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ABSTRACT 

 
Global extrapolation procedures, in space and time are considered for the numerical 

Solution of linear partial differential equations. Global extrapolation procedures in time 

only are reviewed. 

 

The procedures are tested on three problems from the literature, one of which  has a 

nonlinear source  term. 
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INTRODUCTION 

 

Consider the  linear partial differential equation  (PDE) 
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in which v=l ,2, Ω= ),t,x(uu ,  is a spatial domain in R, R2 or R3 with boundary , and Ω∂

ΩA  denotes a linear differential operator of order q which differentiates the function u 

with respect to the space variables. Obviously, equation (1) describes a first order 

hyperbolic equation when v=l and q=l, a second order hyperbolic equation when v=2 and 

q=2, a second order parabolic equation when v=l and q=2, and a fourth order parabolic 

equation when v=2 and q=4. 

Associated with the PDE (1) are the initial conditions 
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and the boundary conditions 

,Tt0,x,)t(fuA <<Ω∂ε= Ω∂Ω∂        (3) 

where  is a linear differential operator of order less than q , which also Ω∂A

differentiates u with respect to the space variables and acts on the boundary Ω∂ . It 

must be noted that  and  may all depend on Ω∂ΩΩ A,f,A Ω∂A x  . 

A popular method ( cf  [l ,3,4,5,7,8,9,10,13,14,15,16,17]) of solving the initial-boundary 

value problem {(1),(2),(3)} is the so-called method of lines (MOL) in which the space 

domain Ω is discretized in some way and, via some finite difference or finite element 

approximation to AΩ, the PDE is transformed into a time-continuous system of ordinary 

differential equations (ODEs) of order v , which has the form 
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with the associated initial conditions 
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In (4) and (5), upper case U has  been introduced to distinguish the theoretical solution 

of an approximating method from the theoretical solution (lower case u) of the 

initial-boundary value problem, h is the parameter of a grid in )t(hUΩ∂ΩU  is an 

N-dimensional vector the elements of which are the approximations to the unknown 

dependent variable u at the grid points, the N-dimensional vector )t(hf  arises from Ωf  

and , the N-vector(s) Ω∂f ))1v()1(0r()r(
0u −=  arise from (2), Ah is a time-independent 

matrix of order N which arises from AΩ and , and D = diag{d/dt} is of order N. Ω∂A

The MOL approach then solves the initial value problem {(4), (5)} by dividing the 

time-interval 0 < t < T into Q subintervals (time-steps) each of length l  , say, so 

that , and then employing a k→step (k>v) ODE solver to  integrate  from t=0 to t=T. TQ =l

In the case of PDEs with v=2, the initial conditions are used to determine an 

approximation to ,)(U h l thus providing enough starting values for a two-step ODE solver. 

The MOL thus determines the solution in a recursive manner on a grid G1 in 

[ ] [ ]Tt0 <<×Ω∂ΩU  which has a total of Q+l time levels. 

Under conditions such as those detailed in [11,Th.4.1] the full global error at each 

of the N grid points of G1 at time t=T=Q  is given by the quantity El 1, which has the 

form 

E1 = hs C  +  Pl B + K           (6) 

In (6), p is the order of the ODE solver and s is the order of the approximations 

to AΩ  and  (the reader is referred to the work in [11] on order reduction and to Ω∂A

[2,12,18] for the reduction in the accuracy of the time integration in the presence of 

time-dependent boundary conditions). The quantities C and B are independent of h, 

l  and T and the quantity K is 0(hs* + l P*) where p* > p and s* > s are integers. 



(3) 
 
It will be assumed that the space and time increments h and l  satisfy 

any restriction of the form 
 

              (7) ,v/qa,ah =λ<l

where λ is a  fixed positive constant,  which must be  imposed for stability. 

 
 
2.  GLOBAL EXTRAPOLATION IN TIME 

 
A number of authors ( cf [3,4,5,7,8,9]) have used local extrapolation methods to integrate 

(4) (with v=l) and (5) from time t to time t+2 l , t+3 l  or t+4 l . The merits of local 

extrapolation in time were shown in [17] to be overshadowed somewhat by those of global 

extrapolation in time. Using a half-time step of length l
2
1 , the time interval 0 < t < T 

is divided into 2Q subintervals and, if the same space step h is retained, a new grid 

G2 is constructed which has N interior grid points of G2 at time )
2
1(Q2Tt = l=  is given 

by the quantity E2 which has the form 

.KBPP2Csh2E +−+= l         (8) 

The grid parameters h and l
2
1  of G2 clearly satisfy (7) if the parameters h and  l

of G1 do so. 
 

