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Abstract
We study infinitesimal generators of one-parameter semigroups in the unit disk D

having prescribed boundary regular fixed points. Using an explicit representation of
such infinitesimal generators in combination with Krein–Milman Theory we obtain
new sharp inequalities relating spectral values at the fixed points with other impor-
tant quantities having dynamical meaning. We also give a new proof of the classical
Cowen–Pommerenke inequalities for univalent self-maps of D.
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1 Introduction

One-parameter semigroups of holomorphic self-maps of a hyperbolic simply con-
nected domain in the complex planeC constitute a classical topic inComplexAnalysis,
see e.g. [1,9,11,16,36]. They suite as a natural time-continuous analogue for discrete
iteration of holomorphic maps and often appear in applications, for example in Prob-
ability Theory, see e.g. [20,22], [31, §10.1].

Thanks to the Riemann Mapping Theorem, one can restrict attention to one-
parameter semigroups in the unit disk D := {z ∈ C : |z| < 1}. From the dynamical
point of view, an important role is played by the boundary fixed points, understood
in the sense of angular limits. How presence of regular boundary fixed points (see
Def. 2.1) does affect behaviour of the self-map at internal points is the problem stud-
ied in many classical and recent works, e.g. [2,6,14,19,23,29] just to mention some.
Boundary fixed points of one-parameter semigroups have been also subject to active
interest, see e.g. [12,13,25,26,35]. In the present paper we study this problem for one-
parameter semigroups with a prescribed finite set of boundary regular fixed points.
Our main tools are the representation formula for infinitesimal generators of such
one-parameter semigroups originally due to Goryainov [22] (see Theorem 6.1) and
Krein–Milman Theory, which turns out to be very useful in finding value regions of
linear functionals on compact convex sets of holomorphic functions.We obtain several
sharp inequalities relating the spectral values at the boundary fixed points and at the
Denjoy–Wolff point with the value of the infinitesimal generator at an internal point
or other important dynamical characteristics of the semigroup.

The paper is organized as follows. In the next section, we collect some preliminary
material, which we need to state the main results in Sect. 3. Further, in Sect. 4 we
obtain several auxiliary results concerning local boundary behaviour of holomorphic
functions with non-negative real part. Necessary results from Krein–Milman Theory
are collected in Sect. 5.

Section6 contains our main results. First we establish (a more precise version
of) Goryainov’s representation formula mentioned above, see Sect. 6.1. In the next
two subsections we state in a full detail our results on sharp value regions for such
generators. In particular, we take advantage of the fact that extreme points of the
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Carathéodory class are well-known, see Remark 5.2. Going in a bit different direction,
in the last part of Sect. 6 we study extremal points of two classes of infinitesimal
generators of semigroups with prescribed boundary regular fixed points.

Finally, in Sect. 7 we give a new proof of the well-known Cowen–Pommerenke
inequalities for univalent (i.e. injective holomorphic) self-maps ofD. Three elementary
statements used in Sect. 7 are proved in Appendix.

2 Preliminaries

2.1 Discrete iteration

For a domain D ⊂ C, we denote byHol(D) the linear space formed by all holomorphic
functions from D intoC. As usual, we endowHol(D)with the compact-open topology,
which is the same as the topology of locally uniform convergence in D. This turns
Hol(D) into a locally-convex Hausdorff topological linear space. For a set E ⊂ C, we
write Hol(D, E) := { f ∈ Hol(D) : f (D) ⊂ E}. Of particular interest in this paper, it
will be the case when D is the open unit disk D and f ∈ Hol(D,D).

Thanks to the Schwarz Lemma, a holomorphic self-map ϕ : D → D, ϕ �= idD,
can have at most one fixed point in D. An important role is therefore played by the
so-called boundary fixed points.

Definition 2.1 A point σ ∈ ∂D is called a boundary fixed point of a holomorphic
self-map ϕ : D → D if the angular limit ϕ(σ) := ∠ limz→σ ϕ(z) exists and coincides
with σ . If in addition, the angular derivative

ϕ′(σ ) := ∠ lim
z→σ

ϕ(z) − ϕ(σ)

z − σ

exists finitely, then the boundary fixed point σ is said to be regular. In what follows,
“boundary regular fixed point” will be abbreviated as “BRFP”.

It is known that at any boundary fixed point σ of a holomorphic self-map ϕ : D → D,
the angular derivative ϕ′(σ ) exists but it can be equal to ∞; if ϕ′(σ ) is finite, then
ϕ′(σ ) > 0 and moreover,

sup
z∈D

1 − |z|2
|z − σ |2

|ϕ(z) − σ |2
1 − |ϕ(z)|2 = ϕ′(σ ). (2.1)

see e.g. [33, Proposition 4.13 on p.82]. The latter statement is known as the Julia or
Julia–Wolff Lemma.

The classical Denjoy–Wolff Theorem states that for any ϕ ∈ Hol(D,D) \ {idD} one
of the two following alternatives holds:

(i) either ϕ has a unique fixed-point τ ∈ D, with |ϕ′(τ )| ≤ 1,
(ii) or ϕ is fixed-point free inD, but it has a unique BRFP τ ∈ ∂D satifying ϕ′(τ ) ≤ 1.



   36 Page 4 of 38 M. D. Contreras et al.

In both cases, τ is called the Denjoy–Wolff point of ϕ, or in abbreviated form, the
DW-point. In case (i), the self-map ϕ is said to be elliptic. In case (ii), ϕ is called
hyperbolic or parabolic depending on whether ϕ′(τ ) < 1 or ϕ′(τ ) = 1.

For any BRFP σ �= τ , we have ϕ′(σ ) > 1. By this reason, BRFPs different from
the DW-point are often called repelling.

For these andmore details concerning dynamics of holomorphic self-maps we refer
an interested reader to [1] and [9, Sect. 1.8].

2.2 One-parameter semigroups

Note that Hol(D,D) is a topological semigroup w.r.t. the composition. Continuous
semigroup homomorphisms t 	→ φt ∈ Hol(D,D) from the semigroup

([0,+∞),+)
to Hol(D,D) are usually referred to as one-parameter semigroups (of holomorphic
functions in D). In other words, a family (φt )t≥0 ⊂ Hol(D,D) is a one-parameter
semigroup if φ0 = idD, φs ◦ φt = φt+s for any s, t ≥ 0, and φt (z) → z as t → 0+
for all z ∈ D. Note that the point-wise convergence leads to continuity in the open-
compact topology becauseHol(D,D) is a normal family. Functions φt can be regarded
as “fractional iterates” of ϕ := φ1.

We call a one-parameter semigroup (φt ) non-trivial if there is t > 0 such that
φt �= idD. It is well known that for every non-trivial semigroup (φt ) all elements
different from idD share the same Denjoy–Wolff point τ and moreover, φ′

t (τ ) = e−λt

for all t ≥ 0 and some λ ∈ C with Reλ ≥ 0 called the spectral value of (φt ) (at its
DW-point). In particular, every φt �= idD has the same type and hence we can talk
about elliptic, hyperbolic, and parabolic one-parameter semigroups.

Note also that if (φt ) is a non-trivial one-paremeter semigroup and φt = idD for
some t > 0, then all φt ’s are elliptic automorphisms of D and the semigroup (φt ) is
just a non-Euclidean rotation around a common fixed-point in D. In what follows,
we will be mainly concerned with one-parameter semigroups whose elements have
boundary fixed points and hence cannot not be elliptic automorphisms.

It turns out that every one-parameter semigroup is the semiflow of some holomor-
phic vector field inD. Denote byH the right half-plane {z : Rez > 0}. The following
classical result is due to Berkson and Porta [4], see also [8, §2] and [9, Sect. 10.1].

Theorem A Let (φt ) be a one-parameter semigroup. Then for any z ∈ D, t 	→ φt (z)
is differentiable, and there exists a unique G ∈ Hol(D) such that

dφt (z)

dt
= G(φt (z)) for all z ∈ D and all t ≥ 0. (2.2)

Moreover, if (φt ) is non-trivial, then G can be represented as

G(z) = (τ − z)(1 − τ z)p(z), z ∈ D, (2.3)

where τ ∈ D is the DW-point of (φt ) and p ∈ Hol(D,H \ {0}).
Conversely, if G is given by (2.3) with some τ ∈ D and p ∈ Hol(D,H\{0}), then

there exists a unique non-trivial one-parameter semigroup (φt ) satisfying the ODE
(2.2).
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Definition 2.2 The vector field G in the above theorem is called the infinitesimal
generator of the one-parameter semigroup (φt ).

The Berkson–Porta formula (2.3) gives a necessary and sufficient condition for a
holomorphic function G to be an infinitesimal generator.

Let us now discuss boundary fixed points of one-parameter semigroups.

Definition 2.3 A point σ ∈ ∂D is a boundary regular fixed point of a one-parameter
semigroup (φt ), if σ is a BRFP of φt for all t ≥ 0.

Remark 2.4 In fact, the set of all BRFPs is the same for each φt different from idD,
see e.g. [9, Theorem 12.1.4] Hence “for all t ≥ 0” in this definition can be replaced
with “for some t > 0 with φt �= idD”.

The following theorem characterizes BRFPs of one-parameter semigroups via their
infinitesimal generators.

Theorem B ([13, Theorem 1]) Let (φt ) be a one-parameter semigroup in D and let G
be its infinitesimal generator. Then σ ∈ ∂D is BRFP of (φt ) if and only if the angular
limit

λ := ∠ lim
z→σ

G(z)

σ − z

exists finitely. In such a case, λ ∈ R and G ′(z) → −λ as z → σ non-tangentially.
Moreover, φ′

t (σ ) = e−λt for all t ≥ 0.

Definition 2.5 The number λ in the above theorem is called the spectral value of a
one-parameter semigroup (φt ) at a BRFP σ .

Note that λ < 0 for all BRFPs σ different from the DW-point of (φt ).

Remark 2.6 Spectral values of a one-parameter semigroup at theDW-point and BRFPs
can be interpreted, in a sense, as Lyapunov exponents of fixed points of a dynamical
system. Ifλ is the spectral value, then− Reλ is the correspondingLyapunov exponent.

3 Main results

One obvious and natural question to study is what one can say about a one-parameter
semigroup given information about its fixed points, e.g. position of its DW-point τ and
a finite set of (repelling) boundary regular fixed points, togetherwith the corresponding
spectral values. One of the basic quantities to look at is the velocity and direction of
the trajectories, i.e. the value of the infinitesimal generator at a given point z0 ∈ D.
Using Moebius transformations, we can fix one of the points: e.g. we may suppose
z0 = 0, keeping the DW-point τ arbitrary.

The key tool is the following representation formula, see Theorem 6.1. Fix some
negative numbers λ1, . . . , λn . A function G : D → C is the infinitesimal generator
of a one-parameter semigroup having the DW-point τ ∈ D and pairwise distinct
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boundary repelling fixed pints σk , k = 1, . . . , n, with the spectral values λ′
k satisfying

λk ≤ λ′
k < 0 if and only if

G(z) = (τ − z)(1 − τ z)

(

p(z) +
n∑

k=1

|τ − σk |
2|λk |

σk + z

σk − z

)−1

(3.1)

for all z ∈ D and some p ∈ Hol(D) with Rep ≥ 0. Equality λ′
k = λk holds if and

only if ∠ limz→σk p(z)(1 − σ k z) = 0. As we mentioned in the Introduction, formula
(3.1) in a bit weaker form was obtained earlier by Goryainov [22].

