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Abstract 

 

An  explicit   representation  of  a  piecewise  rational  quadratic 

function  is developed which  produces a  monotonic  interpolant  to 

given monotonic data.  The   explicit   representation  means  that 

the  piecewise  monotonic interpolant  is easily  constructed  and 

numerical experiments indicate that the method produces visually 

pleasing curves. Furthermore, the  use   of  the method is justified 

by an 0(h4) convergence result .  
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1.       Introduction

The work of this paper is motivated by  a method of  Fritsch   and 

Carlson (1980) for  the  construction of a  C1 monotonic piecewise cubic 

polynomial which interpolates given monotonic data.  Fritsch   and 

Carlson  use the piecewise cubic Hermite representation and show that 

the necessary condition that the derivative parameters   should   all   be 

of  a  certain  constant  sign  is  not sufficient to ensure monotonicity. 

The Fritsch—Carlson method thus involves a derivative modification 

process  designed  so  that necessary and sufficient conditions  for 

monotonicity of a piecewise cubic are  met.  

In this paper  we construct a piecewise rational   quadratic  function  for 

which the necessary  derivative condition for monotonicity is  also 

sufficient.  We thus have a  closed form solution  to the  monotonic 

interpolation  problem. The application of  this  piecewise   rational 

quadratic on a monotonic data set gives a C1 monotonic  Interpolant 

which produces visually pleasing curves and for which  an 0(h4) 

convergence result  can be obtained. 
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2,     The Rational Quadratic interpolant

Let   (xi  ,f j .) ,    i   =  l , . . ,n     be   given  real  data,  where 

a = X1  < X2     <  …   <  xn  = b is a partit ion of the  interval  [a,b]  and 

   f i . ,    i  =    1,. . ,n  is  a monotonic set.     Thus  either 

f i .  ≤   f i + 1  ,   i= 1,. . ,n- 1     (monotonic  increasing) 

or (2,1) 

 f i    ≥   f i + 1  ,  i  = 1,. . . ,n- 1  (monotonic  decreasing). 

Following the notation of Fritsch and Carlson (1980), let 

hi .  =  xi + 1.  -   x i .   ,  Δ i  = (f i + 1 ,   -  f i .)  /hi   and  let  d i  .  ,  i  =  1,. .  .  ,n 

denote derivative values given at the points (knots) x.,    i   = 1,. ,  . ,n.  

We seek a monotonic function s(x)∈C1[a,b] such that s(xi)  = f.and 

s( 1 )   (xi)  =  di  ,  i  = 1, …,n, where we assume that the  derivative values 

satisfy the necessary conditions for monotonicity, namely 

di .= di + 1.  = 0 for Δι .  = 0   ,  

 

sgn (di)  = sgn (di + 1) = sgn (Δ i )      for     Δ i    ≠   0   .  

(In  (2.2) we use the  convention  that   sgn (0)  can  equal  sgn (Δι).)  

(2.2) 

The  necessary conditions   (2.2)  are  not  sufficient  to  ensure 

monotonicity of  a  piecewisecubic function .  We   thus   consider  a 

piecewise  rational  quadratic  function  s(x)   for  which  conditions   (2.2) 

are   sufficient  to  ensure  monotonicity.   This  function  s(x)  is 

constructed  as  follows: 

For   x∈   [xi , .x i + 1]     let  

          θ    =   (x-xi)/hi  (2.3) 

so   that θ  ∈  [0, 1].      Then  for  x  ∈     [xi ,x i + 1],    i   =   1 , .  .   ,n - l ,  

we  define 
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,0iΔif)( θi)/Q(ip
s(x)

θ
 (2.4) 

where 

Pi(θ) =  Δ i .    f i + 1  θ2  +  (f i   d i .+ 1   +  f i + 1 di .)   θ   (1-θ)  +  Δ i   f i  (1-θ)2

Qi.(θ  )    =  Δ i  θ2   +   (di + 1  +  di)   θ(1-θ)  +  Δ i  (1-θ)2

(2.5) 

(2.6) 

