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ABSTRACT 

A  fourth  order   convergent   finite   difference  method   is   developed   for 

the  numerical   solution  of   the  nonlinear   fourth   order   boundary    value 

problem  y(iv)(x)  = f(x,y),  a < x  < b ,   y(a)  =  A0 , y"(a)  = B0 ,  y(b)   =  A1, 

y" (b) = B1 . 

The  method is based  on a  second order  convergent   method  which  is 

used   on   two   grids,   fourth  order convergence  being  obtained  by considering 

a   linear  combination  of   the   individual   results   relating   to   the   two   grids. 

Special   formulas   are  developed   for  application   to   grid  points 

adjacent  to  the boundaries  x  = a  and  x   =  b ,   the  principal   parts   of   the 

local   truncation   errors   of   these   formulas  being  the  same  as  that  of   the 

second   order  method  used  at  other points  of  each  grid. 

Modifications   to  these  special  formulas  are  noted  for  problems 

with  boundary  conditions  of  the  form y (a)  = Ao , y ' ( a )  = Co , y(b) = A1, 

y'(b) =c1. 

Z1488908 



1.       THE  SECOND  ORDER  METHOD 

Consider   the   general   non-linear   fourth  order  boundary  value  problem  given 

by 

y(iv) (x) = f(x,y)  ,  a < x < b , a,b,x ∈ RI  (1) 

with  the   functional  and   second  order  derivative  boundary  conditions 

y(a)   =  Ao , y"(a) = B o  ,  y(b) = A1 , y"(b) =B1 . (2) 

It   is  assumed  that   f(x,y)   is   real   and  continuous   on   [a,b]   with   ∂f/∂y < 0, 

and   that  A0,   A1,  B 0  , B1   are  real   finite  constants.     For  a  detailed 

discussion  of   the   existence  and   uniqueness   of   the  real  valued  function 

y(x)  which  satisfies   (1)   and   (2) ,    the  reader  is   referred   to  Agarval 

and   Akrivis   [1]. 

Suppose  the   interval  x є [a ,  b]    is  discretized   into  N+  1   subintervals 

each  of  width  h = (b- a) /( N+1),  where N ≥ 3 is a positive  integer.   The 

solution   y(x)    will   be   computed  at   the  points  x n  =  a + nh  (n = 1,2,...,N) 

and   the  notation  y    will  be  used  to  denote   the  solution  of  an  approximat- 

ing  difference   scheme  at   the  grid  point  xn  ;   clearly  y0 = A0   and  yN + 1 = A1. 

It  was  noted  by  Twizell   and  Tirmizi   [2]   that  the  solution  y(x) of 

(1)   and   (2)    satisfies    the    recurrence    relation 

y(x-2h) - Ry(x-h) + Sy(x) -  Ry(x+h)  + y(x+2h) = 0 , (3) 

where  the  operators  R  and   S  are  given  by 

R  =  exp(hD)   +  exp(-hD)   +  exp(ihD)   +  exp(-ihD) (4) 

and 

S   =  2 + {exp(hD)  + exp(-hD)}{exp(ihD)  +exp(-ihD)} (5) 

with  i  =  +√-1   and  D  =  d/dx.     One  of  the  numerical  methods   discussed  in 

[2]   was  developed  by  replacing  the  exponential   terms   in   (4)   and   (5)    by 
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their   (1,2)   Pade  approximates.     This   leads  to  the  numerical  method 

(6),0)2nf1n14fn51f1n14f2n(f81
4h

2ny1n4yn6y1n4y2ny

=+++++−+−−

+++−+−−−

where  f s   ≡  f(xs  ,ys   ), s = 1,2,...,N,   which  has  local   truncation   error 

     ...)n(xyh6480)n(xyh18nt (viii)8119(vi)61(1) −−−=                 (7)

at   the  grid  point   X  =  x   . 

Equation   (6)    is   applicable   only   to  the  N-2  mesh  points xn (n = 2,...,N-1) 

and   clearly  special   formulas   are  needed  for  the  mesh  points  x1  and  xN. 

In  order   to  make   possible   the  application  of  the   procedure   to   be  dis- 

cussed   in   §2,   these   special  formulas  must  be  second order accurate  and 

their  local   truncation   errors   must   be   of  the  form )i(x(vi)y6h
18
1(1)t i −=  

+  0 (h8) for  i =  1, N. 
 