In Sect. 6, using the above representation in combination with the Krein–Milman
theory, see Sect. 5, we find a number of (sharp) value regions relating G(0) with the
repelling spectral values and local characteristics of G at the DW-point. In particular, if
G is the infinitesimal generator of a one-parameter semigroup (φG

t )with the DW-point
τ ∈ D, τ �= 0, and BRFPs σk ∈ ∂D, k = 1, . . . , n, then

Re
τ

G(0)
≥ A :=

n∑

k=1

|τ − σk |2
2|λk | , (3.2)

1 − |τ |2
1 + |τ |2

[
Re

τ

G(0)
− A

]
≤ Re

1 − |τ |2
λ

− 1 − |τ |2
2

n∑

k=1

1

|λk |

≤ 1 + |τ |2
1 − |τ |2

[
Re

τ

G(0)
− A

]
, (3.3)

and

∣∣∣
∣ Im

(
1 − |τ |2

λ
− τ

G(0)

)
− B

∣∣∣
∣ ≤

2|τ |
1 − |τ |2

[
Re

τ

G(0)
− A

]
, (3.4)

where B := ∑n
k=1

Im(σ kτ)
|λk | and λ > 0, λ1, . . . , λn < 0 are the spectral values

of (φG
t ) at τ and at σ1, . . . , σn , respectively. These inequalities are direct corollaries

of Theorem 6.4. Moreover, each inequality is sharp and the infinitesimal generators G
for which equalities hold are completely characterized by Theorem 6.4.

Similarly, for the case τ = 0, the following sharp inequality follows from Theo-
rem6.5:

∣∣∣∣
∣
G ′′(0)
2λ2

−
n∑

k=1

σ k

|λk |

∣∣∣∣
∣
≤ 2 Re

1

λ
−

n∑

k=1

1

|λk | . (3.5)

In the boundary case τ ∈ ∂D \ {σ1, . . . , σn}, inequality (3.2) holds as well, and for
hyperbolic one-parameter semigroups we have

2

(
1

λ
−

n∑

k=1

1

|λk |

)[
Re

τ

G(0)
− A

]
≥
[

Re
τ

G(0)
− A

]2
+ B2, (3.6)
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with A and B defined as above. This sharp inequality follows from Theorem 6.8.
Inequalities (3.2), (3.3), and (3.5) imply that if τ ∈ D, then

2 Re
1

λ
≥

n∑

k=1

1

|λk | . (3.7)

Similarly, if τ ∈ ∂D, then according to Theorem 6.8,

1

λ
≥

n∑

k=1

1

|λk | . (3.8)

The two inequalities above are sharp (see Corollary 6.9) and known (see [11,17]).
Finally, for parabolic one-parameter semigroups, i.e. for τ ∈ ∂D, λ = 0, we obtain

the following sharp inequality

0 ≤ ∠ lim
z→τ

(τ − z)3

τ 2G(z)
≤ 2
(

Re
τ

G(0)
− A

)
, (3.9)

see Theorem 6.11.
Representation (3.1) contains an arbitrary holomorphic function p with Rep ≥ 0,

which we call a Herglotz function.We take advantage of the fact that the Carathéodory
class consisting of all Herglotz functions normalized by p(0) = 1 is a compact convex
cone in Hol(D) and that its set of its extreme points is well-known. At the same time,
in Sect. 6 we introduce another compact convex cone Genτ (F,�) of infinitesimal
generators of one-parameter semigroups with the DW-point τ ∈ D and given finite
set F of BRFPs. In Theorem 6.12 we give a partial characterization of the extreme
points of Genτ (F,�). With the help of Krein–Milman Theorem in integral form, we
recover the representation formula for infinitesimal generators in case of one given
BRFP due to Goryainov and Kudryavtseva, see Corollary 6.14.

The compact convex cone Genτ (F) formed by all infinitesimal generators with the
DW-point τ ∈ D and given finite set F of BRFPs such that the spectral values λk at
σk ∈ F satisfy

∑n
k=1 |λk | ≤ 1, is bit easier to study. We are able to obtain an explicit

complete characterization of its extreme points, see Theorem 6.16.
Thanks to a variant of Loewner’s parametric represetation, see Sect. 7.1, our results

on infinitesimal generators can be used to obtain sharp estimates for univalent self-
maps of D, including those not embeddible in a one-parameter semigroup. As an
illustration, in Sect. 7.2, we give another proof of well-known inequalities due to
Cowen and Pommerenke.

4 Herglotz functions

The Berkson–Porta representation (2.3), which characterizes infinitesimal generators
in D, contains an arbitrary holomorphic function p : D → C satisfying Rep ≥ 0.
We call such a function p a Herglotz function. Clearly, if a Herglotz function satisfies
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Rep(z) = 0 for some z ∈ D, then p is equal to a purely imaginary constant, and in
this case p is said to be a trivial Herglotz function.

In what follows we will need the following classical result, which is a version
of Julia’s Lemma for the half-plane. Recall that by H we denote the righ half-plane
{z : Rez > 0}.
Theorem C (see e.g. [37, §26]) For any f ∈ Hol(H,H), the limit

f ′(∞) := ∠ lim
ζ→∞

f (ζ )

ζ

exists finitely. Moreover,

f ′(∞) = inf
ζ∈H

Re f (ζ )

Reζ
≥ 0.

In particular,

f (ζ ) = f ′(∞)ζ + g(ζ )

for all ζ ∈ H and some g ∈ Hol(H,H) satisfying g′(∞) = 0.

An imporant role in the present study is played by what we call contact points of
Herglotz functions.

Definition 4.1 Let p be a Herglotz function. A point σ ∈ ∂D is called a contact point
for p if the angular limit p(σ ) := ∠ limz→σ p(z) exists and belongs to iR. Moreover,
σ is said to be a regular contact point of p if

∠ lim
z→σ

p(z) − p(σ )

1 − σ z
(4.1)

exists finitely. If additionally p(σ ) = 0, we say that σ is a regular zero of p.

For any Herglotz function p and any σ ∈ ∂D, we denote

p#(σ ) :=
⎧
⎨

⎩
∠ limz→σ

p(z) − p(σ )

1 − σ z
, if σ is a regular contact point of p,

+∞, otherwise.

Remark 4.2 Thanks toMontel’s criterion, if f ∈ Hol(D) andC\ f (D) contains at least
two distinct points, then f is normal in D, see [32, §9.1]. According to the general
version of Lindelöf’s Theorem due to Lehto and Virtanen (see, e.g., [32, Theorem 9.3
on p.268]), if such a function f has a radial limit limr→1− f (rσ) ∈ C at some σ ∈ ∂D,
then it also has the angular limit at σ . In particular, the angular limit ∠ limz→σ p(z)
in the above definition can be replaced by the corresponding radial limit. Note that
the angular limit in (4.1) can be also replaced by the radial limit, but the reason for
that is completely different. (Namely, one should use the Julia–Wolff–Carathéodory
Theorem, see e.g. [9, Sect. 1.7].)
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Remark 4.3 Given a Herglotz function p, according to Julia’s Lemma in the half-plane
(see Theorem C) applied toH � ζ 	→ f (ζ ) := p

(
σ

ζ−1
ζ+1

)
, for any σ ∈ ∂D the angular

limit

p
(σ ) := ∠ lim
z→σ

(1 − σ z)p(z)

exists and it is a non-negative real number. Note that if p is a non-trivial Herglotz
function and σ is a contact point of p, then 1/p and 1/(p − p(σ )) are also (non-
trivial) Herglotz functions. It follows that p#(σ ) ∈ [0,+∞], with and p#(σ ) = 0 for
some (resp. all) σ ∈ ∂D if and only if p is a trivial Herglotz function.

Remark 4.4 Julia’s Lemma for the half-plane mentioned above tells us also that

p
(σ ) = 2 inf
Reζ>0

Rep
(
σ

ζ−1
ζ+1

)

Reζ
(4.2)

for any Herglotz function p and any σ ∈ ∂D. It follows that the map p 	→ p
(σ ) is
upper semicontinuous.

Theorem 4.5 (A) For any Herglotz function p and any σ ∈ ∂D,

p#(σ ) = lim
r→1−

Rep(rσ)

1 − r
∈ [0,+∞].

In particular, σ is a regular contact point for p if and only if the limit in the
right-hand side is finite.

(B) The map p 	→ p#(σ ) is lower semi-continuous on the cone in Hol(D) formed by
all Herglotz functions p.

Proof According Remark 4.3, if σ is a regular contact point for p, then p#(σ ) is a
non-negative number. Setting z := rσ and passing to the real part in (4.1) yields
assertion (A) for the case of a regular contact point.

Assume now that σ is not a regular contact point for p. We have to show that
Rep(rσ)/(1 − r) → +∞ as r → 1−. Suppose on the contrary that Rep(rnσ) ≤

M(1 − rn) for some constant M ≥ 0 and some sequence (rn) ⊂ [0, 1) converging
to 1. Clearly, we may suppose that p is a non-trivial Herglotz function. Consider
f ∈ Hol(D,D) defined by f (z) := (p(z) − 1

)
/
(

p(z) + 1
)
for all z ∈ D. By dropping

a finite number of term in (rn)wemay suppose also that Rep(rnσ) < 1 for all n ∈ N.
Then

1 − | f (rnσ)|
1 − rn

≤ 2 Rep(rnσ)

1 − rn
≤ 2M for all n ∈ N.

It follows that the boundary dilation coefficient of f at σ is finite and hence there exist
finite limits

f (σ ) := ∠ lim
z→σ

f (z) and f ′(σ ) := ∠ lim
z→σ

f (z) − f (σ )

z − σ
,
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with σ f (σ ) f ′(σ ) > 0, see e.g. [1, §1.2.1]. If f (σ ) �= 1, then we immediately see
that σ is a regular contact point for p. If f (σ ) = 1, then it follows that there exists

lim
r→1− p(rσ)(1 − r) = 2/| f ′(σ )| > 0.

In both cases, our conclusions contradict the assumptions. This completes the proof
of (A).

To prove (B) consider a sequence of Herglotz functions (pn) converging locally
uniformly in D to a Herglotz function p0 and such that pn

#(σ ) tends to some a ∈
[0,+∞] as n → +∞. We have to show that p0#(σ ) ≤ a. Clearly, we may suppose
that a < +∞ and that p0 is a non-trivial Herglotz function. Then, for all n ∈ N large
enough, let us say for n > n0, pn is a non-trivial Herglotz function having a regular
contact point at σ with pn

#(σ ) < 2a.
Consider functions qn(z) := 1/

(
pn(z) − pn(σ )

)
, z ∈ D. Since q


n (σ ) =
1/pn

#(σ ) > 1/(2a) for all n > n0, equality (4.2) in Remark 4.4 for p replaced
by qn implies that

Reqn
(
σ x−1

x+1

)
>

x

4a
for all x > 0 and all n > n0.

It follows that pn(rσ) → pn(σ ) as r → 1− uniformly w.r.t. n > n0. Tak-
ing into account Remark 4.2, we see that σ is a contact point of p0 and that
qn → q0 := 1/

(
p0 − p0(σ )

)
locally uniformly in D as n → +∞. By Remark 4.4,

1/a = lim
n→+∞ q


n (σ ) ≤ q

0 (σ ) = 1/p0

#(σ ).

The proof is now complete. 
�
It is well-known, see e.g. [15, §1.9], that p is a Herglotz function if and only if it

admits the following Riesz–Herglotz representation

p(z) =
∫

∂D

ς + z

ς − z
dμ(ς) + iγ for all z ∈ D, (4.3)

where μ is a positive Borel measure on ∂D and γ ∈ R. Moreover, the measure μ is
uniquely defined by p, with μ(∂D) = Rep(0) and γ = Imp(0).

Definition 4.6 The measure μ in the above representation (4.3) will be referred to as
the Herglotz measure of p.

Using the one-to-one correspondence p 	→ (p − 1)/(p + 1) between Herglotz func-
tions and Hol(D,D \ {1}), one can reformulate [34, (VI-9) and (VI-10)] as follows.

Lemma 4.7 Let p be a Herglotz function and μ the Herglotz measure of p. Then

p#(σ ) = 2
∫

∂D

|ς − σ |−2 dμ(ς) for any σ ∈ ∂D. (4.4)
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In particular, σ is a regular contact point of p if and only if ς 	→ |ς − σ |−2 is
μ-integrable.

For completeness, we provide a direct proof using the same idea as in [34].

