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Abstract

This paper describes an algorithm for locating stationary points of n-forms. Use is 

made of the associated n-linear form, the stationary points of which are seen to coincide 

with those of the n-form. Conditions of convergence are established using the concept of 

Liapunov stability, and it is seen that the scheme can always be made to converge to the 

global maximum of the n-form over unit vectors. 

1. Introduction

Many applications exist where the problem of finding stationary points of n-forms arises. 

In particular when a local analysis is made of a function of several variables, study can 

be made of the terms in a Taylor series expansion which is itself a sum of n-forms with 

n = 0,1,2,... . The nature of singularities of such functions can be classified according to 

properties of the appropriate n-form. One example of this in differential geometry is the 

problem of finding the directions of lines of curvature through an umbilic point on a 

manifold or surface, see for example [1,2,3]. Another example arises in the context of 

structural mechanics where the problem is to find the directions of post-buckling 

equilibrium paths for elastic buckling in coincident modes, see [1,2,3,4,5,6,7,8]. In this 

application the post-buckling path associated with the global maximum value of an n-form 

contained in the potential energy function is of particular significance since it identifies a 

lowest imperfect failure load [1,5,8]. Extensive study has been made in the structural 

mechanics context by Samuels and Bousfield using trigonometric polynomials [1,2,3,4,7,8] 

and some of the results used can be seen to have parallels in terms of multilinear forms 

[1]. 

        The algorithm introduced in this paper is intended to find stationary points of 

n-forms for unit vectors. In order to do this the algorithm locates stationary points of 

the associated symmetric n-linear form. This is made possible by a theorem which in 



essence indicates that a stationary point of a symmetric n-linear form evaluated for unit 

vectors occurs when the vectors are parallel. (We say parallel rather than equal because 

the vectors need not have the same sense). Consider for example the symmetric bilinear 

form T given by 

T(x,y) = x t Ay. 

where A is a symmetric m x m matrix and x  and Y  are m-vectors. The 

associated quadratic form P is then 

xAx)x(P t−  

The theorem states that apart from an exceptional case (discussed subsequently), if T is 

stationary for unit vectors 00 y,x  then, 00 xy ±=  and thus ± x0 also makes P 

stationary over unit vectors [9]. As is well known for quadratic forms P will be 

stationary if x  is an eigenvector of A . The algorithm attempts to exploit the 

theorem by optimising T over the larger space of independent variables, unit vectors 

(x,y), rather than optimising P over the unit vector x . This clearly has 

computational disadvantages but is motivated by the fact that T is linear in each vector 

separately, whereas P is clearly non-linear. The algorithm uses an iterative scheme 

which guarantees to increase the value of T at each step by replacing one of its 

argument vectors. This can be seen for bilinear forms using matrix notation. T can be 

thought of as the dot product T(x,y) = (xtA). y . The value of T can be increased by 

replacing the unit vector y  with a unit vector in the direction of 1xA/xAz.e.iAx 1
t =  

(recall that A is symmetric so that A = At). That is 

.)z,x(T|)xA|/)xA).((Atx(y).Atx()y,x(T −≤−  

On the next iteration x  is replaced in a similar way and then z  and so on. The 

value of T is thus increased until a maximum is reached. Following the algorithm 

through using the matrix notation reveals that for bilinear forms the method is equivalent 

to the power method for finding the eigenvector of A associated with its largest 

eigenvalue [10]. The eigenvalue is equal to the value of T at the stationary point and 

is thus equal to the global maximum of T over unit vectors. It will be seen that for 

n-linear forms the algorithm will always converge to the global maximum of T over 



unit vectors given a sufficiently close starting value. 

Since T is a continuously differentiable function over unit vectors, the convergence 

or otherwise of the scheme can easily be studied by local analysis of the stationary points. 

The concept of Liapunov stability of a discrete dynamical system is used to investigate the 

convergence and the n-linear form T will be seen to provide a suitable Liapunov 

function for this purpose. 

In an attempt to simplify the subsequent notation, the following sets are defined 

}.1x;RX{Q m =ε=        (1) 

That  i s  the  se t  o f  un i t  m-vec tors  where  x  ind ica tes  the  Eucl id ian  norm 

of x . 

