewise  approximation  over  a 

set   of  geometric   "elements".    This   rather   general   definition 

suffices   e.g.,  for  computer-aided   geometric  design,  but  for 

elliptic  boundary  value  problems  finite   element   analysis   usually 

means   the  Galerkin method.    If   the   partial  differential  equation 

is   the   Euler   equation  for  a  variational   problem,  then   the 

Rayleigh-Ritz  method  is  applicable  and  is  the  same   as   the 

Galerkin  method.  Thus  the  Galerkin  method  is  the  more  general 

since  it  does  not  depend  upon the  existence  of  some  underlying 

variational  problem.    Therefore,  we  discuss  only  the  Galerkin 

method  in this  paper. 

Let Ω be a simply connected bounded region  that satisfies 

a restricted cone condition in the xy- plane. For p > 1 and ℓ 

a  non-negative  integer, is the Sobolev  space of  functions ( )Ωl
oW
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with   all   ℓth   order  generalized  derivatives   existing   and   in 

L p (Ω).   Usually  p = 2 .  We   recall  that for Ω  as  in  Figure  1, 

1,0u
x
u

=
∂
∂   is  the  (1,0)   generalized  derivative  of   u  means  that 
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and  the  summation  in  (2.3)  is  over  all α  such  that 

|α|  = α1   +  α2  ≤ ℓ.     The   definition  of  generalized derivative 



4. 
implies that the partials in can be taken in any order. αD

The function space  is the completion in the norm (2.3) ( )Ω2W∂

of Cm(Ω), m = 0,1 ,  ...  or equivalently of C∞(Ω). 

 Following Varga [11], we consider linear elliptic operators 

in divergence form: 

(2.4)y)]u(x,
α

αy)D(x,α[PαDα1)(y)Lu(x, ∑
≤

−=
l

 

where the pα are in L∞ (Ω).      The nonhomogeneous boundary value 

problem corresponding to L is to find  such that : ( )Ω2Wu l∈

Lu(x,y)  = g(x,y)  , (x,y)∈ Ω                                                  (2.5) 

Dßu (x,y) = fß(x,y), (x,y) ∈ ∂Ω  for 0 ≤_|ß|≤ℓ -1 .                  (2.6) 
 

The  homogeneous  problem  is  that  all  the  fß    are  identically  zero, 

the relevant Sobolev space then being called  ( )Ω2
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Theorem  1  in Section 3 on equivalent  norms  implies  that  this  is 

a norm on  ( )Ω2
0
W
l

 
Let  a (u,v) = (2.7)Dydx,y)v(x,αy)Du(x,

α
αy)D(x,

Ω
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Then the weak problem, corresponding to  (2.5)  and  (2.6)  is  to 

find u  satisfying  (2.6)  and  such  that 

a(u.v)  =  (g,v)                                                                               (2.8) 
 
  for all v in  ( )Ω2

0
W

l

The definition of  the weak  problem can be  motivated by  the 

integration of  (2.5)  by parts  with a  test  function v  in 

( )Ω2
0
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We  consider  interpolants u to  u,  where  the interpolation ~

conditions  are  the  following: 

(2.9),n....,,1j,(u)jM)
~
u(jM

,m....,,1i,(u)iL)
~
u(iL

==
==  

 
and  the  Li  and  Mj.  are  interpolation  functionals  such  that 

the  Li(u) are unknown and  the Mj.(u)  are  known a  priori. 

Hereafter we  assume  that the Mj(u) are  known from  the 

boundary  data  (2.6). 
−
Ω  is  usually  discretized   and   the  linear  funotionals  Li  and 

Mj  based  on  the  discretization,  an example  being  the 

evaluation of u  and  its  derivatives   at   certain  mesh  points. 

Let  vh  be an (m + n)-dimensional  subspace  of  such )(Ω2wl

that  the L.i and  Mj  are linearly independent  over vh. Then Vh  has  a 

basis   of   functions n
1j}y)(x,j{candm

1i}y)(x,i{B ==  that 

are  biorthonormal with  respect  to the Li and Mj [5]. Let 

Sh be the subset of  which consists  of functions  v  of )(Ω2wl

the  form 
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where  the  ai   are  constants. Let   be  the  m-dimensional h
0s

subspace  generated by the  Bi.  The  Galerkin  method  is  to 

find  U in    Sh  such  that   a(U,v)  =  (g,v)  for  all  v  in . (2.10) h
0s

The"conforming condition" is  that ,which is )(Ω2whs l⊂

required  for the Galerkin  method. We  also  require 

,)(Ω2
0
wh

0s
l

⊂  which  usually  follows from the conforming condition. 