Proof Formula (4.3) easily implies that for any r ∈ (0, 1),

Rep(rσ)

1 − r
r2 = (1 + r)

∫

∂D

r2

|ς − rσ |2 dμ(ς), (4.5)

which tends to 2
∫
∂D

|ς − σ |−2 dμ(ς) as r → 1− by Levi’s Monotone Convergence
Theorem. Note that this argument is valid both in case of finite and infinite value of
the integral in the r.h.s. and hence it simply remains to apply Theorem 4.5 (A). 
�
Remark 4.8 It is known [33, Proposition 4.7 on p.79], see also the proof of [32, The-
orem 10.5, pp. 305–306], that a contact point σ of a Herglotz function p is regular if
and only if p′ has a finite angular limit at σ . Therefore, in view of Lemma 4.7, it might
be plausible to expect that σ ∈ ∂D is a contact point (not necessarily regular) if and
only if ς 	→ |ς − σ |−1 is integrable w.r.t. the Herglotz measure of p. However, as we
show below, see Lemma 4.9 and Example 4.10, the latter condition is sufficient but
not necessary for σ to be a contact point.

Lemma 4.9 Let p be a Herglotz function and μ the Herglotz measure of p. Let σ ∈ ∂D.
If ς 	→ |ς − σ |−1 is μ-integrable, then σ is a contact point of p and

p(σ ) =
∫

∂D

ς + σ

ς − σ
dμ(ς) + i Imp(0) = i

∫ 2π

0
cot(θ/2) dμ(σeiθ ) + i Imp(0).

(4.6)

Proof The hypothesis implies that μ({σ }) = 0. Bearing this in mind, the elementary
observation that |ς − σ | ≤ |(ς/r) − σ | for any ς ∈ ∂D and any r ∈ (0, 1) allows us
to pass to the limit in

p(rσ) = 1

r

∫

∂D

ς + rσ

(ς/r) − σ
dμ(ς) + i Imp(0)

as r → 1− with the help of Lebesgue’s Dominated Convergence Theorem. With
Remark 4.2 taken into account, this shows that p(σ ) := ∠ limz→σ p(z) exists finitely
and proves the first equality in (4.6). Writing θ := arg(σς) and separating the real and
imaginary parts of the integrand leads us to the second equality in (4.6). In particular,
p(σ ) ∈ i R, and the proof is complete. 
�
Example 4.10 Let us construct a positive Borel measureμ on ∂D such that |ς +1|−1 is
not μ-integrable but the Herglotz function p given by (4.3) has a contact point at σ =
−1. Restricting consideration tomeasures withμ({1}) = 0 and using relation between
theHerglotz–Riesz representation andNevanlinna’s representation, see e.g. [5, p. 135–
139 and eq. (V.42)], we reduce the problem to finding a positive Borel measure ν



   36 Page 12 of 38 M. D. Contreras et al.

compactly supported on R such that 1/|t | is not ν-integrable, but the function

P(z) :=
∫

R

dν(t)

t − z
, Imz > 0,

tends to a real number as z := iy → 0, y > 0. Note that ImP ≥ 0 and hence P
is a normal function, see e.g. [32, pp. 261–262]. Therefore, by a theorem of Lindelöf,
see e.g. [32, Theorem 9.3 on p.268], the existence of the limit as z → 0 along the
imaginary axis implies existence of the angular limit of P at 0.

Consider the measure ν defined by

dν(t) := 1[−1/e, 1/e](t)
log(1/|t |) dt, t ∈ R,

where 1A stands for the indicator function of a set A ⊂ R. Clearly,
∫
R

|t |−1 dν(t) =
+∞.

Since ν is invariant w.r.t. the transformation t 	→ −t , ReP(iy) = 0 for all y > 0.
Therefore, with the help of the variable change u := t/y, for any y ∈ (0, 1) we have

0 ≤ P(iy)

2i
=

1/e∫

0

y dt

(t2 + y2) log(1/t)
=

1/(ey)∫

0

du

(u2 + 1) log(1/(uy))

=
1/(e

√
y)∫

0

du

(u2 + 1) log(1/(uy))
+

1/(ey)∫

1/(e
√

y)

du

(u2 + 1) log(1/(uy))

≤ 1

1 + 1
2 log(1/y)

+∞∫

0

du

u2 + 1
+

+∞∫

1/(e
√

y)

du

u2 + 1
.

Both summands in the last line tend to zero as y → 0+. Hence limy→0+ P(iy) = 0 ∈
R as desired.

5 Extreme points and Krein–Milman theorem

Throughout this section, by X we will denote a locally-convex Hausdorff topological
linear space and extr K will stand for the set of all extreme points of a set K ⊂ X .

Theorem D (Krein–Milman Theorem, see e.g. [30, §18.1.2]) Let K ⊂ X be a non-
empty convex compact set. Then extr K �= ∅ and moreover, K coincides with the
closure of the convex hull of extr K .

Remark 5.1 Let X and K be as in the Krein–Milman Theorem and L : X → C
m

a continuous affine map. Then the image L(K ) is clearly a compact convex set in
C

m . The preimage L|−1
K (z) of any extreme point z of L(K ) is a face for K and
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hence, by the Krein–Milman Theorem, it contains an extreme point. In fact, L|−1
K (z)

has to contain at least two distinct extreme points unless it is a singleton. There-
fore, extr L(K ) ⊂ L(extr K ). It follows that L(K ) coincides with the convex hull of
L(extr K ). Moreover, if L is injective on extr K , then each z ∈ extr L(K ) has exactly
one preimage w.r.t. L|K , which is, of course, an extreme point of K .

It is well known, see e.g. [30, §18.1.2], that for any continuous linear real-valued
functional L , the maximum of L over a non-empty convex compact set K ⊂ X is
attained at an extreme point of K . The standard argument can be easily adjusted to
extend this assertion to upper-semicontinuous functionals. More precisely, the follow-
ing theorem holds.

Theorem E Let K ⊂ X be a non-empty convex compact set and let L a (densely-
defined) linear real-valued functional on X. If L is defined everywhere on K and L|K

is upper-semicontinuous, then

max
p∈K

L(p) = max
p∈extr K

L(p).

Moreover, if the maximum of L is attained on extr K at a unique point x0, then the
same holds for the whole set K , i.e. L(x) < L(x0) for all x ∈ K \ {x0}.
Remark 5.2 Wewill apply the above results to various classes of holomorphic functions
with positive real part. Among them is the Carathéodory class C, which consists of
all Herglotz functions p normalized by p(0) = 1. This class has been thoroughly
studied. In particular, it is known that C is a convex compact subset of Hol(D) and
its extreme points form a one-parameter family, namely extr C = {qσ : σ ∈ ∂D},
qσ (z) := (σ − z)/(σ + z) for all z ∈ D, see e.g. [21].

Krein–Milman Theorem applies to compact convex sets. We will have to study
non-compact subclasses of the Carathéodory class C. Suitable extension of the
Krein–Milman theory is given in [38,39], where (infinite-dimensional) simplices of
probability measures are considered instead of compact convex sets in a topological
vector space. For our purposes, the very general setting of [38,39] is not necessary.
The following two theorems are, in fact, corollaries of the indicated results for the
special case of Borel probability measures on the unit circle ∂D. We denote the set of
all such measures by P .

Theorem F ([39, Theorem 2.1 and Example 2.1]) Fix n ∈ N. Let f1, . . . , fn be real
Borel functions on ∂D and c1, . . . , cn ∈ R. If μ0 is an extreme point of

H1 :=
{
μ ∈ P : f j is μ-integrable and

∫

∂D

f j (σ ) dμ(σ)=c j for all j = 1, . . . , n
}

or an extreme point of

H2 :=
{
μ ∈ P : f j is μ-integrable and

∫

∂D

f j (σ ) dμ(σ) ≤ c j for all j =1, . . . , n
}
,

then μ0 is a convex combination of at most n + 1 Dirac measures on ∂D.
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Theorem G ([39, Theorem 3.2 and Proposition 3.1]) Let H := H1 or H := H2, where
H1 and H2 are defined as in Theorem F. Let g be a real Borel function on ∂D such
that for any μ ∈ H the integral

I (μ) :=
∫

∂D

g(σ ) dμ(σ)

exists with values in [−∞,+∞]. Then

sup
{

I (μ) : μ ∈ H
} = sup

{
I (μ) : μ ∈ extr H

}
. (5.1)

6 Infinitesimal generators of one-parameter semigroups with given
boundary regular fixed points

LetGen stand for the class of all infinitesimal generators inD. ForG ∈ Gen, we denote
by (φG

t ) the corresponding one-parameter semigroup in D. We will write G ∈ Genτ

to specify that τ is the DW-point of (φG
t ), adopting the useful convention that the

trivial generator G ≡ 0 belongs to Genτ for any τ ∈ D. Moreover, λ(G) stands for
the spectral value of (φG

t ) at its DW-point τ .
As before, let F := {σ1, σ2, . . . , σn}⊂ ∂D, with σ j �= σk for j �= k. For τ ∈ D \ F

and � := (λ1, λ2, . . . , λn) ∈ (−∞, 0)n , denote by Genτ (F,�) the class of all
infinitesimal generators G ∈ Genτ such that (φG

t ) has BRFPs σ1, . . . , σn with the
spectral values λ′

1, . . . , λ
′
n , respectively, subject to the inequalities λk ≤ λ′

k ≤ 0,
k = 1, . . . , n. Note that if at least one of λ′

k’s vanishes, then G ≡ 0. Finally, let us
denote by Gen′

τ (F,�) the subclass of Genτ (F,�) in which the spectral values are
exactly λ1, . . . , λn .

For F and � introduced above and τ ∈ D \ F , we denote

p0(z; F,�) :=
n∑

k=1

αk
σk + z

σk − z
, where αk := |τ − σk |2

2|λk | , k = 1, . . . , n. (6.1)

Furthermore, we will write int A for the interior of a set A.

6.1 Representation formula

The following theoremestablishes a representation formula for the classesGenτ (F,�)

and Gen′
τ (F,�).

Theorem 6.1 For F, τ , and � introduced above, the following two statements hold.

(A) A function G : D → C belongs to Genτ (F,�) \ {G ≡ 0} if and only if there
exists a Herglotz function p such that
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G(z) = (τ − z)(1 − τ z)

p(z) + p0(z; F,�)
for all z ∈ D, (6.2)

where p0 is given by (6.1).
(B) Similarly, G : D → C belongs to Gen′

τ (F,�) if and only if (6.2) holds with
some Herglotz function p satisfying p
(σk) = 0 for all k = 1, . . . , n.

Originally, the representation formula (6.2) is due to Goryainov, see [22, Theorem 3].
We present here a quite different proof because our version of this important result is
more precise. Namely, we state explicitly the relation between the parameters λk’s in
the r.h.s. of (6.2) and the spectral values of G, which is not mentioned in [22]. The
latter aspect is important for the rest of Sect. 6. In our proof, we will use the following
lemma.

Lemma 6.2 Let q be a Herglotz function and σ ∈ ∂D. Then

q(z) := p(z) + q
(σ )

2

σ + z

σ − z

for all z ∈ D and some Herglotz function p with p
(σ ) = 0.

Proof Apply Theorem C for f (ζ ) := q
(
σ

ζ−1
ζ+1

)
, ζ ∈ H, and notice that

f ′(∞) = q
(σ )/2. 
�
Proof of Theorem 6.1 Suppose first that G is given by (6.2) with some Herglotz func-
tion p. Since p0(·; F,�) is a non-trivial Herglotz function, p∗(z) := (

p(z) +
p0(z; F,�)

)−1, z ∈ D, is also a Herglotz function. Thanks to the Berkson–Porta
formula (2.3), it follows that G ∈ Genτ . Therefore, according to Theorem B, in order
to show that G ∈ Genτ (F,�), we have to check that

∠ lim
z→σk

G(z)

z − σk
≤ |λk |, k = 1, . . . , n. (6.3)

By means of elementary computations we see that limit in the left hand side exists
finitely as long as p∗#(σk) is finite and that

∠ lim
z→σk

G(z)

z − σk
= |τ − σk |2 p∗#(σk) = |τ − σk |2

p
(σk) + 2αk
= |λk |

1 + p
(σk)/(2αk)
.