It    should  be  noted   that   (2.6)   can  be  written  as 

Qi  (θ)  = Δ i   +  (di + 1  +  di   -  2Δ i . )   θ(1-θ) (2.7) 

and  we   can  write 

θ)1()θi2Δid1idiΔ

θ)]θ(1id2θi[Δ)if1)(if
if)(θi)/Q(θip

−−+++

−+−++= (2.8) 

which  is   a  more  appropriate  form  for   numerical  calculation,   in 

particular,     for   small   Δ i

The   rational  quadratic   defined  by   (2.4)   -    (2.6)   has   the   following 

properties: 

(i)       If     Δ i .  ≠  0   ,  then  Qi.(θ)  ≠   0  for  all    0 ≤   θ  ≤  1,    since  Qi(θ)   is   a 

convex   combination  of    either  positive   or  negative   values. 

(i i)    (Interpolation) 

s(xi)    =  f i .       ,      s(xi .+ 1)   =   f i + 1    ,  

s ( l )(xi)=di.       .      s ( l )(xi .+ 1)   =  di + 1   ,  

where  s ( 1 )  represents  differentiation  with  respect  to  x.  

(ii i    (Monotonicity)   s(x)   is   monotonic  on   [a,b.].  

Proof.        For  x  ∈[xi . ,x i + 1 .  .]       ,      Δ i .     ≠    0,  we  have 
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   ( l )  (x) -   [pi   (θ)  Qi  -   Pi   (θ)  Qi  ((θ)]  /   [  hi   Qi  (θ)2] 

where  Pj    and  Qi   represent  differentiation  with,  respect  to   θ .  

Now  it  can  be shown   that 

Pi(θ) Qi((θ)-pi(θ) Qi(θ) -  hi∆ i D2
i[di + 1 θ2+2Diθ  ( l-θ)+di(l-θ)2] 

and  hence,   using   the  necessary   conditions   (2.2),  

sgn   (s ( l )(s))   =  sgn   (di + 1  θ2+2∆ i θ(l-θ)+di(1-θ)2)   =  sgn   ( i)  

if)(θi)/Q(θiP
0iΔ

lim(iv) =
→

 which follows 

directly   from  the  monotonicity  property,   since 

min{fi ,f i + 1}   ≤    Pi(θ)/Qi(θ)   ≤   max {fi ,f i + 1} 

(v)      s(x)  ∈    C1[a.b] 
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3.      Convergence  Analysis

Given  the  monotonic  function   f(x)     ∈  C  [a,b],    let    f i    =  f(xi)   ;  

i    =   1, . . . ,n   and  let   s(x)   be   the  piecewise   rational   quadratic   function 

defined  by   (2.4).    Then   a  simple   convergence  result    is   that 

|  f(x)   -   s(x) |    ≤     |  f(xi + 1)   -    f(xi) |    ,      x  ∈     [xi ,x i + 1]   ,  (3.1) 

which  follows   from  the  monotonicity  property.     For  f(x)   ∈   C1  [a,b] 

this   implies   that 

|f(x)   -   s(x) |    ≤  h i     | f ( 1 )  (ζ i )  |       ,      x  ∈    [X i ,xi + 1] (3.2) 

where  ζ i   (x)  ∈     (xi ,xi + 1).  

The  bounds  (3.1)   and   (3.2)  hold  for  any  monotonic  interpolant.    However, 

the    rational   quadratic   interpolant   satisfies   a   higher   order   convergence 

result    stated   in  the   following   theorem. 

Theorem  3. 1.      Let  f(x)   ∈   C4[a.b]   and   suppose   |f ( 1 )(x) |    >  0  on   a 

compact   set  K  ⊂   [a,b]   (i .e.       f    is   strictly  monotonic  on  K) .      Then  for 

x   ∈  [xi  ,x i + 1  ]   and   [xi-xi + 1]  ⊂   K   ,   i  ∈  { 1 , . . .  ,n-l}   .  

(i)  There   exists   a   constant   c,    independent   of   i ,     such   that 

min     |Qi.(θ) |    ≥   c  >  0   .  (3,3) 
0≤  θ  ≤ l  

( i i)  | f(x)   -   s(x) |    ≤   h i   Ai(f)   max
⎭
⎬
⎫

⎩
⎨
⎧

+−+− 1id(1)
1if,id(1)

if  

+  h4
i   Bi(f)      ,  (3.4) 

where 

.||(3)f||||(2)f||22||(3)f||
3

i2h
||f(1)||||(4)f||

384c
1

(f)iB

||(4)f||
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3
ih

||(3)f||
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2
ih
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||||(1)f||
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1

c
1(f)iA

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+++=

       

(3.5)
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and   | | . | |    denotes  the  uniform  norm  on  [a,b].  