          )x,,......x(x;Rx{S n1nm
n =∈=  where }n,.......,1Qix i =∈  (2) 

 
           )}x,.......x(X;SX{S n1 =∈=       (3) 

  
For each Sx ∈  a set is defined by −Sx

}.n,......,1ixx;S)x,.......x(x{S inn1x =±=∈−=  

Sx is a subset of  containing 2s
n

n
 elements. 

An n-linear form    T    can be thought of as a map T  : Rnm  R  defined by 

 n
nix......2

2i
X,1

1i
xni,........1iT)nx,.......1x(T =     (4) 

where t}i
mx......i

1x{ix =   and the summation convention is employed over all repeated 

indices from 1 to m. It is clear that T is linear hi each vector separately. 

An n-linear form is symmetric if and only if it is invariant under permutations of its 

argument vectors. This is equivalent to the coefficients Ti,j…..n being identical for all 

permutations of their  indices (as is the case where coefficients are obtained by evaluating 

partial derivatives). Symmetry will be assumed throughout the paper. 

A useful notation which will be employed is defined as follows. A vector t  =  

{t1……,
t

m}t  can be defined by 

)nx,...,1jx,.,1jx,...,1x(Tt +−=       (5) 



where tk, the kth component of  t   is 

 n
nix........1j

1jiX1j
1jiX......1

1
iXni,.....1ji,k,1ji,........,

1i
Tkt

−
+

−
−+−=     (6) 

That is tk is the multiplier of the kth component of jx  in the n-linear form T(x 1,...,xn). 

Thus the n-linear form can be thought of as a dot product of any of its argument 

vectors and the appropriate t  , i.e. 

 jx.)x,...,1jx,.,1jx,...,1x(T)nx,........1x(T n+−=     (7) 

In a similar way a square m x m matrix M can be defined by extracting two argument 

vectors from T so that 

jxMktx)nx,.......1x(T =        (8) 

where 

 )nx,.....1kx,.,1kx,........1jx,.....1jx,.,1jx,.......,1x(TM +−++−=   (9) 

One further notation which will be used is for a normalised vector of the 

form of    t      This is 

 
|)nx,.....1jx,.,1jx,.....,1x(T|

)nx.,.1jx,.,1jx.......1.x(t)nx,.......1jx,.,1jx,.......1x(T +−

+−
=+−           (10) 

So it  is always the case that QT~ ∈   (Note that T~  is not linear).  Since T is 

symmetric, the dots in the above notation can be located at the position of any argument 

vector and the order of the vectors themselves rearranged. 

 

2. The Stationary Values of an n-Linear Form

 

The   motivation   for  the   algorithm   described   below  is  the   following  theorem,   a   proof  

of which can be found in  [9]. 

Theorem 2.1

Let    T    be any symmetric n-linear form with n   2. ≥

Let      T      be   stationary   over  Sn   at   A   =   ( n
n1 S)a,......a ∈ )  with   T* = T( n1 a,......a )   

and 

assume T*  0.  ≠



(i)    there exists  such that T(X) is stationary 1SX ∈

and T(X) = T*.                  (11) 

and 

(ii) if for any neighbourhood of    A    there exists nSX ∈  

but  for any    nSX ∈ x   such that T(X) = T*  then there 

exists a pair of orthogonal unit vectors V  and 1V  such that 

n,.......,0i|T|)2/i(cos)V,V,.......,V(T *1 =π±=               (12) 

In fact v and y'  can be found to achieve either choice of  

sign. 

The version of this theorem to be found in [9] guarantees the existence of a stationary 

point in Sx for some Qx ε .  However, it can easily be shown that if X  Sε x for some 

Qx ε  is a stationary point of T then all the other elements of Sx also make T 

stationary. The above statement of the theorem is thus valid since for any Qx ε the 

elements )x......x(and)x,.......x( −−  are contained in both Sx and S1. 