Hence we may conclude that G ∈ Genτ (F,�), and clearly G �≡ 0. Moreover, if
p
(σk) = 0, k = 1, . . . , n, then we see that G ∈ Gen′

τ (F,�).
To prove the converse statements, suppose that G ∈ Genτ (F,�) and that G �≡ 0.

Then by the Berkson–Porta formula (2.3), G(z) = (τ − z)(1−τ z)p∗(z) for all z ∈ D,
where p∗ is a Herglotz function. Clearly, p∗ �≡ 0 and hence q := 1/p∗ is also a
Herglotz function.

By Theorem B, G satisfies condition (6.3), meaning in particular that the limit in
the left hand side exists finitely. It follows that q
(σk) ≥ 2αk , with the equalities
occurring for all k = 1, . . . , n if G ∈ Gen′

τ (F,�).
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Note also that for qσ (z) := (σ + z)/(σ − z), σ ∈ ∂D, we have q

σ (σ ′) = 0 for

all σ ′ ∈ ∂D \ {σ }. Taking this into account, we can apply Lemma 6.2 repeatedly to
obtain

q(z) = p1(z) +
n∑

k=1

βk
σk + z

σk − z
for all z ∈ D,

where βk := q
(σk)/2 ≥ αk and p1 is a Herglotz function such that p

1 (σk) = 0 for

all k = 1, . . . , n. As a result we have q(z) = p(z) + p0(z; F,�), where p(z) :=
p1(z) +∑n

k=1(βk − αk)(σk + z)/(σk − z) is a Herglotz function, which coincides
with p1 provided G ∈ Gen′

τ (F,�). This immediately leads to representation (6.2)
and completes the proof of (A) and (B). 
�
Corollary 6.3 The class Genτ (F,�) is a compact convex subset of Hol(D). The class
Gen′

τ (F,�) is a convex dense subset of Genτ (F,�).

Proof The convexity ofGenτ (F,�) andGen′
τ (F,�) follow easily from theBerkson–

Porta representation (2.3) and Theorem B.
To prove that Genτ (F,�) is compact, consider a sequence (Gn) contained in this

class. Clearly, passing to a subsequence, we may suppose that Gn �≡ 0 for all n ∈ N.
By Theorem 6.1 (A) there exists a sequence of Herglotz functions (pn) such that
Gn(z) = (τ − z)(1 − τ z)/

(
pn(z) + p0(z; F,�)

)
for all z ∈ D and all n ∈ N. Since

Herglotz functions form a normal family in D, passing to a subsequence we may
suppose that pn → p∗ locally uniformly in D as n → +∞, where p∗ is either a
Herglotz function or p∗ ≡ ∞. In the latter case, Gn → 0 locally uniformly in D as
n → +∞. Note that by the very definitionG∗(z) := 0, z ∈ D, belongs toGenτ (F,�).
In the former case,

Gn(z) → G∗(z) := (τ − z)(1 − τ z)/
(

p∗(z) + p0(z; F,�)
)

locally uniformly in D. By Theorem 6.1 (A), G∗ ∈ Genτ (F,�). Thus, every
sequence (Gn) ⊂ Genτ (F,�) has a subsequence converging in Hol(D) to an ele-
ment of Genτ (F,�), i.e. Genτ (F,�) is compact.

It remains to show that Gen′
τ (F,�) is dense in Genτ (F,�). To this end, fix G ∈

Genτ (F,�) and write, using Theorem 6.1 (A), G(z) = (τ − z)(1 − τ z)/
(

p(z) +
p0(z; F,�)

)
. By Theorem 6.1 (B), for any n ∈ N the function

Gn(z) := (τ − z)(1 − τ z)/
(

p(rnz) + p0(z; F,�)
)
, rn := 1 − 1/n,

belongs to Gen′
τ (F,�). Clearly, Gn → G locally uniformly in D. The proof is

complete. 
�

6.2 Elliptic semigroups

Combining the representation forGenτ (F,�) established in the previous section with
the Krein–Milman Theory, see Sect. 5, we are going to study this class quantitatively.
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First we consider the case τ ∈ D. Using the notation introduced at the beginning of
Sect. 6, we can state our results as follows.

Theorem 6.4 Let τ ∈ D \ {0}. The value region

Vτ (F,�) :=
{(

G(0), λ(G)
) ∈ C

2 : G ∈ Genτ (F,�)
}

coincides with the set

{
(ζ, ω) ∈ C

2 : ζ ∈ Z , ω ∈ �ζ

}
, where Z :=

{
ζ ∈ C : ∣∣(2τ−1

n∑

k=1
αk
)
ζ − 1

∣∣≤ 1
}

and �ζ is the closed disk (which degenerates to a point when ζ ∈ ∂ Z) given by

�ζ :=
{
ω ∈ C :

∣
∣∣
1 − |τ |2

ω
− aζ

∣
∣∣ ≤ 2 |τ |

1 − |τ |2 Re�ζ

}
,

�ζ :=τ

ζ
−

n∑

k=1
αk, aζ := 1 + |τ |2

1 − |τ |2 Re�ζ + i Im�ζ + p0(τ ; F,�), (6.4)

for all ζ ∈ Z except for ζ = 0, in which case �ζ = �0 := {0}.
Each boundary point of Vτ (F,�) is delivered by a unique G ∈ Genτ (F,�) of the

form

G(z) = Gζ,σ (z) := (τ − z)(1 − τ z)
σ + z

σ − z
Re�ζ + i Im�ζ + p0(z; F,�)

, ζ ∈ int Z , σ ∈ ∂D,

(6.5)

or

G(z) = Gζ (z) := (τ − z)(1 − τ z)

i Im�ζ + p0(z; F,�)
, ζ ∈ ∂ Z \ {0}, (6.6)

or G(z) = G0(z) ≡ 0.

Proof According to Theorem 6.1 (A), G ∈ Genτ (F,�) \ {G ≡ 0} if and only if

G(z) = (τ − z)(1 − τ z)
/(

p(z) + p0(z; F,�)
)
, z ∈ D, (6.7)

for some Herglotz function p. The inequality Rep(0) ≥ 0 is equivalent to
ζ := G(0) ∈ Z \ {0}. From (6.7) we immediately get p(0) = �ζ . In particular, if
ζ ∈ ∂ Z \ {0}, then Re�ζ = 0; hence p(z) ≡ i Im�ζ and G is given by (6.6), with

λ(G) = −G ′(τ ) = (1 − |τ |2)/(i Im�ζ + p0(τ ; F,�)
)
.
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It is elementary to check that in this case, �ζ given by (6.4) is the singleton consisting
of precisely this point.

Note also that G(0) = 0 implies G ≡ 0 because τ �= 0. Therefore, it remains to
consider the case G(0) ∈ int Z . To this end fix ζ ∈ int Z and solve the problem to find
the range�ζ of the map G 	→ λ(G) on the set Gζ := {G ∈ Genτ (F,�) : G(0) = ζ

}
,

which is described by formula (6.7) with p(z) := q(z) Re�ζ + i Im�ζ , where
q ∈ C. Therefore, our task reduces to finding the range Rζ of the affine map
C � q 	→ 1/λ(G) ∈ C. According to Remark 5.1, it is sufficient to find values
of the map at the extreme points of C, which are well-known, see Remark 5.2. The
extreme points of C correspond to the infinitesimal generators (6.5) and we see that
Rζ is the convex hull of {1/λ(Gζ,σ ) : σ ∈ ∂D}. By means of elementary compu-
tations, this leads to the conclusion that the range of G 	→ λ(G) on Gζ coincides
with the closed disk �ζ defined by (6.4), with the boundary points delivered by the
infinitesimal generators (6.5). Note that q 	→ 1/λ(G) is injective on extr C. There-
fore, by Remark 5.1, each ω ∈ ∂�ζ is the image of exactly one G ∈ Gζ . The proof is
complete. 
�

For the case of τ = 0, we clearly have G(0) = 0 for all G ∈ Genτ (F,�), but we
can choose another functional, e.g. G 	→ G ′′(0).

Theorem 6.5 In the above notation, the value region

V̂ (F,�) :=
{(

G ′′(0), λ(G)
) ∈ C

2 : G ∈ Gen0(F,�)
}
,

coincides with the set
{
(ζ, ω) ∈ C

2 : ω ∈ �, ζ ∈ Zω

}
, where

� := {ω : |ω − r | ≤ r}, with r := (∑n
k=1 |λk |−1

)−1
,

Zω :=
{
ζ :
∣∣
∣∣

ζ

2ω2 −
n∑

k=1

σ k

|λk |
∣∣
∣∣ ≤ 2 Re

1

ω
−

n∑

k=1

|λk |−1
}

for all ω ∈ � \ {0}

and Z0 := {0}.
Each boundary point of V̂ (F,�) is delivered by a unique point of the form

G(z) = Ĝω,σ (z) := − z
σ + z

σ − z
Re�̂ω + i Im�̂ω + p0(z; F,�)

,

ω ∈ int�, σ ∈ ∂D, (6.8)

where �̂ω := 1/ω − (1/2)
∑n

k=1 |λk |−1, or

G(z) = Ĝω(z) := − z

i Im�̂ω + p0(z; F,�)
, ω ∈ ∂� \ {0}, (6.9)

or G(z) = Ĝ0(z) ≡ 0.
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Proof According to Theorem 6.1 (A), G ∈ Gen0(F,�) \ {G ≡ 0} if and only if

G(z) = −z
/(

p(z) + p0(z; F,�)
)
, z ∈ D,

with someHerglotz function p. Using this representation (and bearing inmind that τ =
0) we immediately obtain

λ(G) = −G ′(0) =
(

p(0) + 1

2

n∑

k=1

|λk |−1

)−1

, (6.10)

G ′′(0)
2λ(G)2

= p′(0) +
n∑

k=1

σ k

|λk | . (6.11)

From (6.10) it immediately follows that the range of Gen0(F,�) � G 	→ λ(G)

is exactly the closed disk � defined in the statement of the theorem and moreover,
every boundary point ω ∈ ∂� corresponds to exactly one G ∈ Gen0(F,�), namely,
G = Ĝω defined by (6.9). It is therefore, elementary to check the statement of the
theorem for this case.

Now fix some ω ∈ int� and find the range Zω of G 	→ G ′′(0) over all G ∈
Gen0(F,�) satisfying λ(G) = ω. According to (6.11), our problem is reduced to
finding the range of p 	→ p′(0) over all Herglotz functions p with p(0) = �̂ω. The
rest of the proof consists of using the representation p(z) = q(z) Re�̂ω + i Im�̂ω,
q ∈ C, along with Remarks 5.1 and 5.2, and some elementary computations. The
details are similar to those in the proof of Theorem 6.4 and therefore we omit them. 
�

6.3 Non-elliptic semigroups

Now let us consider the boundary case τ ∈ ∂D. We start with the analogue of Theo-
rem 6.4. The proof of Theorem 6.8 is based on the following result, which can be of
some independent interest.

Proposition 6.6 For a ∈ R and τ ∈ ∂D,

min
{
q#(τ ) : q ∈ C has a contact point at τ with q(τ ) = ia

} = 1 + a2

2
.

The minimum is attained for the unique function q(z) = qσ (z) := (σ + z)/(σ − z),
where σ := −τ(1 + ia)/(1 − ia).

Proof Denote

C(τ, a) := {q ∈ C : has a contact point at τ with q(τ ) = ia
}
.
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According to Lemmas 4.7 and 4.9, the problem to find the sharp lower bound for q#(τ )

in C(τ, a) is equivalent to finding the sharp lower bound for

I (μ) := 2
∫

∂D

|ς − τ |−2 dμ(ς) ∈ (0,+∞]

over all Borel probabilitymeasures on ∂D subject to the conditions that ς 	→ |ς−τ |−1

is μ-integrable and that

∫ 2π

0
cot(θ/2) dμ(τeiθ ) = a. (6.12)

Note that this set of probability measures corresponds via the Riesz–Herglotz rep-
resentation (4.3) to a proper subset C∗(τ, a) of C(τ, a), which however contains
all q ∈ C(τ, a) with finite q#(τ ).