Proof    Let     

Then  k  >  0 and,by  the  Mean  Value  Theorem,   |Di.  |    ≥   k.  

Thus   |Qi(θ) |    =   |Di  |    θ2   +  ( |d i + 1 |    +   !d i | )  θ  ( l-θ)   +   |Di |    (1-θ)2

≥   k[θ2   +  (1-θ)2] 

≥   k/2  on   0  ≤  θ   ≤    1 

which  completes   the  proof  of   (i) .      (For   certain  choices  of   d i    and 

di + 1.   we  can  have  |Qi( θ) |    ≥   k.) 

Let 

Fi(  θ)   -   f  (xi(  θ))   ,      Si(  θ)   =  s(xi(  θ) 

where  xi  (θ) =  xi   +  θh.  Then  we  wish  to  find  a  bound  on   |F i(θ)   -   Si(  θ) |  

on  0 ≤  θ   ≤  1. Now 

Qi  (  θ) [Fi  (θ) -  Si(  θ)] =  Fi(  θ)   Qi  (  θ)   -   Pi  (  θ) 

=  Fi(  θ)   Qi( θ)   -   Hi (  θ)   +  Hi( θ)   -   Pi(  θ) (3.6) 

where  Hi( θ)   is   defined  as  the  cubic  Hermite   interpolant   to    F i(  θ)   Qi( θ) 

on  0  ≤   θ  ≤   1.    It   can  be  shown  that 

|Hi  (  θ)   -  Pi  (  θ) |    =   |  (  θ-l)2  θhi    ∆ i  +− )( )1(
ii df      θ2(θ-l)hi     ∆ I  )1

)1(
1 ++ − ii df |

    

},max{
4 1

)1(
1

)1()1(
++ −−≤ iiii

i dfdffh  

Also,  the  error  bound   or  cubic  Hermite  interpolation on  0  ≤   θ   ≤  1   

gives 

(3.7)  

)()(max
384

1)()()( 4

4

10
θθ

θ
θθθ

θ iiiii QF
d
dHQF

≤≤
≤−  (3.8)  

Let 
Qi

(θ )    = qi(θ)   +  (di + 1   -   f )1(
1+i  +    d i .    -   f )   θ(1-θ) )1(

i
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where 

qi(θ)  =  ∆ i   θ2   +  (f )   θ(1-θ)  + ∆)1()1(
1 ii f++ i  (1-θ)2

This   can  then  be   substituted  in   (3.8),   where   i t   is   a   relatively 

simple   task   to  bound  q.(9)   and  its   derivatives.      Finally,   combining 

these   results  with   (3.6)   and   using   (3.3)   gives   the   desired   result    (i i) .  

Theorem  3.1   is   similar  to   a  lemma  in  Behforooz   and  Papamichael   (1979) 

for  cubic  polynomial  interpolation,   but   is   complicated  by   the   non- 

linearity  of   the   rational  quadratic   function.      Bounds   for 

| f  ( r )    (x)   -   s ( r )  (x) |     ,    r   =   1,2,3,   can  be  obtained  by   differentiating 

(3.6)   and  using   the   optimal   error   bounds   for   the   derivatives  of  cubic 

Hermite   interpolants  due   to  Birkhoff  and   Priver   (1967).      Since  the  non- 

linearity    introduced   by    the   multiplicative  term  Qi(θ)  makes   such  bounds 

rather  involved,  we  do not   quote   them  here.   As  would  be   expected, 

however,  the   bounds  are   reduced  by   an  order  of  hi    for  each  derivative 

taken. 