Lemma.1 (Strang  [9]). The Galerkin approximation U is  the best 

approximation from  Sh to  u in  the energy norm  induced by 
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the   inner  product   a(u,v).    That is, 

a(u -U,  u  - U)   ≤    a(u  -  u~ ,  u  - u~   for  all  u~   in  Sh                    (2.11) 

In fact, 

 
        .)~u,~u(a)U~U,~(aU)u,U(ua uuuu −−=−−+−−                      (2.12) 

Proof:      From  the  definitions  of   weak  problem   (2.3)   and 

Galerkin  method,    (2.10),    a(u -  U,v)  =  0   for   all   v   in  .h
0s

Therefore,     a( u - U,  u - U)  =   =−−−− U),Uu~(aand,)u~uU,(ua   

,)Uu(u,ua( −− ~~  from which  (2.12)  follows. Q.E.D. 

 
The  normal  equations    for  this beat  approximation  can be 

derived   as   follows: 

  

If  u~   interpolates  to  u  with  respect   to  the   functionals 
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Equations   (2.14)  yield  a  method  of   calculation  of   the  Ai. 

Since  the Bk   are  in    the  actual  normal  equations  are ,)(Ω2
0
w
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the following : 
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         The   norm  induced  by    a(u,v)   is  equivalent  to  the 

 norm  if   a is  bounded   and   -  elliptic,   i.e. )(Ω2wl )(Ω2w l
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  Lemma 2.          Assumptions (2.16),(2.17) imply that 
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Proof :   The best approximation property a (u-U,u-U) <  a ),uu,u(u ~~ −−  

 ellipticity ,and boundedness imply the conclusion .           Q.E.D. 

 Example.    For  Poisson's  equation,  ℓ = 1,  | |a|  |= 1  and ρ  

can be  taken  as  one. 

Interpolation remainder  theory  is  applicable    to  the  Galerkin 

method  from  the  best approximation property  (2.11)  or 

equivalently,  from  (2.18), the  interpolant being  taken as u~  

      3.  The Sobolev Imbedding Theorems. 

The  following  theorem  on  equivalent  norma  [7]  was  used  in 

Section 2: 

Theorem 1. If F1,.. .FN are bounded linear functionals on 

that are linearly independent over P
)(Ω2wl

ℓ-1 , the space of 

polynomials  of  degree  ≤ ℓ  - 1 ,  and  N = ℓ(ℓ+l)/2,  then the  usual 
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The   norm  on    is   obtained  with  the  F( )Ω2
0
W

l
k  being 

of  the  form  ∫
∂

−−<
Ω

1β,dsuβD l  

The    Fk    are   bounded   because   lower   order   derivatives   can   be 

bounded     in    terms    of    higher   order   derivatives    as   follows: 

Theorem  2.     Let    Ω   be   the   union   of   finitely   many   star-like 

regions.     If  ℓ = 1 ,   then    v    in     implies   that )(Ω1
2w

 ( ) ||1ΩL2|| v|| ≤ ℒ ( ) ( ) ( ) (3.2)Ω1
2W

||v||1Ω2LΩ1
2W

|| →                

where Ω1   is  a  one-dimensional  subset  of  
−
Ω . 

If  ℓ  >  1 ,   then  v  in  implies   that )(Ω2wl

          
          ||ℒ||( ) ≤Ω2-C||v|| l ( ) ( ) ( ) (3.3)Ω2W||v||1Ω2LΩ2W ll →    

 
  Where  ||ℒ|| x→y  means  the  norm   of   the  operator   imbedding 

X  into  Y. 

We note from Theorem 2 that point evaluation funotionals are 

bounded  on W  (Ω).  However,   these functionals are unbounded 2
2

on  w 12  (Ω). 

 
A  specific  example  of  Theorem  2 is   the  following: 

Lemma  3. Let  Ω  be  a bounded convex  region with  B  equal  to 

the  maximum  of  Bx  and  By , where Bx is  the diameter of  Ω  along 

parallels  to   the   x-axis   and   By    is  dual. 

If  u  ≡ 0  on  ∂Ω, then 

             ( ) ( ) (3.4)Ω
1
2

0
W||u||B

2Ω2L||u|| ≤
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Proof:      Let   ∂Ω  be  parametrized  by  the pair  of  functions 

y1 (x) ≤ y2 (x),   a ≤ x ≤ b or by  x1 (y)  ≤  x2 (y),    c ≤ y ≤ d 
 

(see Figure 1).      Then 

,yd2)]y(x,
(x)2y

(x)1y 0,1[uc)(y2y)u(x,(3.5),From

x

(y)1x
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b
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(x)2y
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b

a
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(x)1y (3.7)
dx.yd2)]y(x,0,1[u

2

2
yB

dxdy2|y)u(x,| ~~  

       A dual result comes from (3.6)  and the conclusion follows. Q.E.D. 

 

4.    Interpolation Remainder Theory
 We  review and  then  extend the  Sard kernel  theorems  in order to 

 obtain   interpolation  error  bounds,  including   the   corresponding constants. 