Theorems G and F allows us to restrict ourselves to probability measures supported
at one or two points on ∂D. The corresponding elements of C have the form q :=
λq1 + (1 − λ)q2, where λ ∈ [0, 1] and q j (z) := (σ j + z)/(σ j − z), z ∈ D, j = 1, 2,
with some σ1, σ2 ∈ ∂D. Denote a j := −iq j (τ ) ∈ R, j = 1, 2. Then a = −iq(τ ) =
λa1 + (1 − λ)a2 and q#(τ ) = λ f (a1) + (1 − λ) f (a2), where f (x) := (1 + x2)/2.
Thanks to the fact that f is strictly convex, for any λ ∈ [0, 1] and any a1, a2 ∈ R,

λ f (a1) + (1 − λ) f (a2) ≥ f
(
λa1 + (1 − λ)a2

) = f (a),

with the strict inequality unless λ ∈ {0, 1} or a1 = a2. It follows that the minimum
is attained only when q(z) = qσ (z) := (σ + z)/(σ − z), where σ ∈ ∂D is uniquely
determined by qσ (τ ) = ia, i.e. σ = −τ(1 + ia)/(1 − ia).

The function qσ is the unique extreme point of C∗(τ, a) at which the minimum
of q#(τ ) is attained. To complete the proof, it remains to show that there are no
other (non-extreme) points q ∈ C∗(τ, a) of minimum. Indeed, consider the preimage
of the minimal value, i.e. the set E := {q ∈ C∗(τ, a) : q#(τ ) = qσ

#(τ )} = {q ∈
C∗(τ, a) : q#(τ ) ≤ qσ

#(τ )}. Clearly, E is a face for C∗(τ, a). In particular, it is a convex
set. Moreover, by Theorem 4.5 (B), E is closed. Since E ⊂ C and C is compact, it
follows that E is also compact. Therefore, the standard argument applies even though
C∗(τ, a) is not compact itself. Namely, if E �= {qσ }, then byKrein–MilmanTheoremD
wewould have that E has at least two distinct extreme points, which are in turn extreme
points of C∗(τ, a). This would constitute a contradiction with the uniqueness of the
minimum on extr C∗(τ, a), so the proof is complete. 
�
Remark 6.7 The set of Carathéodory functions C(τ, a) considered in Proposition 6.6
is not compact. However, arguing as in the proof of Theorem 4.5(B), one can show
that q#(τ ) tends to its minimal value along a sequence (qn) ⊂ C(τ, a) if and only if
(qn) converges to the extremal function qσ .

Theorem 6.8 Let τ ∈ ∂D \ F. In the above notation,

Vτ (F,�) :=
{(

G(0), λ(G)
) ∈ C × R : G ∈ Genτ (F,�)

}
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=
{
(ζ, ω) : ζ ∈ Z , ω ∈ Iζ

}
,

where:

(i) for any ζ ∈ int Z, Iζ is the interval
[
0, ωζ

]
, ωζ := f

(
�ζ + i

∑n
k=1 |λk |−1

Im(σ kτ)
)
,

f (w) := 2 Rew

|w|2 + 2 Rew
∑n

k=1 |λk |−1
,

with �ζ and Z defined as in Theorem 6.4;
(ii) for any ζ ∈ ∂ Z, Iζ is a singleton: namely, if 1/ζ = ∑n

k=1 |λk |−1(τ − σk), then

Iζ = {(∑n
k=1 |λk |−1

)−1}
; otherwise, Iζ = {0}.

Moreover, for each ζ ∈ int Z, there exists a unique G ∈ Genτ (F,�) such that
G(0) = ζ and λ(G) = ωζ ; it is given by

G(z) = G̃ζ (z) := (τ − z)(1 − τ z)
σζ + z

σζ − z
Re�ζ + i Im�ζ + p0(z; F,�)

, (6.13)

where σζ ∈ ∂D is uniquely defined by the condition that the denominator in (6.13)
vanishes at z = τ .

Proof Following the proof of Theorem 6.4, we see that also for τ ∈ ∂D, the range of
Genτ (F,�) � G 	→ G(0) coincides with Z and that for each ζ ∈ ∂ Z , there exists a
unique G = Gζ ∈ Genτ (F,�) such that G(0) = ζ . Namely, Gζ is given by (6.6) if
ζ �= 0, and G0 ≡ 0. Therefore, part (ii) of Theorem 6.8 can be verified by a simple
computation.

Now fix ζ ∈ int Z and let us find the range Iζ ⊂ R of G 	→ λ(G) on the set
Gζ := {G ∈ Genτ (F,�) : G(0) = ζ

}
. As in the proof of Theorem 6.4, we can write

G(z) = (τ − z)(1 − τ z)

q(z) Re�ζ + i Im�ζ + p0(z; F,�)
, z ∈ D, (6.14)

where q ∈ C. Trivially, λ(G) ≥ 0, and moreover, λ(G) = 0 if we set q ≡ 1 in
the above representation (6.14). Hence, min Iζ = 0. Note also that Gζ is convex and
that for a fixed τ , G 	→ λ(G) is linear. Therefore, Iζ is an interval and it remains to
find max Iζ .

Denote by p∗ the denominator of (6.14). Suppose first that λ(G) �= 0. Then there
exists finite angular limit

1

λ(G)
= ∠ lim

z→τ

z − τ

G(z)
= ∠ lim

z→τ

p∗(z)
1 − τ z

(6.15)

and hence p∗ has a regular null-point at τ . Note that p0(·; F,�) is holomorphic at τ
and Rep0(τ ; F,�) = 0. It follows that q has a regular contact point at τ and we
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easily see that

λ(G) = 1/p#∗(τ ) = (q#(τ ) Re�ζ + p#0(τ ; F,�)
)−1

.

This formula holds true under the weaker assumption that ∠ limz→τ p∗(z) = 0.
Indeed, in this case, τ is still a contact point of q. If it is not regular, then by the above
argument λ(G) = 0, and q#(τ ) = +∞ by the very definition.

Finally, notice that if ∠ limz→τ p∗(z) does not exists or it is different from 0, then
the limit in (6.15) cannot be finite. Hence, in such a case, λ(G) = 0.

Thus, finding max Iζ reduces to the problem solved in Proposition 6.6 with

a := − Im�ζ + Imp0(τ ; F,�)

Re�ζ

= − Im�ζ +∑n
k=1 |λk |−1 Im(σ kτ)

Re�ζ

,

and it is just a computation to check the expressions for max Iζ and for the unique
extremal function given in the statement of Theorem 6.8. 
�

Theorems 6.4–6.8 imply the following well-known result (see [11,17]).

Corollary 6.9 The following assertions hold.

(A) If τ ∈ D, then the range of G 	→ λ(G) on Genτ (F,�) is

{ω : |ω − r | ≤ r}, where r := (
n∑

k=1
|λk |−1

)−1
.

Each boundary point is delivered by exactly one function G ∈ Genτ (F,�), and
the family of all such functions coincides with {Gζ : ζ ∈ ∂ Z}, where Gζ ’s are
defined in Theorem 6.4.

(A’) In particular, for τ ∈ D we have the sharp estimate Reλ(G) ≤ 2(∑n
k=1 |λk |−1

)−1
for all G ∈ Genτ (F,�), with the equality only for

G(z) = (τ − z)(1 − τ z)

p0(z; F,�) − i
∑n

k=1 |λk |−1 Im(σ kτ)
, z ∈ D.

(B) If τ ∈ ∂D \ F, then the sharp estimate λ(G) ≤ (∑n
k=1 |λk |−1

)−1
holds for any

G ∈ Genτ (F,�), with the equality occurring only for the function G defined
by the same formula as in (A′).

Proof Fix τ ∈ D \ {0} and apply Theorem 6.4. Instead of λ(G), we will consider the
quantity η(G) := (1 − |τ |2)/λ(G). Note that the range of ζ 	→ �ζ on Z \ {0} is the
closed half-plane {w : Rew ≥ 0}. Moreover, for each fixed C ≥ 0, the union of disks
{(1 − |τ |2)/ω : ω ∈ �ζ } over all ζ ∈ Z with Re�ζ = C is equal to

{
η : 1 − |τ |2

1 + |τ |2 C ≤ Re
(
η − p0(τ ; F,�)

) ≤ 1 + |τ |2
1 − |τ |2 C

}
.
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Taking the union over all C ≥ 0, we see that the range of G 	→ η(G) on
Genτ (F,�) \ {G ≡ 0} is the closedhalf-planedescribedby Reη ≥ ReP0(τ ; F,�)

= 1
2 (1 − |τ |2)∑n

k=1 |λk |−1, with the boundary corresponding to Re�ζ = 0, i.e. to
the infinitesimal generators Gζ , ζ ∈ ∂ Z \ {0}, defined by (6.6).

This proves (A) and (A′) for τ �= 0; and for τ = 0, these two assertions follow
immediately from Theorem 6.5.

Now let us assume τ ∈ ∂D \ F . In this case, we have to apply Theorem 6.8. Note
that Re�ζ > 0 for all ζ ∈ int Z . The function f defined in Theorem 6.8 satisfies

f (u + iv) < f (u) < lim
ε→0+ f (ε) =

(
n∑

k=1

|λk |−1

)−1

for all u > 0 and v ∈ R. Therefore, according to Theorem 6.8, the maximum of λ(G)

on Genτ (F,�) coincides with the r.h.s. of the above inequality and it is attained only

of G = Gζ with ζ := (∑n
k=1 |λk |−1(τ − σk)

)−1. This proves (B). 
�
If τ ∈ D, then Reλ(G) = 0 may happen only for a very narrow class of one-

parameter semigroups: all elements of such semigroups are Moebius transformations
of D. However, if τ ∈ ∂D, then λ(G) = 0 means simply that the one-parameter
semigroup is parabolic, which is probably the most interesting and complicated case.
Theorem 6.11 below deals with one important class of parabolic semigroups.

Remark 6.10 Let τ ∈ ∂D and let G be the infinitesimal generator of a non-trivial
one-parameter semigroup with the DW-point at τ . Then, by the Berkson–Porta for-
mula (2.3), G(z) := τ(1− τ z)2 p(z), where p �≡ 0 is a Herglotz function. Therefore,
the limit

β(G) := ∠ lim
z→τ

(τ − z)3

τ 2G(z)
= (1/p

)

(τ) (6.16)

exists and belongs to [0,+∞).

It can be seen that β(G) �= 0 if and only if G has angular derivatives at τ up to the
third order and G ′(τ ) = G ′′(τ ) = 0. The Cayley map D � z 	→ (τ + z)/(τ − z) ∈ H

establishes a one-to-one correspondence between one-parameter semigroups in D

with the DW-point at τ and one-parameter semigroups in H with the DW-point at ∞.
Under this correspondence, infinitesimal generators G �≡ 0 in D with β(G) �= 0 are
transformed to infinitesimal generators inH that can be characterized as holomorphic
functions H : H → Hwith the asymptotic expansion H(ζ ) = �(H)/ζ + γ (ζ ), where
�(H) = 4/β(G) ∈ (0,+∞) and ∠ limζ→∞ ζγ (ζ ) = 0. Such functions H play an
important role in the chordal Loewner Theory, see e.g. [3,24].

The following theorem gives the sharp estimate of β(G) for G ∈ Genτ (F,�) with
a prescribed value G(0).

Theorem 6.11 Let τ ∈ ∂D \ F. The value region

Wτ (F,�) :=
{(

G(0), β(G)
) ∈ C × R : G ∈ Genτ (F,�) \ {G ≡ 0}

}
,
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coincides with the set
{
(ζ, b) : ζ ∈ Z \ {0}, 0 ≤ b ≤ 2 Re�ζ

}
, where Z and �ζ are

defined as in the Theorem 6.4.
Moreover, for each ζ ∈ Z \ {0}, there exists a unique G ∈ Genτ (F,�) such that

G(0) = ζ and β(G) = 2 Re�ζ ; it is given by

G(z) = Gζ,τ (z) := (τ − z)(1 − τ z)
τ + z

τ − z
Re�ζ + i Im�ζ + p0(z; F,�)

, for all z ∈ D.