Part (ii) of the theorem highlights a rather exceptional case where a stationary value for 

T can be found for  for any xSX ∈ x  part (i) indicates however that in every case a 

value of  can be found for which T is stationary over S1SX ∈ n.  Note that if the 

exceptional case holds then putting i=0 and 2 in equation (12) gives 

 |T|)v,........v(T *±=        (13) 

and 

 |T|)'v,'v,v,...,v(T *m=       (14) 

So then the symmetric m x m matrix T(v,...,v, . , . ) has a pair of equal and opposite 

eigenvalues ± |T*|. In fact it can be shown using the details of the proof of theorem 

2.1 in [9] that in the exceptional case where (12) holds 

 |T|).........,(T *=ββα        (15) 

f o r  a l l  ϕ  w h e r e  111 v))1nsin((v))1n((CosandvSinvcos= ϕ + ϕ β = − ϕ −− ϕα  

S i n c e  →α  v and v→β  as 0→ϕ   it is clear that the stationary point at X = (v,...,v) 

is not isolated. Indeed  parametrizes a whole line of points in Sϕ n at which T is 

stationary. It may thus be concluded that for any isolated stationary point at 

it must be the case nSx ε



that there exists an isolated stationary point for some X  ∈   S1. 

In order to classify the types of stationary point of T the following local analysis is 

required. Stationary points of T(X) subject to the constraint that are stationary nsx ∈

points of 

F(x)-T(x)+ iii x.xλ        (16) 

where  are Lagrange multipliers, X = (iλ n1 x......x ) and a summation is implied over 

i=l,...,n. Since T is a continuously differentiable function its stationary points will 

always satisfy 

        .n,.......,1i0
x
F

i
==

∂
∂       (17) 

That   is 

        .n,........1i0x2)x,...,x.,,x.......X(T iin1i1i1 ==λ++− (18) 

Taking the dot product of these with ix  gives 

         .)X.......X(T2
1.... n1n1 −=λ==λ                 (19) 

Denoting T(x1,...,xn) = T* as before, equations (18) become 

         n,.....,1ixT)x.......x,.,x,......x(T i
*

ni1i1 =−−  (20) 

It is clear then that X = (x,...,x) 6 S, makes T stationary if and only if 

         xT)x,......x(T *−        (21) 

It will be assumed that the stationary point of    T    is isolated and also .SX 1∈  

Consider now the m x m symmetric matrix 

T = T( x ,…….. x ,.,.)/T *        (22) 

It can be seen from  (21) that one eigenvector of     T   is    x    and is associated  with the 

eigenvalue t0 = 1.     Since    T     is symmetric its other eigenvalues, t1,...,tm-1 will also be 

real   and   then-   associated   eigenvectors   x'i      i=l.....m-1   will   be   orthogonal   to x .    A 

condition for   T   to have a positive maximum over Sn at X* is given by the following 

theorem. 

Theorem 2.2

If  -1  <    <  l/(n-l) for all i=l,...,m-l  then there exists a neighbourhood, N, of X* in     it

Sn such that in any X  ∈  N 

 



T(X)/T(X*) < 1        (23) 

If in addition T(X*) > 0 then 

 T(X) < T(X*)        (24) 

and T  has a positive local maximum at X*.  

Proof

 Consider an isolated stationary point  of  T at X*  =   ( x ,..., x )  ε    S1  Then   by  

equation (21) 

  T(x,. . . ,  x , .)    =  T(X*) x  .                           (25) 

Consider a perturbation from X* in Sn denoted by X = ( n1 x,...,x ) where 

 n,...,1ix/)x(x iii =ε+ε+−    (26) 

with .small.....andQi nn1.1 εε+εεεε   The resulting perturbation in.    T    is 

n1

n1

x,...,x
)X,...,x(T)x(T

ε+ε+
ε+ε+

=                (27) 

Using the linearity of    T    and the smallness condition on   i∈ , this can be expanded as 

)ji(
...)),x,...,x(T

2
1),x,...,x(T)x,...,x(T()x(T jii

≠

×+εε +ε+−      

   
)ji(

...)).x)(.x().x().x(.).x1( jiiiiii 2
1

2
1

2
3

≠

+−∈−−∈−+−∈−∈−+−∈−∈−∈−−−
  (28) 

where a  summation is implied over    i     and     j     for l,...,n.     This can be simplified 

by defining the m x m symmetric matrix. 

 tx.xX =          (29) 

and using  (25)   and  (22).     Then 

 j)xt(t
i2i)tx(t

i2
11()*X(T)X(T ε−ε

1
+ε−ε+=  

            (i j≠ ) 

         2/3
i1 ).(0 εε+      (30) 

That   is 

 ))E.E(0EAE1)(x(T)x(T 2/3t
2
1* ++=     (31) 

where  E    is  the  inn-vector E  { }tt
n

t
1,......,εε   and A is  the mn x mn 

symmetric matrix 



 

A = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−−
−−−

.             .
    