 Let p  and q  be  positive  integers with  n  =  p + q.    Sard  [6]  has 

 defined several  types  of  spaces  of  functions with  a prescribed  smoothness. 

 The  two  types  of   interest for remainder  theory are  the  triangular 

 Spaces  and  the   rectangular   spaces   For    remainders  of qp,B= ⎤⎡= q,pB

 polynomial  precision  in  two  variables, qp,B=  is  the  more  useful  unless

 the   remainder  corresponds to  a  tensor  product  rule,  in  which  case 

   is   used.    The   latter  case  has   been  considered  much more, 

 building  as  it  does  on   one-dimensional  rules,  and  many   particular 

 results   are   summarised  in Stancu[8].    This   paper  will  be  concerned 

⎤⎡= q,pB
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with  interpolation  over  triangulated  polygons     Ω   , 

so  that   Is  the  appropriate  Sard  space. qp,B=

qp,B=   is   the  space  of  bivariate  functions  with Taylor 

expansions  containing  derivatives  in  a  certain  triangular  form. 

The Taylor expansions  are at the point (x,y)   about  the  point   (a , b). 

The  notation   means  that  the  derivatives  occurring  in  the qp,B=

Taylor  expansions  are  integrable.  In  fact,   we   shall   usually  

consider subspaces  of qp,B=  in which  the  derivatives  are  in  Lp  .   

for  some  p '  ≥  1• 

The space  depends on the region Ω in which the  Taylor qp,B=

expansions  take place. Sard  let  Ω  be  a  rectangle,  but  this  is 

insufficient  for  our   later   purpose   of   interpolation   to 

functions defined on triangles. However,  the  boundary  value 

problem assumption  that Ω be  a bounded region satisfying  a 

restricted  cone  condition   is   too   general. 

Definition 1. Let  Ω  be  a  bounded  region with  the  following  

property:  After  a  rotation  (if  necessary),  there   is   a   point  

(a,b)  in  such  that  for  all   (x,y)  in 
−
Ω

−
Ω   the  rectangle  with 

opposite corners  at   (a,b) and at  (x,y)   is  contained  In
−
Ω  

Examples.     If  Ω  is  a  rectangle,   then  (a,b)  can be  an  arbitrary  

point  in  the  rectangle.    If  Ω  is  a  triangle,   then  (a,b)   can be  

taken  as  the  point  on  the  longest  side  of  the  triangle  that  is  

at  the  foot  of  the  perpendicular  to this  side  from  eth opposite  vertex.  
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We   assume  hereafter  that   the region  Ω   of  definition of  the 

boundary  value  problem  (2.8)  is  the  union  of  finitely  many  regions 

Ω  satisfying  the  above  definition.    When  Ω  is  a  rectangle,   the 

next  theorem  is  due  to  Sard. 

Theorem   3.  Taylor    Expansion.    Let  Ω  satisfy  Definition  1.   Then  

)(Ωqp,Bu =∈  implies   that   u  has   the  following  Taylor   expansion  at  

(x,y)  about  (a,b): 

b)(a,ji,u
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b)(y
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i
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                                               (4.1)ydxd)y,x(qp,u
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1)(p)x(x

y

b
1)(q)y(y ~~~~~~ ∫

−−∫
−−+

where (x - a)(i) ≡  (x- a)  I  /  i!  etc. 

Remarks  on  the  proof: 

Theorem  3  is  proved  by  several  integrations  by  parts. 

(4.3)
xd)y,x(qp,u

x

a
1)(p)x(x...a))(xy, (q1,u)y(a,q0,u)y(x,q0,u

(4.2)yd)y(x,q0,u
y

b
1)(q)y(y...b)b)(y(x,0,1ub)(x,y)u(x,

~~~~~~~

~~~

∫
−−++−+=

∫
−−++−+=

ε
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This completes  the  expansion along Sard's  "main route" in the 

Sard  index triangle  of  partial  derivatives  from  (0,0)   to   (p,q), 

Figure  3.  

 

Next,  univariate expansions                                                                                           

are made along the arrows,         

exactly  one  expansion  for 

each  term  of  (4.2)  after 

(4.3)  has  been  substituted 

into   (4.2). 

 
 

 

 

 

We  have  assumed  the existence  of  the generalized  derivatives 

in Table  1.    These   derivatives   need  exist  only   almost 

everywhere  in the variables ,y~andx~ because  these  variables 

are   "covered"  by  integrals  in  the Taylor expansions.    In particular, 

 up,q ( )y,x ~~  exists a,e. x~  and  a.e.y Our later use  of (4.1) only 

 requires  that u(x,y)  exist  a.e.  (x,y)  and  that  the  derivatives    involving  x 

 in  the first  two  columns  in Table 1 exist  a.e.  x. 