These   requirements  are  met  by   the  pair  of   

formulas 

)8(0f4h15
2

0B2h02A

)3f276f1(205f4h360
1

3y24y15y

+−=

++−+−

and 

(9),1Nf4h15
2

2B2h12A

)N205f1-N76f2-N(f4h360
1

N5y1-N4y2-Ny

++−=

++−+−
 

for  which   the   local  truncation  errors  are,   respectively, 

                 ...)1(x(viii)y8h60480
521)1(x(vi)y6h18

1(1)
1t −−−=                     (10)

and 
  

                       ...)N(x(viii)y8h60480
521)N(x(vi)y6h18

1(1)
Nt −−−=             (11) 

The second order  algorithm  on  which   the  procedure of   §2  is  based, 

is   therefore  described  by   {(8),(6),(9)}   and   the   solution   vector 
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,T]Ny,...,2y,1[yT](1)
Ny,...,(1)

2y,(1)
1[y(1)Y ≡=   T  denoting   transpose,   is  

obtained  by   solving   a   nonlinear   algebraic   system   of   order  N  which  has 

the  form 
(1)r)(1)Y((1)fhM4h81

1(1)YhA =−           (12)

In   (12)   the  matrices  Ah,  and Mh ,    are  both  quindiagonal  and   of   order  N 

and  are  given  by 

 

                     (13)

⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⎤

⎢
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⎢
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⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−

−−
−−

−

=

541
46410

14641
.....

.....
.....

14641
1464

0145

hA

and 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

125.461.17225.0

14511410

11451141
.....

.....
.....

11451141
1145114

0225.01.17125.46

hM          (14)

The   vectors   f(1)  and r (1)   each  have  N   components   and  are   given  by 

   T](1)
Nf,,(1)

2f,(1)
1[f(1)f K=       (15) 

where    andN,,...1,2,n),(1)
ny,nf(x)(1)Y((1)

nf ==  

T]1Nf4h15
2

1B2h12A,1N81
2h

10,,...0,,0f81
4h

0A,0f4h15
2

0B2h0[2A(1)r ++−++−+−+−= fA  

    (16) 
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The  vector  y(1)   =  [y(x1 ,y(x2) ,. . . ,y  (xN)  ] T   clearly   satisfies   the 

equation 

   ,(1)t(1)r)(1)y((1)fM4h81
1(1)yAh +=−         (17) 

where    T](1)
Nt,,(1)

2t,(1)
1[t(1)t K=  is   the  vector   of   order  N  of   local  

truncation   errors.  Defining  ,T](1)
Ne,,(1)

2e,(1)
1[e(1)Y(1)y(1)E K=−=  

it   is   seen   that   E(1) satisfies 

f ( l ) (y ( l ) )   -  f ( 1 )  ( Y ( l ) )  = Fh ( y( l )) E(l )     (18) 
 

where  Fh =  Fh  (y(1))   =  diag is   a   diagonal   matrix   of }(1)
iy/(1)

if{ ∂∂

order  N.      It   follows   that  E(1) satisfies 

E (1) = Ph t (1) (19) 

where  Ph.    is   the  matrix  of  order  N  given  by 

1
hA1)hFhM1

hA4h81
1

h(IhP −−−−=       (20) 

and   Ih,    is   the   identity  matrix  of   order  N. 

It   is   shown   in  Usmani   and   Marsden   [3]    that 

         ,hZ2a)(b4384h
5||1

hA|| −≤∞−        (21)

 

where  Zh, = (b-a)2 + 0.8h2  (the norm referred  to  is   the  L∞     norm  and   from 

this  point  onwards   the   subscript  will  be   omitted) ,   and  it  is   easy   to   see 

from   (14)    that    || Mh || ≤ 81.    Using   these  norms,  it was  verified  in  [2] 

that   {(8),(6),(9)}   is  a  second  order   convergent   method   provided 

U< 76.8/ {( b- a)2 Zh}            (22) 

where  U= max|∂f/∂y|.  
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2.      THE  FOURTH   ORDER  METHOD 

Suppos e  now  that   a   second,   finer,   grid  of  step  size  
2
1 h  is  used.  The 

interval  a < x < b    is   thus  divided   into  2N+2   subintervals   each  of  width 

½h  and   the  points  x n  (n = 1,2,...,N)   of   the  coarse  grid  of   §t  are  named 

x m (m=  2,4,..,2N)   with   respect   to  the  fine  grid   for  which   the   finite 

difference  formulas   (8),   (6)   and   (9)  are modifed to 

  