.
              

.             .
    

.
           .             .    

.    XX
....XXX
....XXX

ττ
ττ
ττ

I
I

     (32) 

Let λ be any eigenvalue of A and E the associated eigenvector so that 

 (A - 0E)I =λ )        (33) 

Now this can be written 

 )n,......,1j,0)1λ(rx2()ε......)(x( jn1 ==∈+−−+++∈−τ  (34) 

Adding these gives 

 0).....)(I)1λ(x)rn()1n(( n1 =∈++∈+−−−− τ    (35) 

Assuming X is a non-null perturbation in Sn there exists a value of j such that ε ≠j  

k x  for all k  (including k=0). From this condition it is easy to show that a non-null Rk ∈

perturbation is only possible in two cases. Firstly if 0.... n1 =∈++∈  then from (34) 

.n,.......1jo)I)1λ(x2( j ==∈+−−τ     (36) 

Taking the dot product of this with one of the eigenvectors  of 'x, 1τ  which is orthogonal 

to x  gives 

 )X)(11t( j
1
ji ∈++        (37) 

But for a non-null perturbation there must exist values for    i and j such that j1 '.∈x  

0≠ and so 

Secondly if xk... n1 ≠∈++∈  for any k ∈  R then the dot product of equation (35) with ,
1x  

gives 

0))......(x1)(λ1)t((n n1
1
ii −∈++∈−−−      (39) 

But by the assumption for this case there must exist a value of i  such that 

soand0).....(x n11  ∈++∈ ≠

 

1t)1n( i −−=λ  for some value of i=1….,m-1    (40) 

 



Now equations (38) and (40) give the only possible values for λ for a non-null 

perturbation and so it is clear that if -1< ti < 1/(n-1) for all i=1,...,m-1 then λ < 0. 

Since λ is any eigenvalue of A it can be seen from (31) that there exists a 

neighbourhood, N, of  X*  in Sn such that for any X ∈  N 

T(X)/T(X*) < 1.           (41) 

If T(X*) > 0 then this gives T(X)<T(X*) and so T has a positive local maximum at 

X*.   (Similarly if T(X*)<0 then    T    has a negative local minimum at X*). □ 

It is interesting to note that equations (38) and (40) do not allow the possibility of 

all the eigenvalues of A being positive. This leads to the conclusion that T can never 

have negative maxima or positive minima on Sn. 

 

3.    The Algorithm

 

The algorithm investigated here attempts to find stationary values of T by generating a 

sequence ( ix ) of ix  ∈  Q using the recursive formula 

xi+1   = T~ ( xi, xi+1,….. xi-(n-2,),.).          (42) 

Each new term in the sequence depends on the previous n-1 terms.  It should be noted 

that  xi+1 becomes  undefined  if 

       T(xi,….. xi-(n-2),.)  =  0           (43) 

It will be shown however that this will never be the case (for exact arithmetic at least) 

provided that the (n-1) starting  values  of  the  sequence, x0  ,  x1..., x2-n  do  not satisfy (41). 

The conditions under which the algorithm converges are now investigated. For the 

purpose  of this analysis  it is found easiest to study n steps of the sequence at a time. 

So a sequence  (Xi) of  x1 ∈ Sn is  defined  where Xi = xi,….. xi-(n-1). Each  term  of this  

new sequence is thus generated by a map φ : Sn → Sn such that Xi+1  =  φ(xi) for all 

i=0,l,... . A map  ψ : Sn → Sn  can then be defined by ψ  ≡ φn which moves n terms 

along the original sequence on each application. So then 

 

Xi+n  = ψ  = (Xi)   for  all  i =  0,1,…….                                 (44) 

Now the generation of the sequence ( ) can be thought of as a discrete dynamical  system iX

 



with φ or Ψ as the iterating map. In this way convergence of the sequence to a 

fixed point of the map can be studied by way of the Liapunov stability of the dynamical 

system. It will be seen that the n-linear form T provides a Liapunov function which 

leads to an indication of the stability or otherwise of the fixed points. The link between 

T and the map Ψ is provided by the following theorem. 