~



12.2 

 



13. 

 

 

An  importance  of  these  derivatives  being  generalised  rather 

than  ordinary is  to  make  the  Sard and Sabolev  spaces  more  compatible. 

(Sard's  statement  of  this  theorem  presumes  that  the  derivatives 

are  ordinary.) 

The  Sard  kernel  theorems  are  for admissible  functionals  defined 

on  functions  which  have  a  rectangle  as  their  domain  of  definition. 

We  extend  the  definition of  admissible  functional  to  regions 

satisfying Definition 1. 

 

Definition 2. The  admissible  functionals  on are )(Ωqp,B=

of  the  following  form: 

(4.4)β~

β )y~(ji,dμ)y~,(aji,u

qj
nji

a~
a )x~(ji,dμ)b,x~(ji,u

pi
nji

)y~,x~(ji,dμ)y~,x~(ji,uΩ

qj
pi

Fu

∫∑

≥
<+

+

∫∑

≥
<+

+
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<
<

=

 
 

 
 where  the   μi,j  are  of bounded  variation  with respect    to  their 

arguments.    The  line  segments    β~y~β,axandαxα,by ≤≤=≤≤=  

are  assumed  to be  in Ω  or,  equivalently,  the  support   of   the    univariate 

μi,j   is  contained  in   Ω . 
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Theorem  4.    Kernel  Theorem,       Let  Ω  satisfy  Definition  1  and F be  an 

admissible functional  on .    If )(Ωqp,B= )(Ωqp,Bu =∈ ,   then         

   x)dx(jj,nK
qj

b),x(
α

α jj,nub)(a,ji,u
nji

ji,cy)Fu(x, ~~~
~

−∑
<

∫ −+∑
<+

=

 