Introducing some new notation, suppose that )T(U 1,h denotes the computed solution 

vector at time T on G1, and that )T(U 2,h is the associated vector on G2. Consider 

now the approximation 

)T(U)1()T(U)T(V 1,h2,h α−+α=        (9) 

and the associated error Ev defined by 

.E)1(EE 12V α−+α=         (10) 

It is easy to show that the term in l P in (10) vanishes when the parameter α takes the 

value 

.)12(/11with)12(/2 PP −−=α−−=α       (11) 

This  g loba l  ex t rapola t ion  in  t ime only  us ing  gr ids  G 1  and  G 2  has  thus  

produced an approximation )T(V defined by (9) which is  provided α takes the )Ph(0 *s l+
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value given in (11). 

3.  GLOBAL EXTRAPOLATION IN SPACE AND TIME 

Suppose now, that, in addition to halving the time step  , the space parameter h is l

also halved. In the special case where Ω is an interval XεR with N interior points 

on Grids 1 and 2, X is now divided into 2N+2 subintervals. A third grid G3 is thus 

constructed which has 2N+1 grid points at each of its 2Q+1 time levels. 

The full global error at the 2N+1 grid points of G3 at time t=T=2Q( l
2
1 ) is 

given by the quantity E3 which has the form 

.KB2ch2E ppss
3 ++= −− l         (12) 

Replacing  and h in (7) by  l
2
1  and 

2
1 h, respectively, gives 

v/qa,2/h 1aa =λ< −l         (13) 

 
so that in a space-time global extrapolation procedure the parameters h and l  used 

on G1, must satisfy (13) instead of (7). 

Suppose, now, that 3,h
2
1U (T) denotes the computed solution vector at time T on 

G3, then 3,h
2
1U (T) has 2N+1 elements. Let h

h
2
1I be an operator which isolates the N 

elements of 3,h
2
1U (T) corresponding to the N elements of 1,hU (T) and 2,hU (T):  that 

is, h

h
2
1I 3,h

2
1U (T) has N elements. Consider, next, the approximation 
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1 γ−β−+γ+β=     (14) 

and the associated error EW defined by 

.E)1(EEE 123W γ−β−+γ+β=         (15) 

It may be shown that the terms in hs and P in (15) vanish when the parameters β l

and γ take the values 

])12()12([/)22(,)12(/2 pspsss −−−=γ−=β      (16) 
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so that 

.)12(/11 p −−=γ−β−          (17) 

This global extrapolation in both space and time using grids G1 ,G 2 and G3 has thus 

produced an approximation )T(W which is provided the parameters β and )Ph(0 **s l+

γ take the values given in (16). In special cases when s=p the parameter γ vanishes 

and thus only two grids, G1 and G 3, are needed to obtain the global space-time 

extrapolation. A notable example of this is the Crank-Nicolson method, for which s=p=2, 

for solving second order parabolic equations (v=l,q=2)(see Problem 2, in §4). 

As noted in [17] it is of course theoretically possible to extrapolate to arbitrarily high 

orders: this remark is applicable to space-time extrapolation as well as time only [17]. 

However, in the belief that the extra orders achieved in §§2 and 3 of the present paper 

are high enough for PDE's, no further extrapolations will be considered. 

The economics of the extrapolations are easy to compare. When compared with the 

result 2,hU (T) computed on grid G2, the computation of the time-only extrapolation 

vector V defined by (9) requires an additional computation effort of 50%. When 

compared with the result 3,h
2
1U (T) computed on grid G3, the computation of the 

space-time extrapolation vector W  defined by (14) requires 1.75 times as many 

operations. This factor is reduced to 1.25 when s=p, for then γ=0 and grid G 2 is not 

required. 

4.  NUMERICAL RESULTS 

The global extrapolation algorithms outlined in Sections 2 and 3 were tested on three 

problems from the literature, two from the literature on linear second order parabolic 

equations and one from the literature on nonlinear second order hyperbolic equations. 

(The last problem is not, of course, of the type described by (1), but the authors feel 

that the results obtained were sufficiently interesting to report in the present paper.) 