 

Theorem 3.1

X is a stationary point of    T    with T(X)  > 0 if and only if    X    is a fixed point of   Ψ 

and T(X)  > 0. 

(It will be seen later that the algorithm is such as to ensure that T(x )> 0 for i > 0 i

and so the condition of positive T will not be a restriction. In fact it can easily be 

shown that If T(X) < 0 then the theorem can be satisfied with X replaced by Ψ (X).) 

Proof

First the sufficiency condition is proved. Assume that X = x ….xn 1  ∈ S  is a stationary n

point  of  T  with T(X) > 0. Then X  must  satisfy equation (20) and so 

    T(xn,…, x , x ,…xi+1 i+1 1)T*x   =  1,…,n          (45) i                                             i

where T* = T (xn,…, xi+1 ,…x )  > 0.   Now since |x | = 1 this equation can be written  1 i

  T~ (xn,…, x , x ,…x )x i  =  1 ,…..,n       (46) i+1 i+1 1 i                                                    

Now let Y = (X) where Y =  then by the definition of  Ψ 1n y,.....yΨ

T~ y1 =  (y ,  yi-1 1,  X ,…,X ,…,.)               i  =  1,…,n              (47) n i+1

In order to prove that X=Y the proposition P  will be proved by complete induction for j

j=1,...,n where 

 p : y   =  x              (48) j j

Put i=l  in equation (47) to give 

T~y =  ,…,x (xn 2 ,.)  

then by equation (46) with i=l 

 y   =  x1 1

which proves P  true. Now assume P  true for all k=1,,2,...,j=1 for some j=1,...,n. 1 k

That is 
 



⎪
⎪

⎭

⎪
⎪

⎬

⎫

−

−

−

−− 1j1j

22

11

xy

xy

xy

          (49) 

Now put i=j in equation (47) and use (49) to substitute for iv to get 

 ).,x , . . . , x,v , . . . , v(T~v 1jn11ii +−=  

                 ).,x , . . . , x,x , . . . , x(T~ 1jn11j +−=                   (50) 

Using the symmetry of T and equation (46) with i=j, it can be seen that 

 .xv jj =                                                                                                              (51) 

So if Pk is true for k=l,...,j-l then Pj is also true. Thus by complete induction Pj:  is 

true for all j=l,...,n  . 

Now the necessary condition is proved. Consider a term hi the sequence ( ).  = iX iX

))1n(xi......,x,ix( 1i . Assume that xi is a fixex point of .Ψ  Then − Ψ = =+− niii XsoX)x(  

iX , or 

 1n,......0jallforxx )1n(ji1ji −== −−+++                (52) 

By the recursion formula (42) 

n,.........1j).,)2n(jix , . . . , 1jix,jix(T1jix =−−+−++−++  (53) 

Now using (52) to replace the first j argument vectors hi the right hand side this 

becomes 

.)x,........x,x,x , . . . , x,x(T~  X ),2n(ji1ii)1n(i)1n(ji1ji1ji −−+−−−+−+−+++ −

 termsj  n , . . . , 1j =   (54) 
Using symmetry the argument vectors can be reordered and replacing the left hand side 

using (52) gives 

 1)(nji1)(ni2)(nji1ii x)x.,,.....xx,(xT~ −−+−−−−+− −

                       n.......,1j =   (55) 
Comparison with equation (20) shows that )1n(iii x , . . . , x(X −−=  makes T stationary 

provided T(Xi)  > 0.    Thus theorem 3.1 is proved. □ 

Theorem 3.1 indicates that if the algorithm converges then it will have found a 

stationary point of T . Some results are now stated and proved which are required for 

 



the construction of the Liapunov function. 