(6.17)

Proof Following the proof of Theorem6.4,we see that the range of the functionalG 	→
G(0) on Genτ (F,�) \ {G ≡ 0} coincides with Z \ {0} and moreover, if ζ ∈ ∂ Z \ {0},
then there exists exactly one G ∈ Genτ (F,�) \ {G ≡ 0} with G(0) = ζ , namely,
G = Gζ , see (6.6). Therefore, in case G(0) ∈ ∂ Z \ {0} we simply have β(G) = 0.

Suppose now that G(0) =: ζ ∈ int Z . Again, as in the proof of Theorem 6.4, we
can write

G(z) = (z − τ)(1 − τ z)

p(z) + p0(z; F,�)
, p(z) := q(z) Re�ζ + i Im�ζ ,

where q is an arbitrary function from the Carathéodory class C. Therefore, the problem
to find the range of G 	→ β(G) among all G ∈ Genτ (F,�)\{G ≡ 0}with G(0) = ζ

is now reduced to finding the maximum of q
(τ). The linear functional q 	→ q
(τ)

satisfies the hypothesis of Theorem E with X := Hol(D) and K := C. Taking into
account Remark 5.2, we conclude that it is sufficient to consider the functions of the
form qσ (z) := (σ + z)/(σ − z), where σ ∈ D. For any σ �= τ , we have q


σ (τ ) = 0,
which is clearly the minimal value of the functional on C, while for σ = τ , it attains its
maximal value q


τ (τ ) = 2. Therefore, the range of q 	→ q
(τ) over C is [0, 2], which
immediately implies the assertion concerning the value region Wτ (F,�).

Moreover, among the extreme points of C, there exists only one function q = qτ for
which q
(τ) attains its maximal value. It follows that the maximum over the whole
class C is attained only for qτ , see again Theorem E, from which we immediately
obtain the remaining part of the theorem. 
�

6.4 Extreme points ofGen�(F,3)

Another method to obtain results similar to theorems given in Sects. 6.2 and 6.3 is
based on looking for the extreme points of Genτ (F,�).

Theorem 6.12 Let τ ∈ D \ F. Every extreme point G �≡ 0 of the class Genτ (F,�) is
of the form

G(z) = (τ − z)(1 − τ z)

ib +
n−1∑

j=1

a j
s j + z

s j − z
+ p0(z; F,�)

, z ∈ D, (6.18)
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where s1, . . . , sn−1 ∈ ∂D, a1, . . . , an−1 ≥ 0, b ∈ R, and p0 is defined by (6.1). Some
of the points s j ’s may belong to F.

In the proofs we will need the following lemma. Fix some m ∈ N and consider the set
Pm of all Herglotz functions of the form

p(z) = ib +
m∑

j=1

a j
s j + z

s j − z
, z ∈ D, (6.19)

where b ∈ R, a1, . . . , am > 0 and s j , . . . , sm are pairwise distinct points on ∂D.

Lemma 6.13 The map p 	→ 1/p is an involution of Pm onto itself.

Proof Clearly, every function p of the form (6.19) is a rational function of degree m
with all poles being simple and lying on ∂D. Moreover, Rep(z) > 0 for all z ∈ D,
and Rep(z) < 0 for all z ∈ C\D. It follows that all zeros of p are simple and belong
to ∂D. Denote them by κ1, . . . , κm .

For each j = 1, . . . , m, p#(κ j ) = −κ j p′(κ j ) ∈ (0,+∞) because p is a non-trivial
Herglotz function and it is holomorphic at κ j ; see Remark 4.3. The rational function

R(z) := 1

p(z)
−

m∑

j=1

1

2p#(κ j )

κ j + z

κ j − z

has no poles in C, and on iR \ {κ1, . . . , κn} its real part vanishes. Therefore, R is an
imaginary constant.

This shows that 1/p ∈ Pm for any p ∈ Pm . The proof is complete. 
�
Proof of Theorem 6.12 Let G ∈ Genτ . By the Berkson–Porta and the Riesz–Herglotz
representation representation formulas (2.3), (4.3),

G(z) = (τ − z)(1 − τ z)

(
α

∫

∂D

σ + z

σ − z
dμ(σ) + iβ

)
, z ∈ D, (6.20)

with some α ≥ 0, β ∈ R, and some Borel probability measure μ on ∂D.
Moreover, by Theorem B and Lemmas 4.7 and 4.9, G ∈ Genτ (F,�) \ {G ≡ 0} if

and only if α > 0 and the measure μ in (6.20) satisfies

∫

∂D

|ς − σk |−2 dμ(ς) ≤ αk/(2α), k = 1, . . . , n, (6.21)

where αk’s are defined in (6.1), and

∫ 2π

0
cot(θ/2) dμ(σkeiθ ) + β/α = 0, k = 1, . . . , n. (6.22)

If G �≡ 0 is an extreme point for Genτ (F,�), then μ is an extreme point for the
set of all Borel probability measures on ∂D subject to conditions (6.21) and (6.22).
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Therefore, on the one hand, by Theorem F, μ is a linear combination of finite (in
fact, at most 2n + 1) Dirac measures on ∂D, and hence G(z) = (τ − z)(1− τ z)p(z),
where p ∈ Pm for some m ∈ N, i.e.

p(z) = iβ +
m∑

j=1

v j q j (z), q j (z) := κ j + z

κ j − z
, z ∈ D,

with v1, . . . , vm > 0 and pairwise distinct κ1, . . . , κm ∈ ∂D.
On the other hand, G ∈ Genτ (F,�) and hence, by Theorem 6.1 (A), 1/p(z) =

p̃(z) + p0(z; F,�), z ∈ D, for some Herglotz function p̃.
By Lemma 6.13, 1/p ∈ Pm . Therefore, m ≥ n and p̃ is of the form

p̃(z) = ib +
m′∑

j=1

a j
s j + z

s j − z
, z ∈ D,

where m − n ≤ m′ ≤ m, a1, . . . , am′ > 0, and s1, . . . , sm′ are pairwise distinct points
on ∂D, of which exactly ν := m′ − (m − n) belong to F .

It remains to show that m′ ≤ n − 1. To this end we notice that

Gt (z) := (τ − z)(1 − τ z)

⎛

⎝p(z) + t

⎛

⎝i x0 +
m∑

j=1

x j q j (z)

⎞

⎠

⎞

⎠ , z ∈ D,

belongs to Genτ (F,�) for all t ∈ R small enough provided that (x0, x1, . . . , xm) ∈
R

m+1 solves the linear system

x0 + 1

i

m∑

j=1

q j (σk)x j = 0, k = 1, . . . , n,

1

σk

m∑

j=1

q ′
j (σk)x j = 0, k ∈ J ,

where J consists of integers k = 1, . . . , n such that σk /∈ {s1, . . . , sm′ }.
Taking into account that all the coefficients in the above homogeneous system are

real, we see that it cannot have non-trivial solutions, because otherwise G would not
be an extreme point of Genτ (F,�). It follows that the number of unknowns, which is
equal to m +1, cannot exceed the number of equations, which is 2n −ν = n +m −m′.

Thus, m′ ≤ n − 1. To complete the proof, we mention that the case m′ < n −1 is of
course possible. Therefore, some coefficients a j in representation (6.18) may vanish.


�
Thanks to general results in the Krein–Milman Theory, see e.g. [30, §18.1.3], The-

orem 6.12 implies that G ∈ Genτ (F,�) if and only if it admits a representation
in terms of a regular Borel measure μ supported on the finite-dimensional family
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in Genτ (F,�) defined by formula (6.18) and having total weight |μ| ≤ 1. (It is pos-
sible that |μ| < 1, because G ≡ 0 is an extreme point of Genτ (F,�), but it does not
belong to the aforementioned family.) In particular, for n = 1 we recover a result of
Goryainov and Kudryavtseva.

Corollary 6.14 ([25, Theorem 1]) Let λ < 0, σ ∈ ∂D, τ ∈ D \ {σ }. Then G ∈
Genτ (σ, λ) if and only if there exists a Borel probability measure μ on ∂D such that

G(z) = |λ|
|σ − τ |2 (τ − z)(1 − τ z)(1 − σ z)

∫

∂D

1 − κ

1 − κσ z
dμ(κ). for all z ∈ D.

(6.23)

Proof By Theorem 6.12 for the case n = 1, F := {σ }, � := {λ}, the extreme points
of Genτ (σ, λ) other than identical zero are of the form

Gb(z) = (τ − z)(1 − τ z)
(
ib + p0(z; σ, λ)

)−1
,

where b ∈ R. According to the Krein–Milman Theorem in integral form, see e.g.
[30, §18.3.1], G ∈ Genτ (σ, λ) if and only if it can be represented as the integral of
R∪{∞} � b 	→ Gb, where G∞(z) := 0 for all z ∈ D, against some Borel probability
measure on R ∪ {∞}.

To simplify expressions,we introduce a newparameter κ := (iy−1)/(iy+1) ∈ ∂D,
where y := 2b|λ|/|σ − τ |2. Then

Gb(κ)(z) = |λ|
|σ − τ |2 (τ − z)(1 − τ z)(1 − σ z)

1 − κ

1 − κσ z
, z ∈ D,

with κ = 1 corresponding to G∞. This immediately leads to (6.23). 
�
The next theorem refers to another family of infinitesimal generators with given

boundary regular null-points. Let F = {σk}n
k=1 be as above and τ ∈ D \ F . Denote by

Genτ (F) the class of all infinitesimal generatorsG ∈ Genτ such that the corresponding
one-parameter semigroup (φG

t ) has BRFPs at σk’s with repelling spectral values λk

satisfying
∑n

k=1 |λk | ≤ 1. As usual, we regard G ≡ 0 to be an element of Genτ (F).

Remark 6.15 Arguing as in the proof of Corollary 6.3, one can easily show that
Genτ (F) is a compact convex set in Hol(D) and that the class Gen′

τ (F) formed by all
G ∈ Genτ (F) for which the equality

∑n
k=1 |λk | = 1 holds is a convex dense subset

of Genτ (F).

Theorem 6.16 In the above notation, G �≡ 0 is an extreme point of Genτ (F) if and
only if it is of the form

G(z) = (τ − z)(1 − τ z)

ib + p0(z; F, L)
, z ∈ D, (6.24)

where b ∈ R and L := {λk}n
k=1 ∈ (−∞, 0)n satisfies

∑n
k=1 |λk | = 1.
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Proof The fact that every extreme point of Genτ (F) different from the identical zero
is of the form (6.24) can be established using essentially the same arguments as in the
proof of Theorem 6.12. By this reason, we omit the details.

To prove the converse, consider a function G of the form (6.24). We have to show
that G is an extreme point of Genτ (F). Clearly, by Theorem 6.1 (A), G ∈ Genτ (F).

Moreover, by Lemma 6.13, G(z) = (τ − z)(1 − τ z)p(z), where p ∈ Pn with
p(σk) = 0 for k = 1, . . . , n. If G is not an extreme point of G ∈ Genτ (F), then there
exist Herglotz functions p1 �= p2 such that p = (p1 + p2)/2, with the infinitesimal
generators G j (z) := (τ − z)(1 − τ z)p j (z), j = 1, 2, belonging to Genτ (F).

Denote

L(G) :=
n∑

k=1

|λk(G)|,

where λk(G) = −G ′(σk) < 0 is the spectral value of (φG
t ) at σk . We have 2 =

2L(G) = L(G1) + L(G2), and L(G j ) ≤ 1 because G j ∈ Genτ (F), j = 1, 2. It
follows that L(G1) = L(G2) = 1. In particular, p1 and p2 are non-trivial Herglotz
functions.

On the one hand, since the Herglotz measure of p is a linear combination of n Dirac
measures on ∂D, the same holds for p1 and p2, i.e. p1, p2 ∈⋃n

m=1 Pm and every pole
of p1 or p2 is also a pole of p.