Problem 1 (Lawson and Morris [9], Gourlay and Morris [3], Twizeli and Khaliq [15]). 
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wi th  boundary  condi t ions  u(0 , t )  =  u(2 , t )  =  0 ,  t  >  0  and  in i t ia l  condi t ions  

u(x ,0)  =  1, 0 ≤  x ≥  2. This problem is of continuing interest because it has a 

discontinuity between initial and boundary conditions. The theoretical solution is given by 
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Lawson and Morris [9] transformed this problem into the system  
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by the MOL, where 
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and  then used the fully implicit,  L0-stable method 
 

)t(U)t(U)hAI( =+− ll         (19) 

to obtain a numerical solution; for (19),  p=l   and s=2. 

The behaviour of (19) and comparisons of it with other methods are well documented 

(see, for instance, [3,9,15,17]). The purpose of the present paper is to show that the 

global extrapolation procedures described in Sections 2 and 3 improve accuracy. 

Four numerical experiments were carried out in which the space and time 

increments on grid G1, were given by 

(h, l )  = (0.1,0.1), (0.1,0.05), (0.05,0.002), (0.05,0.05), 

respectively, the increments on G2 and G3 following in an obvious manner. It was 

observed in [9] that (19) produces a smooth solution to Problem 1, with maximum errors 

occurring where x=l. The errors at this point at time t=1.0 using (19) on grids G1, G2 

and G3 individually, the time-only global extrapolation of (18) on G1, and G2 (defined by 

(9) with α=2), and the space time global extrapolation of (19) on G1, G2 and G3 

(defined by (14) with β=4/3 and γ=2/3), are given in Table 1. It is easy to see from 

Table 1 that the two extrapolation procedures produce the improved accuracy predicted in 

Sections 2 and 3. 

Problem 2
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with initial conditions u(x,0) = l + x2, 0 ≤ x ≤ l, and boundary conditions u(0,t) = 1, 

u(l ,t) = 1+e-t, t > 0. The theoretical solution is given by u(x,t) = 1 +e-tx2. This 

problem is the one-space dimensional form of Problem (5.2) in Verwer and de Vries [17].    

Using the MOL, Problem 2 may be transformed into the equivalent first order initial 

value problem 

 )t(hw)t(UhAdt/)t(Ud +=  

in which Ah is as defined  by (18)  and 

 T)]t(h,Nw,...,)t(hw,)t(hw[)t(hw ,2,1=  

(T, here, denoting transpose) with 

  ,)2h(eh)t(hw 2t2
,1
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  1N,...,3,2m,)2hm(e)t(h,mw 22t −=+−= −

  .)2hN(e)e1(h)t(h,Nw 22tt2 +−+= −−−

The A0 -stable implicit method 
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for which p=s=2, was used to compute the solution at time t=l .0. Six numerical 

experiments were carried out for which the space and time steps on grid G1 were 

taken to be 

h, ) = (0.1,0.1), (0.1,0.05), (0.1,0.002), (0.05,0.1), (0.05,0,05) and (0.05,0.02) l

(respectively. The errors at the grid points where x = 0.3,0.6,0,9 are given in Table 2 

for grids G1 and G3 individually and for the space-time global extrapolation of (20) on 

G1 and G3 (defined by (14) with β=4/3 and γ=0). The errors on G2 were found to be 

similar to those on G1, and, consequently, the errors for the time-only extrapolation to be 

similar to those for the space-time extrapolation experiments (because α=β=4/3 and γ=0). 

It may be seen from Table 2 that errors were larger in modulus near the time-dependent 

boundary where some of the errors on G1, had a dominant effect on the errors after 

extrapolation. 
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Problem 3
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In this problem (which does not conform to the type described by equation (1)), d(x) is a 

depth function given by d(x) = d*[2+cos(2πx/b)], g is the acceleration due to gravity, 

and λ(x,u) is the coefficient of bottom friction defined by λ = g | u |/(C2d), C being the 

Chezy coefficient. 

Using the MOL, this second order hyperbolic problem may be converted into the 

second order initial value problem 

 0t,))t(U,t(f))t(U(M])C4(/g[)t(UhMBg
dt

)t(Ud 242
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with initial conditions U(0) and dU(0)/dt derived from (21). In (22), M = diag{di} is a 

diagonal matrix in which di = d(xi) for i=0,1,...,N, and xi=ih with h=b/N. The matrix 

Bh is of order N+l and is given by 

  ;

22
121

121
22

hB 2
h

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

= −

the vectors U(t) = [U0(t),U,(t),....UN(t)]T, T
10 ]N,...,,[ ϕϕϕ=ϕ with  ϕ=ϕ ))t(U(ii =

 i=0,l,...,N, and f = [f 0,f, ,f 2,...,fN]T are of order N+l.  ),t(U|)t(U| i
2

i

The simple explicit method 

U(t+ ) = 2l U(t) – U(t- l ) + l 2 f (t,U(t)) ; t= ,2 l ,...             (23) l

for which p=s=2, was used to compute the solution on grid G1. In using (23) U(0), 

derived from (21), and U( ) = l U(0) + 2l f(0,U(0)) were used as starting values. 