(25),22Nf
120

4h
1B2h

4
1

12A

)12N2052N76f12N(f
5760

4h
12N5y2N4y12Ny

and

(24)2N,...,1m,0)2mf1m14fm51f1m14f2m(f
1296

4h

2my1m4ym6y1m4y2my

(23),0f120
4h

0B2h
4
1

02A)3f276f1f(205
5760

4h
3y24y15y

++−=

+++−−++−−

−=+++−+−−−−

+++−+−−−

+−=++−+−

The  solution  vector  of   these   2N+2  nonlinear  algebraic  equations 

will  be  denoted  by  Y(2)  so   that Y(2)  satisfies   the  equation 

                           .(2)r)(2)Y((2)f
h

2
1M4h

1296
1(2)y

h
2
1A =−     (26)

The   forms  of   the  matrices  A
2
1 H ,  M

2
1 h .  and of  the vector  f (2)  are obvious 

from (13),  (14)  and (15)   while the  vector  r (2)   is   given  by 

T]22Nf
120

4h
1B2h

4
1

12A,22Nf
1296

2h
1A0,,...0,,of

1296
4h

0A,0f
120

4h
0B2h

4
1

0[2A(2)r ++−++−+−+−=

 (27) 

The  matrix  analogous   to  Ph,    is  P
2
1 h ,    and  this   is  defined  by 

  1
h

2
1A1)

h
2
1F

h
2
1M1

h
2
1A4h

1296
1

h
2
1(I

h
2
1P −−−−=    (28)

in  which  I
2
1 h , is   the   identity  matrix  of  order  2N+1and }(2)

iy/(2)
if{diag

h
2
1F ∂∂=  

is  of  order   2N+1. 
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The  local  truncation  errors  of  (23),  (24)  and  (25)  are,  respectively, 

  ,...)1(x(viii)y8h15482880
521)1(x(vi)y6h1152

1(2)
1t −−−=              (29) 

(30),2N)...,1,(m

,...)m(x(viii)y8h
1658880

521)m(x(vi)y6h
1152

1(2)
mt

=

−−−=
 

)31(,...)12N(x(viii)y8h
15482880

521)12N(x(vi)y6h
1152

1(2)
12Nt −+−+−=+

 

and   the  theoretical   solution  vector  y (2) ,   relating   to   the  fine   gird, 

satisfies   the  equation 

  ,(2)t(2)r)(2)y((2)f

2
1M4h

81
16(1)y

h
2
1A +=−

h
         (32) 

where   .T](2)
12Nt,,(2)

2t,(2)
1[t(2)t += K

Suppose  now  that  h
h2

1I is  a  fine-to-coarse  grid   restriction   operator 

defined  by 

       .](2)
2Ny,..,.(2)

4y,(2)
2[y(2)Yh

h2
1I =                                     (33) 

Then  the  components of (2)Yh
h2

1I give second approximations  to y(x) at 

the  N  points  x n  (n = 1,2,...,N) of the original  (coarse)  grid  used  in  § 1. 

To  develop  a numerical method which is fourth order convergent, a  para- 

meter  α  must  be  determined such that the vector E* of  order N defined  by 

  ,](1)Yα)(1(2)Yh
h2

1I[y(1)Eα)(1(2)Eh
h2

1αI*E ++−=++= α            (34)

where  ,T](2)
12Ne,,(2)

2e,(2)
1[e(2)Y(2)y(2)E +=−= K  has  norm   ||  E*  ||  =0(h4). 

In  (34)   it  is  clear  that 

     (2)t
h2

1P(2)E =             (35) 

where .T](2)
12Nt,,(2)

2t,(2)
1[t(2)t += K  is   the  vector  of  local  truncation 

errors  given  by   (29),(30)   and   (31),   an  that .T](2)
2Ne,,(2)

2e,(2)
4[e(2)Eh

h2
1I K=  
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It  may  be   shown   from   (21)   that 

,
h

2
1Z2a)(b424h

5||1
h

2
1A|| −≤−             (36) 

where   
h

2
1Z   =   (b-a)2   +   0.2h2,   and   it   is   easy   to   see   that    ||  

h
2
1M  ||    =81. 

It   then   follows   from   (20)   and   (28)   that 

|| 
h

2
1P  || < || Ph ||                                                            (37) 

Defining  τh   =   ||t(l)   || /h4   and  τ
h2

1   =   || t ( 2 )   ||/h4,  it   is  clear from  (34) 

that 

|| E* ||   <   || Ph IK(α  τ
h2

1  (1 - α)  Th)                     (38) 

provided   (22)    is   satisfied.      Noting   from   (7),    (10),    (11)    that 

|| t(1)   ||    =  18
1
 h6V6,   and   from  (29),  (30),  (31)  that   ||  t (l) ||   =  1152

1   h6V6 , 

where  V6     =   
bxa

max
≤≤

     | y (vi)  (x)|,    it   follows   that 

||  E*  ||    =   O(h4)                                          (39) 

when  a   = 3
4  .       The   numerical   formulation 

       (1)Y3
1(2)Yh

h2
1I3

4(E)Y −=             (40) 

 
where  Y(E).     is   avector   of  order  N,   is  therefore  a  fourth order convergent 
method, 

Undoubtedly   the  main   advantage   of   the   fourth   order  method   just 

dveloped   is    its   ease   of    implementation,   especially   in   comparison  with 

other   fourth   order   methods    (in   particular,   multiderivative   methods    [2]). 