On the other hand, p j (σk) = 0, j = 1, 2, k = 1, . . . , n. In particular, p1, p2 are
rational functions of degree at least n. It follows that p1, p2 ∈ Pn .

Therefore, the rational functions p, p1, p2 have exactly the same zeros and poles,
all of them simple. Moreover, at all other points on ∂D, these functions take purely
imaginary values. Finally, their reals parts are positive in D. It follows that p j = γ j p,
j = 1, 2, with some γ1, γ2 > 0. From L(G) = L(G1) = L(G2) = 1, we conclude
that γ1 = γ2 = 1 and hence p = p1 = p2. This means that G is indeed an extreme
point of Genτ (F). 
�

7 Loewner–Kufarev-type ODE for self-maps with BRFPs

In this section we combine our results with the theory developed in [10,27,28] in
order to develop a parametric representation of univalent self-maps ϕ ∈ Hol(D,D)

with given boundary regular fixed points based on a Loewner–Kufarev-type ODE.
Note that in this case, in contrast to the previous sections, we do not suppose that ϕ

is an element of a one-parameter semigroup. As an application of this parametric
representation, we will give a new proof of the Cowen–Pommerenke inequalities for
univalent self-maps of the unit disk.

Denote by U the class of all univalent holomorphic mappings ϕ : D → D and let
Uτ, τ ∈ D, be the subclass of U formed by idD and all ϕ ∈ U \ {idD} whose Denjoy–
Wolff point coincides with τ . Furthermore, given a finite set F ⊂ ∂D, consider the
class U[F] of all ϕ ∈ U satisfying the following condition: every σ ∈ F is a boundary
regular fixed point of ϕ. Let Uτ[F] := Uτ ∩ U[F] for any τ ∈ D \ F .
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7.1 Parametric representation

This section is devoted to the proof of the following result. It makes use of an intrinsic
version of Loewner Theory in the unit disk developed in [7]. We refer the reader to
that paper for the terminology and basic results.

Theorem 7.1 Let τ ∈ D and F := {σ1, . . . , σn} ⊂ ∂D \ {τ }, where σk’s are pairwise
distinct. Then the following statements hold.

(A) For any ϕ ∈ Uτ[F] \ idD, there is a function G : D × [0, T ] → C,
T := log

∏n
k=1 ϕ′(σk), such that:

(i) for any z ∈ D, G(z, ·) is measurable on [0, T ];
(ii) for a.e. t ∈ [0, T ], G(·, t) ∈ Gen′

τ DW e(F), that is, for a.e. t ∈ [0, T ], G(·, t) is
an infinitesimal generator such that the corresponding one-parameter semigroup
has BRFPs at σk’s with repelling spectral values λk satisfying

∑n
k=1 |λk | = 1;

(iii) for any z ∈ D, ϕ(z) = wz(T ), where w = wz(t) is the unique solution to

dw

dt
= G

(
w(t), t

)
, t ∈ [0, T ], w(0) = z. (7.1)

(B) Conversely, let T > 0 and suppose that G : D × [0, T ] → C satisfies (i) and

(ii’) for a.e. t ∈ [0, T ], G(·, t) ∈ Genτ (F), that is, for a.e. t ∈ [0, T ], G(·, t) is an
infinitesimal generator such that the corresponding one-parameter semigroup
has BRFPs at σk’s with repelling spectral values λk satisfying

∑n
k=1 |λk | ≤ 1.

Then for any z ∈ D, the initial value problem (7.1) has a unique solution [0, T ] �
t 	→ w = wz(t) ∈ D and the maps D � z 	→ ϕt (z) := wz(t), t ∈ [0, T ], belong
to Uτ[F]. Moreover, for each k = 1, . . . , n, t 	→ G ′(σk, t) is an integrable function
on [0, T ] and

logϕ′
t (σk) =

∫ t

0
G ′(σk, s) ds for all t ∈ [0, T ]. (7.2)

Proof Let ϕ ∈ Uτ[F] \ idD. According to [28, Theorem 2] there exists an evolution
family (ϕs,t ) ⊂ Uτ[F] such that ϕ = ϕ0,1.

Using [10, Theorem 1.1], we see that f (t) := log
∏n

k=1 ϕ′
0,t (σk) is locally abso-

lutely continuous on [0,+∞). Moreover, ϕ′
s,t (σk) ≥ 1 whenever t ≥ s ≥ 0 and

k = 1, . . . , n, with the equality possible only if ϕs,t = idD. Taking into account
that ϕ0,t = ϕs,t ◦ ϕ0,s and using the Chain Rule for angular derivatives, see e.g.
[13, Lemma 2], we conclude that f (t) ≥ f (s) whenever t ≥ s ≥ 0 and that
the equality is only possible if ϕs,t = idD. It follows that there exists a family
(ψs,t )T ≥t≥s≥0 ⊂ Uτ[F], where T := f (1) = log

∏n
k=1 ϕ′(σk) > 0, such that

ϕs,t = ψ f (s), f (t) for any s, t ∈ [0, 1] with t ≥ s. By construction,

log
n∏

k=1

ψ ′
0,t (σk) = t for any t ∈ [0, T ].
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We extend the family (ψs,t ) to all s ≥ 0 and t ≥ s by setting ψs,t := ψs,T if
t ≥ T ≥ s ≥ 0 and ψs,t := idD if t ≥ s ≥ T . We claim that (ψs,t ) is an evolution
family. Indeed, consider one of the points in F , e.g. σ1. For any s ≥ 0 and any t ≥ s,
we have

0 ≤ logψ ′
s,t (σ1) ≤ log

n∏

k=1

ψ ′
s,t (σk) = log

n∏

k=1

ψ ′
0,t (σk)−log

n∏

k=1

ψ ′
0,s(σk) ≤ t−s

and logψ ′
0,t (σ1) − logψ ′

0,s(σ1) = logψ ′
s,t (σ1). Therefore, t 	→ logψ ′

0,t (σ1) is Lips-
chitz continuous on [0,+∞). Note also that τ is the DW-point for all ψs,t ’s different
from idD. According to [27, Theorem 4.2], it follow that (ψs,t ) is indeed an evolution
family.

Let G be the Herglotz vector field associated with (ψs,t ). Recall that (ψs,t ) ⊂
Uτ[F]. Hence according to [10, Theorem 1.1] and [7, Theorem 6.7], for a.e. s ≥ 0,
G(·, s) is the infinitesimal generator of a one-parameter semigroup contained inUτ[F]
and moreover,

logψ ′
0,t (σk) =

∫ t

0
G ′(σk, s) ds, t ≥ 0, k = 1, . . . , n.

Since by construction, log
∏n

k=1 ψ ′
0,t (σk) = t for all t ∈ [0, T ], it follows that

n∑

k=1

G ′(σk, s) = 1 for a.e. s ∈ [0, T ].

This shows that G(·, s) ∈ Gen′
τ (F) for a.e. s ∈ [0, T ] and hence the proof of (A) is

complete.
To prove (B), it is sufficient to show that if G satisfies (i) and (ii’), then being

extended by G(·, t) ≡ 0 for all t > T it becomes a Herglotz vector field, see [7,
Definitions 4.1 and 4.3]. In such a case, the conclusion in (B) would follow from
[7, Theorems 4.4 and 5.2], [7, Corollary 7.2], and [10, Theorem 1.1] combined with
Theorem B.

In turn, to see that (i) and (ii’) imply that G is a Herglotz vector field, it is sufficient
to recall, see Remark 6.15, thatGenτ (F) is a compact class and hence for any compact
set K ⊂ D there exists M(K ) > 0 such that maxz∈K |F(z)| ≤ M(K ) holds for all
F ∈ Genτ (F). The proof is now complete. 
�

7.2 Inequalities of Cowen and Pommerenke

In this section we apply our results to give another proof of an inequality due to Cowen
and Pommerenke.

To state rigorously theCowen–Pommerenke inequality for univalent self-mapswith
the interior DW-point, we need the following lemma. Consider the classUτ[F], where
τ ∈ D and F := {σ1, σ2, . . . , σn}⊂ ∂D consists of n distinct points.
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Lemma 7.2 Let ϕ ∈ Uτ[F], τ ∈ D.

(A) There exists a single-valued branch �[ϕ] : D → C of log
(
(ϕ(z) − τ)/(z − τ)

)

such that the angular limit of �[ϕ] vanishes at σk for each k = 1, . . . , n.
(B) Moreover, let (ϕt )t∈I be a family in Uτ[F] over an interval I ⊂ R such that

I � t 	→ ϕt (z) is continuous for any z ∈ D. Suppose also that t 	→ ϕ′(σk0) is
locally bounded on I for some k0 = 1, . . . , n. Then I � t 	→ �[ϕt ] ∈ Hol(D,C)

is continuous (in the open-compact topology).

The proof of this lemma is given in the “Appendix”.
Note that�[ϕ](τ ) is one of the values of logϕ′(τ ), and this is the value that appears

in the statement of the following theorem due to Cowen and Pommerenke.

Theorem 7.3 ([14, Theorem 7.1]) Fix τ ∈ D and an arbitrary finite sequence A :=
(ak)

n
k=1 ⊂ (1,+∞). The value region

Uτ (F, A) := {−�[ϕ](τ ) ∈ C : ϕ ∈ Uτ[F], ϕ′(σk) = ak for each k = 1, . . . , n}

is the closed disk

D(A) := {ω : |ω − r | ≤ r} , r = r(A) :=
(

n∑

k=1

1

log ak

)−1

,

with the point ω = 0 excluded. Each ω ∈ ∂Uτ (F, A) \ {0} is delivered by a unique
function ϕω, which coincides with the element φω

1 of the one-parameter semigroup (φω
t )

associated with the infinitesimal generator

Gω(z) := (τ − z)(1 − τ z)

(

iγω +
n∑

k=1

|τ − σk |2
2 log ak

σk + z

σk − z

)−1

for all z ∈ D,

where γω is a real constant depending on ω.

Proof Let ϕ ∈ Uτ[F], with ϕ′(σk) = ak for each k = 1, . . . , n. Then thanks to
Theorem 7.1,

logϕ′(τ ) =
∫ T

0
G ′(τ, t) dt, T := log

n∏

k=1

ak, (7.3)

log ak = logϕ′(σk) =
∫ T

0
G ′(σk, t) dt, k = 1, . . . , n, (7.4)

where G is measurable in t ∈ [0, T ] and G(·, t) ∈ Gen′
τ (F) for a.e. t ∈ [0, T ].

Note that the value of logϕ′(τ ) given by (7.3) coincides with �[ϕ](τ ), defined in
Lemma 7.2 (A), thanks to part (B) of the same lemma.
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Representing the disk {ω : |ω − r | ≤ r} as the intersection of half-planes, by
Corollary 6.9 (A) we have

Re
(− e−iθ G ′(τ, t)

) ≤ (1 + cos θ)

(
n∑

k=1

1

G ′(σk, t)

)−1

(7.5)

for every θ ∈ [0, 2π ] and a.e. t ∈ [0, T ]
Denote Q(x1, x2, . . . , xn) := (∑n

j=1 x−1
j

)−1. From (7.3), (7.4), and (7.5) we
obtain

Re
(− e−iθ logϕ′(τ )

) =
∫ T

0
Re
(− e−iθ G ′(τ, t)

)
dt

≤ (1 + cos θ)

∫ T

0
Q
(
G ′(σ1, t), G ′(σ2, t), . . . , G ′(σn, t)

)
dt

≤ (1 + cos θ) T Q
(
1
T

∫ T
0 G ′(σ1, t) dt, 1

T

∫ T
0 G ′(σ2, t) dt, . . . , 1

T

∫ T
0 G ′(σn, t) dt

)

= (1 + cos θ) Q
( ∫ T

0 G ′(σ1, t) dt,
∫ T
0 G ′(σ2, t) dt, . . . ,

∫ T
0 G ′(σn, t) dt

)

= (1 + cos θ)

(
n∑

k=1

1

log ak

)−1

, (7.6)

where we have taken into account that Q is a concave function on (0,+∞)n , see
Lemma 8.1 in the “Appendix”, and used Jensen’s inequality, see e.g. [18, p. 76].