∑
<

∫ ∫ ∫+−−+
Di

β

β
(4.5)ydxd

Ω
)y,x(qP,)Ky,x(qp,uy)dy(ini,)Kyi(a,n,iu

~
~~~~~~~~~  

 

(4.6)nji,(j)b)(y(i)a)(x,y)(x,Fji,cWhere <+⎥⎦
⎤

⎢⎣
⎡ −=  

 

(4.7)Jxxq,j,(j)b)x)(y,xφ(a,1)j(n)x(xY)F(x,)x(jj,nK ∉<⎥⎦
⎤

⎢⎣
⎡ −−−−=− ~~~~  

 

(4.8)jyyP.i,y),yψ(b,1)i(n)y(y(i)a)(xy)(x,F)y(ini,K ∉<⎥⎦
⎤

⎢⎣
⎡ − −−−=− ~~~~  

 

(4.9)
yjyx,jxy),yψ(b,1)(q)yx)(y,xψ(a,1)(p)x(xy)(x,Fy)(x,qp,K

−
∉

−
∉⎥⎦

⎤
⎢⎣
⎡ −−−−= ~~~~~~  

The  notation F(x,y)       means  that  F  is  applied  to  functions  in  the 

variables    (x,y).    The    function   Ψ   is 
 

                       
⎪
⎩

⎪
⎨

⎧
<≤−
<≤

≡
.otherwise0

ax~xif1
xx~aif1

x),x~(a,ψ

 
 

Jx  is the "jump  set" consisting of the points of discontinuity of 

the total  variation functions |μn-1-j,j  | (x)  for  j  <  q. Jy   is    the 

dual  jump set, If   xJ,1p > is the jump set consisting of points  of 

discontinuity    of    where,q'jfor)β,(x|'j,1pμ| <− ~  

,1PIf.β~yatevaluatedy),(x|'j,1pμ|)β~,(x|'j,1pμ| =/=−≡−
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then    xj    is   empty.   yJ    Is   dual. 

Remarks   on   the  proof: 
The   purpose  of   the   function )x,x,a(ψ ~ is  to  change  indefinite 

Integrals of the form  to  definite  integrals  of   the ∫
x
a xd)xf( ~~

Form , The  functions   μ∫
α
α .x)dxf()x,x,(aψ
~ ~~~ i ,j    are  defined  in 

order  that  Fubini's   Theorem  can  be  applied.  The  jump  sets  arise 

because, for example    x)],xψ(a,1)(n)x(x1nx

1n
~~ −−−∂

−∂ [      is   integrated 

against , which  is  undefined  at ),x(0,1nμ ~− xx =~   unless  n =  1 . 

An  advantage  of  the  Sard  kernel  theorem  is  that  in  (4.5) 

the  variables     occurring   as  arguments  of  the  derivatives  are )y,x( ~~

"covered",  i.e.,    they  are   the   variables    of   integration. 

In finite  element  analysis,  the  functionals    of   interest    involve 

derivatives.    Since  the  variables  that  occur  as  arguments of 

the  derivatives  in  the  Sard  kernel  theorem are  covered,   the  order 

of   these  derivatives   is   not  increased by  applying  derivative 

functionals  to  them. 

 

The  following  illustrates what  can  happen with uncovered 

variables: 

Example  of  a  Taylor  expansion with  uncovered  variables. 

The  Sard  space.  consists  of functions  with Taylor expansions 0,1B=
of   the  form 
 

∫+∫+= y
b (4.10)           yd)y,(a1,0uxd)y,x(x

a ,01u)b,(au)y,(xu ~ ~ ~ ~                  

 
The  variable  y  is  uncovered  in  the  first  integral.  If  the 

derivative  operator 
y∂
∂  is  applied  to  (4.10),  then the  formal 

result  is 

∫ += x
a )y,(a1,0ux~d)y,x~(1,1u)y,(x1,0u

                                                  (4.11) 
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5. 

However,  (4.11)  assumes  the  existence  of  u1,1  ,  which  is 

not  ensured  by  the  function u being  in  1,0B=

Finite  Element  Remainder Functionals, 

If u  is  an  interpolant  to  u,  then the  remainder is 

                   Ru(x,y)  ≡  u(x,y)   -  y),(xu~                                               (4.12) 

The  finite  element  remainder  functionals of interest  for  a 

2ℓth  order elliptic boundary value problem are the following: 
 

        13) (4.l≤+≤
∂

∂

∂

∂
≡ ji0for)y,(xRuix

i

jy

j
)y,x(uj,iR             

qp,B
In  order to use  the  Sard kernel theorems,  the space   =  

must be chosen.    The interpolant p(x,y) usually has some 

polynomial precision and the constant  n   is chosen so that this 

polynomial precision is at least n- 1.    This choice implies 

that ci,j   = 0,      0 ≤ I + j < n.    p  and  q  are  arbitrary  positive 

integers such that p + q = n.    However,  if   n   is even, then 

p = q =    n/2    is a practical choice if Ω and R are symmetric 

about y = x, because the number of kernels to be calculated is 

reduced.    In general, we let p + q. ≥ ℓ + 1 and if  p+q =  ℓ + 1, 

then ,
2

1P  the greatest integer in (ℓ + l)/2, and ⎥⎦
⎤

⎢⎣
⎡ +l

=

.  In the sequel  we consider  the  result 
⎥⎦
⎤

⎢⎣
⎡ +

−+=
2

11q l
l

of applying the R.i,j  to the Taylor expansion (4.1). 

Inadmissible Functionalss an example. 

For the Sard space B  the term  in 
1,1= x

)y,x(u
∂

∂  R1,0u (x,y) 

is not admissible unless x = a.  Dually, R0,1 ,  is  not 

admissible on unless y = b. Birkhoff, Schultz and Varga  [ 4] 1,1B=
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considered  piecewise  Hermite  interpolation  over  a  region 

divided  into sub rectangles.    They  let  the  point  of 

interpolation  (x,y)  =  (a,b),  the  point  of  Taylor  expansion. 

This  has  the  effect  of  involving derivative  values  in 

rectangles  containing  the  region  of  interest,  as  we  now 

illustrate.     Let  T  be  the  right  triangle  with  vertices  at  (0,0) 

(1,0),  and  (0,1).    Then    in  (T)  implies  that 1,1B=

             

(4.14)ydxd)y,x(
T 1,1u)y,xb;(a,1,1K

y)dy(a,0,2)uyb;(a,
1

0

,20K

xdb),x(2,0)uxb;(a,
1

0
2,0Kb)u(a,1,0R

~~~~~~

~~~

~~~

∫ ∫+

∫+

∫=

Hence  | |R1,0u(a,b)| |L2  (T)(a,b)  involves  values  of  u2,0  and 

u0,2.      outside T  and,  in fact,  in  the  whole unit  square. 

To  avoid  this difficulty, we apply R1,0  and  R0,1  to  the 

Taylor  expansion  (4.l) directly.    This   avoids  difficulties of 

.1,1Bonleinadmissab

α
α 1,0Rmakethatψ

xformtheofintegralsisIt.example

α
α

x
a for,

x
becomesinsteadwhich ψ

x
typethe

=

∫ ∂
∂

∫ ∫
∂
∂

∂
∂

~

~

 

5. Zero  Kernels. 

It was  noted  [2]   by direct  calculation that,   for  linear 

interpolation on the triangle T,  the kernel  K 0,2    corresponding 

to   R1,0    is  identically zero.      The  first  clue  that  such  a 

result held was that in Birkhoff, Schultz and Varga,   [p.242] 

the Kernel  "k0,2 (t' ) "    corresponding to R1,0 for bilinear 
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Hermite  interpolation    is  identically  zero  instead  of  what 

is  claimed  in that  paper. 
In general,  we  let  P  denote  an  interpolation functional 

with  remainder  R =  I - P. We consider  the  Sard  kernels 

corresponding  to  the  remainder functional  D(h,k) R. 