Define a sequence niiiii SXfor)X(TTby,RT),T( ∈=∈ in the sequence ( ) iX

defined above. So 

 . . . , 1,0i)x , . . . , x,x(TT )2n(i1iii == −−−    (56) 
Consider 

 )x , . . . , x,x(TT )2n(ii1i1i −−++ =  

                    .  . . . , 1,0ix..),x , . . . , x(T 1i)2n(ii == +−−   (57) 

Using the recursion formula (42) to replace 1ix + ,  gives 

            . . . , 1,0i).,x , . . . , x(TT )2n(ii1i == −−+    (58) 

Returning to equation (56) 

,...1,0i                  x).,x , . . . , x(TT )1n(i)2n(iii == −−−−   (59) 

So if  = 0 then T1iT + i = 0, otherwise 

 )1n(i)2n(ii1ii x.).,x , . . . , x(T~TT −−−−+=     (60) 

)xx(T )1n(i1i1i −−++=  

...,1,0iT 1i =≤ +       (61) 

So provided the starting values are chosen so that T1 # 0 it must be the case that 

0 < Ti < Ti + 1   for all i =1,2,...   .     (62) 

This then gives 

0 < Ti < T i + n    for all i =1,2,…    (63) 

It will now be shown that 

Ti+n = Ti ↔ Xi is a fixed point of  Ψ   .    (64) 

Assume Ti+n = Ti then by result (62) it must be the case that 

Ti+j+1, = Ti+j  j=0,...,n-1.      (65) 

Using this and equation (60) with i replaced by i+j leads to the conclusion that 

            .1n,...,0j).,x,...,x(T~x )2n(jiji)1n(ji −== −−++−−+ (66) 

But from definition (42) with i replaced by i+j 

  1n,...,0j1jix1)(njix −=++=−−+         (67)             
or 

        (68) )X(XX inii Ψ== +

so Xi is a fixed point of . Ψ

Now assume that Xi is a fixed point of Ψ  so Xi+n = Xi then T(Xi+n)  = T(Xi) and 



Ti = Ti+n. Thus the result is proved.  

 

4.     Conditions for Convergence

First, some definitions and Liapunov's theorems are quoted which are to be found in [11.]. 

Consider a region D of Sn containing the point X*.  A function V: Sn → R is 

said to be positive definite at X* in D if and only if 

V(X) > 0 ∀ X ε D and V(X) = 0 ↔ X = X* .    (69) 

Consider an iterative map  which generates sequences of the form ( ) from nn SS:F → iX

).X(FX i1i =+  

 

Liapunov's theorem I 

Suppose that there exists a function V(X) such that both V and  are positive iV-Δ

definite at X* in D. Then X* is an asymptotically stable fixed point of F in the sense 

of Liapunov stability. (Here ∆ is the forward difference operator acting on ))V(X  V kk = . 

 

Liapunov's theorem II 

Suppose that there exists a function V(X) such that -∆Vk is positive definite at X* 

in D but that in every neighbourhood of X* there is at least one point at which V is 

negative. Then X* is an unstable fixed point of F . 

Using the fact that T is bounded and results (63) and (64) the Monotonic 

Sequence Property gives that the sequence (Tin) must have a limit point which will be 

a fixed point of Ψ  . Moreover it must be that T>0 at such a point. Then from the 

forom 3 there must exist a stationary point of T. Liapunov's theorems can now be 

used to investigate the stability of such a fixed point. 

Consider an isolated fixed point of Ψ at X*. From result (63) it must be that 

T(X*) > 0, (provided that degenerate starting values are not chosen). Since X* is 

isolated there must exist a region D of Sn containing X* and no other fixed points of 

Ψ  . The required Liapunov function is 

V(X) = T(X*) - T(X)       (70) 



Rather than consider the sequence (Xi) for the discrete dynamical system it is better to 

consider the sub-sequence  where . i.e. every n)X( k
kn

k X  X = th term of ( ). The iX

reason for this choice is that an appeal can then be made to result (64). It should be 

noted that it is not the case that i1ii X  T  T ⇒= +  is a fixed point of Φ  (or ). Indeed Ψ

the system could converge to iterative cycles of period n or less. It is easy to show 

that the attracting cycles of  consist of elements of SΦ x for which the argument vectors 

have a common cyclic permutation and for which T>0. For this reason the period of 

any such cycle must be a factor of n . Now by definition . The )X(X k1k+ Ψ=

sequence ( kV ) defined by kV  = V( ) has the following property. kX

  1kVkVkV +−=Δ−

 )kX(T)1kX(T −+=  

nkTnnkT −+=        (71) 

Then by results (63) and (64) it must be that kVΔ− is positive definite at X* in D. So 