It    can  be   seen   from   (3.4)  that  the  order  of  convergence   is 

dependent  on  the  accuracy  of   d i    and  di + 1  as   approximations   to   the 

derivatives    =   f(1)fi
( 1 )(xi .)     and     =   f(1)

1if +
( 1 )(xi + 1.) .        In  particular,    if  

we   can   choose  di  = and   d(1)
1if + i + 1  = .    then  we  obtain  the   best   order (1)

1if +

of   bound  possible,   namely        In  fact   in   this   case  P).4
io(h i  (θ)   ≡  Hi (θ) 

which  was   an  observation  which  motivated   the   development  of  the 

theorem. 

In  practice   the        ;    i    =   1, . . . .n  are  usually  unknown  and  hence   the )1(
if

di   ;    i   =   1, .  .  . ,n  must  be  chosen  by   some  method   consistent  with   the 

necessary    conditions   (2.2).       Two   choices   for  the   d i    are  discussed   in 

the   following   section. 
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Remark.      For  particular  values  of   θ ,    the   inequality  used   to  obtain   (3.7) 

may   be   too  weak.      Thus,    for   example,   with   θ    =   
2
1  

1id(1)
1ifid(1)

if| ||(1)f||8
ih

|)2
1(iP)2

1(iH +++−−≤−  

and   -    d)1(
if i   -      +  d)1(

1+if i + 1    may  have   a  bound  of  higher   order   than  the 

individual   bounds  on    -    d)1(
if i    and      -   d)1(

1+if i + 1  .    This   is   confirmed  by 

the   numerical   results  which   follow. 
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4.     Numerical  Results  and  Discussion

We  first  consider  the  two  sets  of  monotonic  data  used  by  Fritsch  and 

Carlson  (1980).     The  first  set  of  data  was  originally  used  by  Akima 

(1970)  and  is  shown  in  Table  1.     The  second  set  of  data  is  shown  in 

Table  2. 
 

X 0 2 3 5 6 8 9 11 12 14 15 

y 10 10 10 10 10 10 10.5 15 50 60 85 

Table  1.    Monotonic Data Set  1 
 

X 7.99 8.09 8.19 8.7 9.2 .  10 12 15 20 

y 0 2.76429x10-5 4.37498x10-2 0. 169183 0.469428 0.943740 0.998636 0.999919 0.999994 

Table 2.     Monotonic Data Set  2 

Application of the piecewise rational quadratic interpolation scheme 

to each of  these data sets requires  some method for choosing the 

derivative parameters di   ;  i =  l, . . . ., n, and we consider two possible 

methods   as  follows.  

Method  1.     This method is based on three point difference approximations 

for  the  di ,    subject to modification if  the necessary conditions   (2.2) 

are not   satisfied.   Such approximations   are used in the  initialization 

process of the Fritsch-Carlson method and are  defined  by 

                                   
⎩
⎨
⎧

−=++
==

=
−−−

−

(4.1),1n2,...,iotherwise,)h)/(hΔhΔ(h
0Δor0Δif0d

1iii1i1ii

i1i
i

  

with end conditions 
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,
000

,
,000
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*
1

*
1

11
1 otherwised

dorifd
otherwised

dorifd
n

nn
n              (4.2)

where 

*
1d = ∆1  +  (∆1 - ∆2) h1/(h1  + h2)     , 

*
nd  =  ∆n-1 + (∆n-1 - ∆n-2 )  hn-1   /(hn-2  + hn-1    .)                                       (4.3) 

Since   - d)1(
if i  =  0(h2)  ,  h  =  max  (hi)  ,  for  these  approximations,   the 

error  bound  defined  by   (3.4)  will,   in  general,  be  0(h3). 

Method 2.   The  di.  defined by method 1 are not  continuous  functionals 

on  C [a,b].     A  non-linear  construction  which  avoids   this  problem  is 

given  by  

⎩
⎨
⎧

−=−−
=−

=
−+−+−

−+

1,n2,...,i,otherwise)]x)/(xf/[(fΔΔ
(4.4)0ffif0d

1i1i1i1i1ii

1i1i
i  

with  end  conditions 

                   
⎪⎩

⎪
⎨
⎧

−−

=−
=

otherwise,   )]1x3)/(x1f3/[f2
1Δ

,01f3fif0

1d

⎪⎩

⎪
⎨
⎧

−−Δ

=−
=

−−−

−

)]/()/[

,00

22
2

1

2

nnnnn

nn
n xxff

ffif
d

otherwise                                   (4.5)

Equation (4.4) was suggested by  fitting a rational linear function to 

(xi-1,fi-1)  ,  (xi,,fi)   and   (xi+1,fi+1) , in  analogy  with   (4. 1) , which 

can be derived by fitting a quadratic  function to the data.     A  Taylor 

expansion analysis shows that  - d)1(
if i  = O(h2)   in  (4.4)   and  that 

)1(
1f  -  d1 ,  -  d)1(

nf n  are,   in  general,   0(h)  but  are  0(h2)   in  the   case 

of  equal intervals. 