Theorem,    If  f(x,y)   is  of  the form  f(x,y) =  p
qp,Bε = 1(x)  h(y), 

where  PI(X)  is  a  polynomial  in x  of degree  i  <  h,  and  if  P  has 

the  property  that 

P[pi(x)h(y)]  =  q(x,y) (5.1) 

where  q(x,y)  considered as  a  function of  x  alone  is  a  polynomial 
of  degree  < h,  then the  Sard  kernels  for  D(h,k)   R  have  the 
property  that 

Ki,P+q-i  ≡  0,     0  ≤  i  <. h  ≤  p. (5.2) )y(x, ~;y

Dually,  if f(x,y) = g(x)  qj(y), where  qj(y) is a polynomial 

in y of degree j  < k and 

P [g(x)  qj(y)]     =    s(x,y)  (5.3) 

where  s(x,y)  considered  as  a  function  of y  alone  is  a  polynomial 

of  degree  <  k,  then  the  Sard  kernels 

,0)x~y;,(xj,jqpK ≡−+
 0 ≤ j < k ≤ q (5.4) 

Proof  of  (5.2):     We  assume  that  0 <h   ≤  p.   The  Sard 

kernels  for  the   functional   D (h,k)   R   are   the   (h,k)  partial 

derivatives  of  the  corresponding  kernels  for  R.     Let  i  be  an 

integer  such  that  0  ≤  i  <  h.       Then  the  kernel  K1 , P+q-1 )y~;y,x(  

corresponding  to  R  is  the  following: 

19. 

 
 



(5.5)yJy,y),yψ(b,1)i(p)y(y(i)a)(xy)(x,R)yy;i(x,qp,i
Rk ∉⎥⎦

⎤
⎢⎣
⎡ −−+−−=−+ ~~~~ q

 
Therefore,    the   kernel  corresponding to     D(h,k) R   is     the    following; 

  [

{ }⎥⎦⎤−−+−−−

−−+−−
∂

∂

∂

∂
=

−+
∂

∂

∂

∂
=−+

y),yψ(b,1)iq(p)y(y(i)a)(xP

y),yψ(b,1)iq(p)y(y(i)a)(xhx

h
ky

k

)yy;i(x,qp,i
RKky

k

hx

h
)yy;(x,iqpi,K

~~

~~

~~

   

 

        [ ] Q.E.D(5.1).assumptionby0,00ky

k
=−

∂

∂
=  

 

Schematic ally,  the  domain of  influence  in  the  ard  index  space 

qp,B=  of   the   functional   D(h,k)  R   is   the  shaded  sub triangle  shown in 

Figure  4. 

 
 

For  given  h and  k,  p                             

should  be  chosen  so that

h < p  and  k < q. 
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Many  interpolants  satisfy hypotheses  (5,1)  and  (5.3) 

e.g.,  linear  interpolation with  i  =  j  =  0.   (4.13). 

We  next prove  the  corollary  that  (5.1)  and  (5.3)  are  always

satisfied  by  tensor  product  schemes  with  sufficient  polynomial 

precision.    However,  we  then conclude  this  Section with  an example 

in which  (5.2)  does  not  hold. 

Corollary.    Tensor  product  interpolants  of  polynomial  precision 

at  least h-1  in  the variable   x   and  at   least  k - 1   in   the  variable 

y  satisfy  (5.2)  and  (5.4). 

proof:    p  a  tensor product interpolant implies  that P is of the form 

Px   Py      =   Py    Px (5.6) 

where  px is  an  interpolant  in  the  variable x  and py  is  dual  in y. 

Therefore,  if f(x,y)  =  pi(x)h(y)  where  Pi(x)  is  a polynomial  in x 

of degree  i <   h,  then P[Pi(x)h(y)]  =  Py px  [p1(x)h(y) ] = Py[p1(x)h(y)] 

= pi(x)  Py[h(y)]≡  q  q(x,y).  q(x,y)  satisfies  (5.1)  so  that 
(5.2)  follows.  The  argument  is  dual  for  (5.4).                         Q.E.D. 

Birkhoff,  Schults  and Varga  considered  tensor  product  piecewise 

Hermite  interpolation  on   rectangles  and  they  assumed that  their 

meshes  were   "regular"  [4,p. 244].  Their  reason  for  this  assumption 

was  the  possibility  of  negative  exponents  in equation  (4.20)    in   [4]. 

However,  the  above  Corollary  implies  that  the  kernels  of  the  terms 

corresponding  to  these  negative  exponents  are  identically  zero  and 

so  no  such  mesh restriction  is  needed. 