Liapunov's theorem I gives that the fixed point of Ψ at X* will be asymptotically stable 

if V is positive definite at X* in D . But by theorem 2 this is guaranteed if -1 < t i  

< l/(n-l) for i=l, . . . ,m-1. Also, if  for some i ,  t i  < -1 or l /(n-l) < t i  then 

Liapunov's theorem II gives that the fixed point at X* will be unstable. This is 

summarised in the following two results: 

)72(ofintpofixedstable1m,...,1i
allyasymptoticanisX)1n/(1t1 *

i
Ψ−=

⇒
−<<−

)73(ofintpo)1n/(1tor1tthat
fixedunstableanisXsuch1m,..,1iexistsThere

ii

*

Ψ−>−<
⇒

−=  

(Recall that  ti  are m-1 of the  m  eigenvalues  of  τ  evaluated at  X*  (see (22))). 

It is now shown how the above convergence condition is related to the index of the 

stationary point when considered over S1. That is the index of the stationary point of 

the associated n-form P(X) = T(x,...,x). If the perturbation of T in the proof of 

theorem 2 is restricted to an S1, perturbation then equation (30) becomes 

.)...)IX)2n()1n(()2/n(1()X(T)x(T t* +∈−−−τ−∈+=             (74) 
 



Now the eigenvalues  say, of iσ IX)2n()1n( −−−τ− are given by 

       (75) 
⎭
⎬
⎫

−=−−=σ
=−−−−=σ

1m,...,1i1t)1n(
01)2n(t)1n(

i0

00

As before, one of the eigenvalues, 0σ , is associated with xk=∈ which gives rise to a 

null perturbation on S1 and so the eigenvalues of interest are .1m,...,1ii −=σ The 

condition for T , and hence P to have a local maximum on S1, at x is thus t < 

l/(n-l) for all i=l,...,m-l. As one would expect this encompases the condition of 

theorem 2 for T to have a local maximum on )1n/(1t1( i −<<−  for all 

i=1,…,m-1) since . So a maxhnum on  must be a maximum on . n1 SS ⊂ nS 1S

It can be concluded from result (72) and the above that the mapping Ψ will always 

converge to a stationary point of P(x) which is a local maximum. However, not all of 

the maxima of P(x) are also maxima of T(X) over Sn and those which are not will be 

unstable fixed points of Ψ . It is also important to note that the global maximum of 

P(x) over S1, will always be an attracting stable fixed point of * provided that the 

point is an isolated local maximum. This will always be true unless the non-generic case 

of part (ii) of theorem 2.1 holds. For bilinear forms (n=2) where T(x1,x2) = ,xAx 2
t
2  

this exceptional case highlights the well known fact that the power method breaks down 

when the matrix A has a pair of equal and opposite eigenvalues of maximum magnitude. 

A point of interest to note here is that the set ti i=l,...,m-l is identical to the 

parameters αi i=l,...,m-l defined in [1] and [4]. The parameters αi are used in the 

structural mechanics context to classify types of buckling behaviour. 

 

5.    Conclusions

It has been shown that the algorithm described always has an attracting fixed point at the 

stationary point associated with the global maximum of the n-form when evaluated for 

unit vectors. So a starting value can always be found which lies within the basin of 

attraction for this point such that the algorithm   will converge to this solution. It is noted 

that for n>3 there may be other attracting fixed points which is the reason for the above 

restriction on the starting value. Attracting fixed points correspond to local maxima of 

the associated symmetric n-linear form and hence local maxima of the n-form. However, 



not all maxima of the n-form will correspond to maxima of the n-linear form and thus 

correspond to attractors. This highlights a possible disadvantage of optimising over the 

larger space, , rather than  which is that maxima in SnS 1S 1 can be saddles in . nS

It is also worth noting that the algorithm is not suited to finding all of the stationary 

points of an n-form which is sometimes desirable. This has been achieved for the case 

n=m=3 by Bousfield in [1] using a semi-analytical method based on resultants. This 

method is however, computationally very clumsy and not easily extended to higher dimensions. 

It is hoped that the algorithm can be developed for this purpose using the results 

presented here as a starting point. It may be possible to do this in the same way that 

the inverse iteration method is developed from the power method for the bilinear case, 

n=2, see for example [10]. 
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