Note also that ϕ �= idD and hence logϕ′(τ ) �= 0. Inequality (7.6) along with the
latter remark shows thatUτ (F, A) ⊂ D(A)\{0}. To see that D(A)\{0} ⊂ Uτ (F, A),
we apply Theorem 7.1 (B) with the autonomous Herglotz vector field

G(z, t) := (τ − z)(1 − τ z)

c +
∑n

k=1

|τ − σk |2
2|λk |

σk + z

σk − z

, z ∈ D, t ∈ [0, T ], (7.7)

where λk := − 1
T log ak , k = 1, . . . , n, and c ∈ C is an arbitrary constant with

Rec ≥ 0. By Theorem 6.1, G(·, t) ∈ Gen′
τ (F) for all t ∈ [0, T ]. In this way we

construct ϕ = ϕT ∈ Uτ[F] such that ϕ′(σk) = ak for k = 1, . . . , n and

− logϕ′(τ ) =
(

c̃ +
n∑

k=1

1

2 log ak

)−1

, c̃ := 1

1 − |τ |2
(

c

T
+ i

n∑

k=1

Im(σ kτ)

log ak

)

.

Therefore, any value of − logϕ′(τ ) from D(A) \ {0} can be achieved by choosing a
suitable c with Rec ≥ 0.

It remains to study the case when − logϕ′(τ ) =: ω ∈ ∂Uτ (F, A) \ {0}, which
takes place if and only if equality occurs in (7.6) for θ = 2 argω. In particular, we
should have equality for a.e. t ∈ [0, T ] in (7.5). By Corollary 6.9 (A), this is possible
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only when G(·, t) is one of the functions (6.6). Recall also that G(·, t) ∈ Gen′
τ (F),

t ∈ [0, T ]. Hence, for all z ∈ D and a.e. t ∈ [0, T ], G(z, t) is given by (7.7) with
functions λk = λk(t) = −G ′(σk, t) satisfying

∑n
k=1 λk(t) = −1 and with a suitable

purely imaginary constant c, determined uniquely by the values of ω and λk’s.
Moreover, using (7.4) and taking into account that according to Lemma 8.2, the

function Q is strictly concave on the set

{
(x1, . . . , xn) ∈ R

n : xk > 0, k = 1, . . . , n, x1 + x2 + . . . + xn = 1
}
,

wesee that equality in (7.6) is only possible ifλk ’s are constants, i.e.λk(t) = − 1
T log ak

for a.e. t ∈ [0, T ] and all k = 1, . . . , n. As a result, upon rescaling time in ODE (7.1),
the infinitesimal generator Gω appears in the right-hand side, which allows us to
conclude that ϕ = φω

1 . 
�
Let us now consider the case of the boundary DW-point τ .

Theorem 7.4 ( [14, Theorem 6.1]) Fix τ ∈ ∂D \ F and A := (ak)
n
k=1 ⊂ (1,+∞)n.

The value region

Uτ (F, A) := {− logϕ′(τ ) ∈ R : ϕ ∈ Uτ[F], ϕ′(σk) = ak for each k = 1, . . . , n}

is the interval
[
0, r(A)

]
, where r(A) is defined as in Theorem 7.3.

The equality − logϕ′(τ ) = r(A) is achieved for a unique mapping ϕ, which coin-
cides with the element φ1 of the one-parameter semigroup (φt ) associated with the
infinitesimal generator

G(z) := (τ − z)(1 − τ z)

(

iγ +
n∑

k=1

|τ − σk |2
2 log ak

σk + z

σk − z

)−1

,

γ := −
n∑

k=1

Im(σ kτ)

log ak
, (7.8)

for all z ∈ D.

Proof The proof uses the same ideas as in case τ ∈ D. Therefore, we only indicate
the main differences without repeating all the details.

Clearly, − logϕ′(τ ) ≥ 0. To see that − logϕ′(τ ) ≤ r(A), we argue as in the proof
of Theorem 7.3, except that instead of (7.5) we should use the inequality

−G ′(τ, t) ≤
(

n∑

k=1

1

G ′(σk, t)

)−1

from Corollary 6.9 (B).
To identify the function ϕ for which the equality − logϕ′(τ ) = r(A) is achieved,

we again argue as in the proof of Theorem 7.3, arriving thus to the conclusion that
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up to rescaling of time, for a.e. t ∈ [0, T ], G(·, t) should be of the form given in
Corollary 6.9 (A′) with λk := − 1

T log ak for k = 1, . . . , n.
An example of ϕ ∈ Uτ[F] with − logϕ′(τ ) = 0 and ϕ′(σk) = ak for k = 1, . . . , n

is easily obtained from the infinitesimal generator (7.8) if we take any other real value
of γ .

All the remaining values in
(
0, r(A)

)
are delivered, e.g., by the elements φ1 of

the one-parameter semigroups generated by convex combinations of the infinitesimal
generators corresponding to the values 0 and r(A). 
�
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8 Appendix

For completeness, we give proofs of some elementary facts used in the paper.

Proof of Lemma 7.2 Let ϕ ∈ Uτ[F]. Fix some σ j , σk ∈ F , j �= k. Choose any C1-
smooth Jordan arc � ⊂ D \ {τ } joining σ j with σk and orthogonal to ∂D at these
points.

Note that �̃ := ϕ(�) satisfies the same requirements imposed on �. Let us show
that � and �̃ are homotopic relative to end-points in C \ {τ }. Denote by D1 and D2
the two connected components of D \ �, with τ ∈ D2, and let C1 and C2 be the
two complementary arcs of ∂D such that C j ⊂ ∂ D j , j = 1, 2. In particular, � is
homotopic in C \ {τ } relative to the end-points to C1.

Furthermore, let D̃1 and D̃2 stand for the two connected components of D \ �̃,
numbered in such a way that C j ⊂ ∂ D̃ j , j = 1, 2. Using the conformality at σ j

of ϕ restricted to a Stolz angle, we see that the ϕ(D1) intersects D̃1, and ϕ(D2)

intersects D̃2. Since ϕ : D → D is a homemorphism onto its image, it follows that
ϕ(D j ) ⊂ D̃ j , j = 1, 2. In particular, τ = ϕ(τ) ∈ ϕ(D2) ⊂ D̃2 and hence τ /∈ D̃1.
It follows that relative to end-points �̃ is homotopic in C \ {τ } to C1 and hence to �.
Therefore, for �(z) := (ϕ(z) − τ)/(z − τ) we have

∫

�

�′(z)
�(z)

dz =
∫

�̃

dw

w − τ
−
∫

�

dz

z − τ
= 0.

All the above integrals exist because τ /∈ � ∪ �̃ and because ϕ is of class C1 on �

including the end-points.
The above argument is valid for any two distinct points σ j , σk ∈ F . Taking into

account that � is holomorphic and non-vanishing in D, it follows that �′/� admits
an antiderivative in D that has vanishing angular limits at every point of F , and this is
the desired single-valued branch of log�. This proves part (A).

To prove part (B), note that continuity of t 	→ ϕt (z) for each z ∈ D is equivalent
to continuity of t 	→ ϕt ∈ Hol(D,C) in the open-compact topology because all
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holomorphic self-maps ofD form a normal family. Therefore, for any t0 ∈ I the limit

lim
I�t→t0

exp Ft , where Ft := �[ϕt ] − �[ϕt0 ],

exists in the open-compact topology and equals 1 identically in D. Moreover, note
that

lim
r→1− Ft (rσk0) = 0 for all t ∈ I . (8.1)

Since by the hypothesis, for some δ > 0, the function t 	→ ϕ′
t (σk0) is bounded on

Iδ := I ∩ (t0 − δ, t0 + δ), using Julia’s Lemma 2.1 we see that for any ε > 0 there
exists rε ∈ (0, 1) such that γε := [rεσk0 , σk0) and ϕt (γε) lie in the disk Dε := {z :
|z − (1 − ε)σk0 | ≤ ε} ⊂ D for all t ∈ Iδ .

Clearly we can choose ε > 0 small enough, so that τ /∈ Dε and

max
z,w∈Dε

∣∣ log(z − τ) − log(w − τ)
∣∣ =: C < π (8.2)

for some (and hence any) choice of the single-valued branch of log(z − τ) in Dε.
Combining (8.1) and (8.2), we see that |Ft (rεσk0)| ≤ 2C < 2π for all t ∈ Iδ .

Recalling that exp Ft (z) → 1 locally uniformly in D as I � t → t0, we conclude that
Ft → 0 locally uniformly in D as I � t → t0, which completes the proof of (B). 
�

Next lemma shows that the harmonic mean is concave. We include its proof for the
sake of completeness.

Lemma 8.1 For any n ∈ N the function Q(x1, . . . xn) :=
(∑n

j=1 x−1
j

)−1
is concave

on (0,+∞)n.

Proof The assertion of the lemma holds trivially for n = 1. So we suppose that n ≥ 2.
The entries of the Hessian matrix A(x) = [a jk(x)], x := (x1, x2, . . . , xn), for the

function Q are given by

a jk(x) = 2Q(x)3

x2j x2k
b jk(x),

where b jk(x) := 1 − δ jk
x j

Q(x)
and δ jk is the Kronecker symbol.

First we show that det A(x) = 0. Clearly, the latter is equivalent to det B(x) = 0,
where B(x) := [b jk(x)].

Subtract the last row of B(x) from each of the other rows. In the matrix we obtain,
add to the last row the linear combination of all the other rows in which, for every
j = 1, 2, . . . , n − 1, the coefficient of the j-th row is equal to Q(x)/x j . The resulting
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matrix is upper-triangular, with the last diagonal entry equal to

1 − xn

Q(x)
+ xn

Q(x)

n−1∑

j=1

Q(x)
x j

= 1 −
n∑

j=1

xn

x j
+

n−1∑

j=1

xn

x j
= 0.

Therefore, the determinant equals zero.
This argument, with an obvious modification, can be used to show that the deter-

minants of all symmetric minors of A(x), i.e. minors of the form [a jk(x)] j,k∈J ,
J ⊂ {1, 2, . . . , n}, vanish, except for the symmetricminors of order one. They are sim-
ply diagonal entries of A, which are all negative. Therefore, according to Sylvester’s
well-known criterion, the matrix A(x) is negative semi-definite for any x ∈ (0,+∞)n ,
which was to be proved. 
�
Lemma 8.2 Let Q be defined as in Lemma 8.1. Let x, y ∈ (0,+∞)n, x �= y. If

λQ(x) + (1 − λ)Q(y) = Q
(
λx + (1 − λ)y

)
(8.3)

for some λ ∈ (0, 1), then x = μy for some μ ∈ R.

Proof Since by Lemma 8.1, Q is concave on (0,+∞), equality (8.3) for some λ ∈
(0, 1) implies the same equality for all λ ∈ [0, 1]. Notice that the r.h.s. of (8.3),
f (λ) := Q

(
λx + (1 − λ)y

)
is a rational function of λ. Therefore, extending f , as

usual, to its removable singularities by continuity,wemay conclude that f (λ) = aλ+b
for some a, b ∈ R and all λ ∈ R. On the one hand, a function of this form has at most
one zero. On the other hand, taking into account that for λ = 0 all the components of
the vector xλ := λx + (1 − λ)y are positive, it is easy to see that f (λ) = 0 for each
λ ∈ R such that at least one component of xλ vanishes.

All non-vanishing components of R � λ 	→ xλ are positive constants. Therefore,
if such components exist, then a = 0 and hence f (λ) ≡ Q(y) > 0. It follows that
if at least one of the components is non-vanishing, then f (λ) does not vanish, which
means that, in fact, all the components ofR � λ 	→ xλ are non-vanishing. This in turn
would imply that x = y in contradiction to the hypothesis.

Thus we may conclude that all the components of xλ vanish for the same value of λ
and the desired conclusion follows immediately. 
�
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