The  novel   method   requires   only   two  applications   of   a   second   order  method, 

the  solution   being    obtained  by   taking  a   linear  combination  of   the   results 

relating   to    the    two    applications. 
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3.       FIRST  ORDER  DERIVATIVE   BOUNDARY   CONDITIONS 

In   this   section,   the  boundary  value  problem  consisting   of   the  differ- 

ential   equation   (1)   with   the  boundary   conditions 

y  (a)  =  A0 ,    y'(a)  =  C0 , y(b)  =  A1 , y1(b) = C1 (41) 

will   be   considered. 

The  special  formulas  (8)  and  (9)  must be  replaced by 

(42)0f4h
630
53

03hC0A
2

11

)39f2608f1(1079f4h
2520

1
3y2y

2
9

19y

++=

−+−+−
 

 and 

(43)1Nf4h
630
53

13hC1A
2

11

)N9f1071-N608f2-N(-9f4h
2520

1
Ny91-Ny

2
9

2-Ny

+++=

++−+−

for  which  the   local   truncation  errors  are,   respectively, 

   )44(,...)1(x(viii)y8h
60480

271)1(x(vi)y6h
18
1(2)

1t −−−=

and 

   )45(,...)N(x(viii)y8h
60480

271)N(x(vi)y6h
18
1(2)

Nt −−−=

The   second   order   algorithm   is   then   given  by   {(42),(6),(43)}. 

The  matrix  Ah,    becomes 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−
−−

−−
−−

−

=

9
2
91

46410
14641
.....

.....
.....

14641
1464

01
2
99

hA

  (46)
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for  which   it   is   known   [3]    that 

,hZ4a)(b4384h
1||1

hA|| −≤−      (47)

where,  now,  Zh = 1+8h3 (b- a) - 3 ,  and  the matrix Mh.   becomes 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

280
9711

35
684

280
81

14511410

11451141
.....

.....
.....

11451141
1145114

0280
81

35
684

280
9711

hM
  (48)

for  which  || Mh || = 81   as   before.      The   vector  r (1)   also   requires   modi- 

fication;      it  becomes 

T]1Nf4h
630
53

1hC31A
2

11,1Nf
81

4h
1A0,,...0,,0f

81

4h
0A,0f4h

630
53

0hC30A
2

11[(1)r ++−++−+−++=

         (49) 

The   restriction  on  U   given   in   (22)    is   no   longer  applicable;      it   must 

be   replaced  by 

U< 384/ {(b- a)4  Zh } , (50) 

where   Zh  = 1 + 8h3(b- a) - 3 . 

Considering,   next,   the  application  of   the   second   order   algorithm 

to   the   fine  grid,   it   is   evident   that   equations   (23)   and   (25)   need  modi- 

fications.      They   become 
       

(51)0f4h
10080

53
03hC0A

2
11

)39f2608f1(1079f
40320

4h
3y2y

2
9

19y

++=

−+−+−

and 
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(52),1Nf4h10080
53

13hC1A2
11

)N9f1071-N608f2-N(-9f40320
4h

Ny91-Ny2
9

2-Ny

+++=

++−+−
 

respectively,   for  which   the   local   truncation     errors   are 

)53(,...)1(x(viii)y8h
15482880

271)1(x(vi)y6h
1152

1(2)
1t −−−=

and 

)54(,...)N(x(viii)y8h
15482880

271)N(x(vi)y6h
1152

1(2)
Nt −−−=

With   respect   to   the   fine   grid,   the   second   order  method   is   defined  by 

{(51),(24),(52)}   and   the   elements   of   the  vector   t (2)  are  given  by 

(53),    (30)   and    (54). 

The   forms   of   the   revised   matrices   A½h  and  M½h   are   obvious   from 
(46)    and   (48) ,   and   the   vector   r (2)   is   now   seen   to   take   the   form 

(55).T]22Nf4h
10080

53
1hC

2
3

1A
2

11

,22Nf
1296

4h
1A0,,..,.,00f

1296

4h
0A,0f4h

10080
53

0hC
2
3

0A
2

11[(2)r

+++

+−+−++=

 

            Clearly,   ,
h

2
1Z2a)(b424h

5||1
h

2
1A|| −≤− where Z

2
1 h = 1+h3(b- a)- 3,  and 

||  M
2
1 h  ||  ≤  81,   and  convergence  of  the  fourth  order method  given by  (40) 

is   established   for   the  boundary  value  problem { ( 1 ) , ( 4 1 ) }   as  in  §2. 