The  result  of  applying  the  piecewise rational quadratic scheme  to  the 
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two given data  sets,  with  the  two choices of  the  di  described  above, 

is shown in Figures1and 2. The J  2   monotonicity  region  method 

recommended by Fritsch and Carlson is also shown for purposes of 

comparison.   We conclude from these figures that  the  rational 

quadratic scheme using method 2 appears to produce more "visually 

pleasing" curves than method 1 and esemble the curves given  by  the 

Fritsch-carlson method. 

Our second set of results concerns the order of convergence of  the 

interpolation scheme discussed in Section 3. Tables 3 and 4 show the 

interpolation errors which result  from the application of  the  rational 

quadratic scheme to f (x) = exp (x) for various choices of the 

derivative parameters di .  The knots  xi  are taken to be  equally 

spaced with interval lengths h = 0.2, 0.1, and 0.05 respectively, 

centred about x = 0.6. The errors are evaluated for two  choices  of 

θ  in the intervals containing 0.6,namely .
3
1

2
1

== θθ and  
 

method error  e1  
(h  =  0.2) 

error   e2  
(h  =  0.1) 

error   e3  
(h  -    0.05) e1/e2 e2/e3

di .    exact 
 

di    method   I  
 

di    method   2 
.  

- .75770xl0-5

 
.22701 × l0- 4

 
 

- .22701 × l0- 4

-.47427×10- 6

.14223×10- 5

-.14223 x l0-5

-.29653xl0- 7  

.88953xl0- 7

-.88952xl0- 7

15.98 

15.96 

15.96 

15.99 

15.99 

15.99 

Table  3.     Rational   quadratic   interpolation   errors   at ).(exp)(,
2
1 xxf ==θ

 

method error  e1  
(h  =  0.2) 

error  e2  
(h  =  0.1) 

error  e3  
(h  =  0.05) e /el 2 e /e2 3

di    exact 
 

di .    method  1 
 

di    method   2 

-.58956xl0- 5

-.15612xl0- 3

.69103xl0- 4

-.37185X10- 6

-.21000x10- 4

.99380 ×10- 5

-.23339xl0- 7

-.27183×10- 5

.13240xl0- 5

15.85 

 7.43 

 6.95 

15.93 

7.73 

7.51 

Table  4.     Rational   quadratic   interpolation  errors   at  .)(exp)(,
3
1 xxf ==θ  
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For the case  
3
1

=θ ,  the ratios of the  errors confirm the expected 

convergence rates, namely 0(h4) for the true derivative scheme and 
30(h ) for each of methods 1 and 2. The 0(h4) convergence of methods 

1 and 2  for the case 
2
1

=θ   is explained by the remark,at the end of 

Section  3,  since it can he shown that    )(0 3
1

)1(
1

)1( hdfdf iiii =+−− ++

for these methods in the case of equally spaced  knots. 

Conclusion.   An explicit representation of a  piecewise   rational 

quadratic function has been developed, which produces a monotonic 

interpolant  to  given monotonic  data. The numerical  results   indicate 

that, in  the  absence  of  derivative data , the derivative   parameters 

chosen by method 2 produce the best monotonic curves. 



 

 
(i)   Fritsch-Carlson (ii) Rational  Spline  Method1  

 
(iii)   Rational  Spline  Method  2 

Fig 1. Results  for  Monotonic  Data.Set 1 



 

 
(i)  Fritsch-Carlson (ii) Rational Spline Method  1   

 
(iii)   Rational   Spline  Method  2 

Fig.   2.  Results  for  Monotonic Data  Set  2 
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