We  conclude  this  section with  an  example  of  an  interpolant on  a 

triangle  such  that  its   K0,2  kernel  corresponding  to    R1,0    is 

not  identically  zero. 
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0,1)]y(b,ψ)yy(1

y)],y(b,ψ)yy)[(y(x,1,0R)yy;(x,0,2K
andf(0,1)yf(1,0)y)(1

f(0,0)y)(1y)(x,1,0fy)f(x,1,0R
x)y.Thenf(0,1)(1y)(1xf(1,0)

y)(1x)(1f(0,0)y)f(x,PLetExample

≠−−=

−=
−−+

−−=
−+−+

−−=

~~

~~~

unless  b=1 

We  note  that 

P[l.h(y)]  = h(0)(l-y)  +  h(l)(l -x)y,  which is  not  a function 

of y alone,  so  that  (5.1)  is  not  satisfied. 

Error Bounds  for  Interpolation on a  Triangle

In this  section,  we  illustrate  how  to  obtain error bounds  for 

linear and  quadratic  interpolation on  the  triangle  T with vertices 

(0,0), (h,0), and  (o,h).    The  linear bivariate  polynomial which 

interpolates  the  function values  of  u(x,y)  at  the  vertices  of the 

triangle  T  is 

(6.1).
h
y)0,(u

h
x),0h(u1)0u(0,)y,x(u h++⎥⎦

⎤
⎢⎣
⎡ +

−=
h

yx~             

The  quadratic  bivariate  polynomial which  interpolates  the  function 

values  at the  vertices  and mid-points  of  the  sides  of  the  triangle T  is 

.2h
xy4

2
h

2,
hu2h

22y
h
y)h,u(02h

22x
h
x)0,u(h

2h

24y
2h

4xy
h
4y

2
h0,u2h

24x
2h

4xy
h
4x0),

2
hu(

)2y2(x2h
2xy2h

4y)(x
h
310),u(0y),(xu~

⎟
⎠

⎞
⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡
+

−
+⎥

⎦

⎤
⎢
⎣

⎡
+

−
+

⎥
⎦

⎤
⎢
⎣

⎡
−−⎟

⎠
⎞

⎜
⎝
⎛+⎥

⎦

⎤
⎢
⎣

⎡
−−+

⎥⎦
⎤

⎢⎣
⎡ ++++−

 

                                                                                                                            (6.2)  
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The  finite  element  error  bounds  of  interest  are   those  on  the 

L2(x,y)  norm  of  the  following  error  functions: 

)5.(6,y),u(xR
y

)y,u(x1,0R

)4(6.,)yx,(uR
x

)y,u(x0,1R

3).6(,y),(xu~)y,x(u)y,u(xR

∂
∂

=

∂
∂

=

−=

L2(x,y)  denotes  the  L2  norm  over  the  triangle T with  respect  to 

(x,y). We  also  derive  bounds  on  the  general  Lq  (x,y)  norm  at 

R  u(x,y)  for  the  linear  interpolant   (6.1).     The  results  obtained 

are  generalisations  of  those  given  in Barnhill  and  Whiteaan  [2,3] • 

The  point  (a,b)  of  the  Taylor  expansions  is  taken  as  (0,0) 

which  satisfies  the  requirement  that  for  (x,y) �  T   the  rectangle 

[0,x]  x  [0,y]  is  contained  in T.    This  choice  of  (a,b)  simplifies 

the Ψ  functions  of  section 4  to  the  functions  of  the  form 
            

              (6.6)xxFot(i))x(x
otherwise0

(i))x(x
⎪⎩

⎪
⎨
⎧ >−=+−

~~~

 
Lq    Bounds  on R  for  Linear  Interpolation. 
 
       The  error  functional 
 

(6.7)
h
yh)u(0,

h
x0),(hu

h
yx

10),u(0y),u(xy),Ru(x
⎭
⎬
⎫

⎩
⎨
⎧

++⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +

−−=  

 

is  zero  for  the  functions  1,  x  and  y.  We  thus  consider  the 

Sard  space  .(T) in which the Taylor expansion is  1,1B=

∫ ∫ −+∫+

∫ −+++=

y

o
y
o .yd)y(0,2,0u)y(yydx)d,x(x

o 1,1

x0)d,x(x
o 0,2u)x(x0),(00,1uy0),(01,0xu0),u(0y),(xu

(6.8)~~~~~~

~~~

   
yu
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  The  Sard  kernel  theorem  gives 

).(~~