4, NUMERICAL   EXPERIMENTS 

The   fourth  order  method  discussed  in  §2  was  tested  on  the  following 

problem  from  the   literature. 

Problem  1 

y(vi)(x)   =  6exp[-4y(x)] -  12 (l +x)- 4 , 0 <x <1 

with     boundary   conditions 



11 

y(0)   =  0   ,   y(1)   =  ln2 , y"(0)  = 1 , y"(1)  = -0.25 

for  which   the  theoretical   solution   is 

y(x) = ln(1+x) 

The   interval    [0,1]   was   divided   into   N+1   equal   parts   each   of   width 

h = 2- m  with  m=  3,4,5   so   that  N = 2m -  1  =7 ,15,31,   respectively. 

The  value   of   || y-Y(E)  ||  ,   where  Y(E)   is   defined   in  equation   (40), 

was   calculated   for   each  value   of  N.      The  numerical   results   are   tabulated 

in  Table   1   which  also   includes   results   obtained   using   the   fourth   order 

methods   of  Agarwall   and  Akrivis  [1]  as  well  as  the  second   order  method 

{(8) , (6),(9)},   with   the  coarse  grid,   on  which   the  novel   method   is   based. 

Observing   the  contents  of  Table   1,   it   is   evident   that   the  fourth 

order  method  of   §2   gives   better  numerical   results   than   either  of   the 

other   fourth  order  methods   tested.      Bearing   in  mind   its   ease   of   imple- 

mentation,   the   method   is   clearly  an   economic   alternative   to   the   other 

fourth  order  methods. 

The  adaptation   in  §3  of   the  novel   fourth  order  method   to  problems 

with   functional  and   first   order   derivative  boundary   conditions  was 

also   tested.     The  problem  on  which   this  adaptation  was   tested   is  given  by 

Problem 2 

y(iv)(x) = 6exp[-4y(x)] - 12(l +x)- 4 ,  0 < x < 1 , 

with  boundary   conditions 

y(0) = 0 , y(1) =ln2 ,   y'(0)  = 1 , y'(1) = 0.5 , 

for  which  the  theoretical   solution  is  y =ln(1+x)   as   in  Problem  1.     The 

three  discretizations   used   for  Problem  1  were  also  used  for  Problem 2 

and  the  value  of   || y - Y(E)  ||  was  calculated   in  each  case. 

The  numerical   results   are  given    in Table  2  from which  it may be 
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observed   that   the  method  of   §3   retains   the  accuracy  attained  for   the 

problem  with  functional   and   second  order  derivative  boundary  conditions. 

         Only   three   applications  of    the   Newton-Raphson   method   for   nonlinear 

algebraic   systems  were  need  to  give  convergence   to  three   significant 

figures   for  both  problems, 

5.        SUMMARY 

A  fourth  order  convergent  finite  difference  method  has  been   developed 

and  analyzed  for   the  numerical   solution  of   the  general   fourth   order 

nonlinear  boundary  value  problem  y(iv)  (x)   =  f(x,y)   with  boundary  con- 

ditions  given   in   the  form  of   two  functional  values   together  with 

(i)   two   second   order  derivatives,   or    (ii)   two   first   order   derivatives. 

The  method  was  based on a  second order convergent method which 

was  used  on  two  grids,  fourth  order  convergence  being  obtained by 

considering  a  linear  combination  of   the   results   determined   for  each 

grid   individually.      Special   formulas  were  developed  for   application 

to  points   adjacent   to   the  boundary,   the  principal   parts  of   the   local 

truncation  errors   of   these  formulas  being   the   same  as  that  of  the 

second  order  method  which  was  used  at  other  points  of   the   discretization. 
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Table   1:     Error  norms   for  Problem   1. 

 

  second  order    Agarwal  and  Akrivis fourth  order 

m N method Method  A Method  B method 

3 7 0.19E-3 0.14E-4 0.14E-4 0.37E-5 

4 15 0.46E-4 0.83E-6 0.83E-6 0.29E-6 

5 31 0.11E-4 0.54E-7 0.54E-7 0.19E-7 

Table   2:     Error  norms   for  Problem  2. 
 

 

  econd  order fourth  order 

m N method method 

3 7 0.15E-3 0.22E-4 

4 15 0.23E-4 0.42E-5 

5 31 0.27E-5 0.67E-6 



 