Following van der Houwen and Sommeijer [6], the various parameters associated with the 

problem were given the values 
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h = 10,   
3
1

=l  (grid G1) ; b= 100,   g=9.81. d*=10, C=50 

and the solution was computed to  time t=3600. 
 
Taking as reference solution that used by van der Houwen and Sommeijer [6], the 

second order Runge-Kutta-Nystrdm method given by their equation (3.14), the solution in 

the interval 3567 ≤ t ≤ 3600 at the point x=80 is depicted in Figure 1. The graphs in 

Figure 1 refer to the reference solution, the solution obtained on G1 using (23), the 

time-only extrapolation defined by (9) with α=4/3, and the space-time extrapolation 

defined by (14) with β=4/3 and γ=0. 

It is seen from Figure 1 that the extrapolation procedures clearly improve accuracy, 

as predicted in §§2 and 3, a marked reduction in phase-lag being evident (cf van der 

Houwen and Sommeijer [6]). 

5.  SUMMARY 

This paper has considered global extrapolation procedures, in time only and in space and 

time, for the numerical solution of linear partial differential equations. 

The procedures were tested on three problems from the literature, one of which was 

nonlinear. It was seen that the extrapolation procedure involving both space and time 

produced notable reductions in error. 
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T a b l e 1 .  Errors  U-u where x=1.0 at  t ime t=1.0 for  the four  experiments  
o f  P r o b l e m  1 .  

Increments on G1  Errors on grids  

h l  G1 G2 G3 G1,G2 G1,G2,G3

0.1       0.1 0.33E-1 0.17E-1 0.16E-1 0.37E-3 0.31E-3 

0.1 0.05 0.17E-1 0.85E-2 0.83E-2 0.14E-3 0.73E-4 

  0.05   0.002 0.66E-2 0.34E-2 0.33E-2 0.29E-4 0.87E-5 

   0.05  0.05 0.16E-1 0.83E-2 0.82E-2 0.82E-2 0.62E-4 

 

Table 2. Errors U-u at the points where x=0.3,0.6,0.9 at t ime t=1.0  
for the six experiments of Problem 2. 
 

Increments on G1  Errors on grids  

h l  x G1 G3 G1,G3  

0.1 0.1 0.3 0.16E-2 0.45E-3 0.77E-4  

  0.6 0.47E-2 0.36E-3 -0.11E-2  

  0.9 -0.54E-1 -0.27E-1 -0.18E-1  

0.1 0.05 0.3 0.46E-3 0.11E-3 0.30E-6  

  0.6 0.41E-3 0.11E-3 0.15E-4  

  0.9 -0.22E-1 -0.83E-4 0.73E-2  

0.1 0.002 0.3 0.73E-4 0.18E-4 0.30E-7  

  0.6 0.73E-4 0.18E-4 0.60E-7  

  0.9 -0.36E-2 0.18E-4 0.12E-2  

0.05 0.1 0.3 0.15E-2 0.45E-3 0.10E-3  

  0.6 0.54E-2 0.35E-3 -0.13E-2  

  0.9 -0.19E+0 -0.16E-1 0.43E-1  

0.05 0.05 0.3 0.45E-3 0.11E-3 0.17E-5  

  0.6 0.36E-3 0.11E-3 0.30E-4  

  0.9 -0.27E-1 0.30E-2 0.13E-1  

0.05 0.02 0.3 0.73E-4 0.18E-4 -0.64E-6  

  0.6 0.73E-4 0.18E-4 -0.77E-6  

  0.9 0.64E-3 0.14E-3 -0.33E-4  



 

 

(
1
2
)

 
 

Figure 1: Numerical solutions of Problem 3 with h =10, 
3
1

=l  on grid G1. 

    .......... Reference solution on G1.   Method (23) on G1. 

               Time-only extrapolation of (23). 

              Space-time extrapolation of (23). 
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