~~~~~~

~~~

96yy`)d;(x,0,2)ky(0,h
o 0,2u

T
ydxd)y,x;y,(x1,1)ky,x(1,1u

xd)x;y,(x2,0k0),x(h
o 2,0u)y,xRu(

y∫+

∫ ∫+

∫=

                

where,  from  the  symmetry  of  the  kernels  K 2,0 and K0,2, 

the  kernel  functions  are 

),x(h
h
x)x(x)x(xy),R(x)x;x,(y0,2k)x;y,(x0,2K ~~~~~ −−+−+−==          (6. 10) 

                   (6.11) ,0)y(y0)x(x0)y(y0)x(xy)(x,)y,x;y,x(1,1K +−+−=+−+−= ~~~~~~ R

and   R(x,y)   denotes     the  functional   R  applied   to   the   functions   in 

the  variables    x   and   y.    From   (6.9)   using   Holder's   inequality    and  the 

triangle    inequality,  we   have   the   bound 

 

,y),(xqL||)y~(piL||)y~;y,(x0,2k||||)y~pi(L||)y~,(02,0u||

y),(xqL||)y~,x~(p2L||)y~,x~;y,(x1,1k||||)y~,x~p2(L||)y~,x~(1,1u||

y),(xqL||)x~(p1L||)x~;y,(x2,0k||||pi(x`)L||0),x~(0,2u||

y),(xqL||y),(xuR||

+

+

≤

                
(6.12) 
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   1..
2p

1

2p
1and1.

1p
1

1p
1where =+=+      The norms involving 

one variable are over [0,h] and those involving two variables 

are over T, where, for simplicity, we assume the existence of 

the double integral rather than the more general repeated integral 

in (6.9).    The   LP    norms of the kernel functions are 

 

(6.14)

,2p,
h
x)x(h

,1p,
1p
1

11p
h

h

x)x(h

)x~(
2Lp||)x~;y,(x2,0k|

(6.13)
,2p,1

,2p,21/py),(x
)y~,x~(
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and K0,2 (x,y:y)   is dual.    The Lq   nortas of (6.13) and (6.14) 
 
are 
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and   K0,2     (x,y;y)  is  dual,     with  the convention that 
11/p

11p
1

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
 = 1,   when p1 = ∞ .    ß(m,n),    m,n  > 0,  is   the  Beta 
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A  sharper bound is obtained by  taking  the Lq (x,y) norm  of  the 
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The apparent discrepancy  In the orders  h is implict  in the 

difference between the univariate and bivariate norms. 

 
L2  Bounds on R1,0 and R0,1 for Linear  Interpolation. 
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R1,0   is  not  an  admissible  functional  for  the  Sard  kernel 
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           The L2 bound on R0,1 u (x,y) is  dual 
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Application to  Finite  Element  Error Bounds 

 
We  consider  the  space  of  piecewise  linear  interpolants  over  a 

triangulated polygon Ω.    This  is  a suitable  sub space vh   of     for 1
2w

the  Galerkin   method  described  in  section 2.    For  a particular 
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  be  obtained  from  (6.12)  and  (6.29)  with a  suitable change  of 

 variable  from T  to  Te .   error bound is then given by Ω)( 1AW 2
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L2    Bound  on R  for  Quadratic  Interpolation 
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where  the kernel functions  are the following                                                     
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We thus have the bound.    :  
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We summarise Some results for the quadratic interpolant  

Functionals R1,0   and  R 0,1  : 
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is  not  admissible for  the Sard kernel theorem in . The 2,1B=
application of this  functional  to  the Taylor expansion in   2,1B=
gives  
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The  remaining  terms  of  (6.56)  can be  evaluated in Sard kernel 

form.    Thus 
                          

                            (6.58),xd)xy;(x,3,0K,0)x(
h

0 3,0uxd,0)x(3,0u
x

0
(2))x(xy)(x,0,1R ~~~~~~ ∫=⎥

⎦

⎤
⎢
⎣

⎡
∫ −

                            

                             (6.59),yd)yy;(x,1,2K)y(0,
h

0 1,2uyd)y(0,1,2u
y

0
)y-(yxy)(x,0,1R ~~~~~~ ∫=⎥

⎦

⎤
⎢
⎣

⎡
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                     (6.60)y)dyy;(x,0,3)Ky(0,
h

0 0,3uyd)y(0,0,3u
y

0
(2))y(yy)(x,0,1R ~~~~~~ ∫=⎥

⎦

⎤
⎢
⎣

⎡
∫ −

where  the kernel functions  are 

K3,0 )x~;y,(x   =   0     ,                                                                                            (6.61) 

 

,yy,
h
2y

2
h0)y(yx)y(x,1,2K ≠⎥

⎦

⎤
⎢
⎣

⎡

+
⎟
⎠
⎞

⎜
⎝
⎛ −−+−= ~~~~y                                           (6.62) 

)y~;y, )y(x   is the dual  of the R1,0     kernel K3,0 ~and K 0,3 ;y,(x   , 

equation (6.48). 

The  square  of the L2  norm of (6.62)is 
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6
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A L2  (x,y)  bound on R1,0 u(x,y)  and  R0,1  u(x,y)  can be 

obtained  as  was done  above  for the  functional R. 
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