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Abstract

In this article, we first prove, from the viewpoint of infinite dynamical system,
sufficient conditions ensuring the existence of trajectory statistical solutions for
autonomous evolution equations. Then we establish that the constructed trajec-
tory statistical solutions possess invariant property and satisfy a Liouville type
equation. Moreover, we reveal that the equation describing the invariant prop-
erty of the trajectory statistical solutions is a particular situation of the Liouville
type equation. Finally, we study the equations of three-dimensional incompressible
magneto-micropolar fluids in detail and illustrate how to apply our abstract results
to some concrete autonomous evolution equations.
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1 Introduction

In the theory of turbulence, the invariant measures and statistical solutions have

been proved to be very useful in the understanding of the Navier-Stokes equations (see

Foias et al. [12]). The main reason is that the measurements of several aspects of tur-

bulent flows are actually measurements of time-average quantities. Statistical solutions
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have been introduced as a rigorous mathematical notion to formalize the object of en-

semble average in the conventional statistical theory of turbulence. Nowadays, invariant

measures and statistical solutions are widely used to describe certain characteristics of

the fluids in the real world (see [33]).

There are two prevalent notions of statistical solutions. The one is introduced by

Foias and Prodi [11] (will be called Foias-Prodi statistical solutions) and the other by

Vishik and Fursikov [36] (will be called Vishik-Fursikov statistical solutions). The Foias-

Prodi statistical solutions defined in [11] are a family of Borel measures parametrized

by the time variable and defined on the phase space of the Navier-Stokes equations,

representing the probability distribution of the velocity field of the flow at each time.

While the Vishik-Fursikov statistical solutions given in [36] are a single Borel measure

on the space of trajectories, representing the probability distribution of the space-time

velocity field. We can discover that the Foias-Prodi statistical solutions are associated to

some invariant measures defined on the phase space of the addressed system, while the

Vishik-Fursikov statistical solutions are associated to some invariant measures defined

on the trajectory space of solutions.

The invariant measures for well-posed dissipative systems were studied in a series

of references (see [5, 19, 21, 24–26, 38]). For instance,  Lukaszewicz, Real and Robin-

son [25] used the notion of Generalized Banach limit to construct the invariant mea-

sures for general continuous dynamical systems on metric spaces. Later, Chekroun

and Glatt-Holtz [5] improved the results of [25] to construct invariant measures for a

broad class of dissipative autonomous dynamical systems. Recently,  Lukaszewicz and

Robinson [26] extended the result of [5] to construct invariant measures for dissipative

non-autonomous dynamical systems. The constructions of invariant measures in [5]

depend essentially on the existence of global attractors of the continuous semigroup

generated by the solution operators, and in [26] the constructions depend heavily on

the pullback attractors of the continuous process associated to the solution operators.

We recognize that both of the constructions of the invariant measures in [5] and [26]

require that the addressed system is globally well-posed.

It is an interesting problem to give a general construction of invariant measures and

trajectory statistical solutions for general evolution equations including those systems,

which possess global weak solutions but without a known result of global uniqueness,

say, the three-dimensional (3D) incompressible Navier-Stokes equations. In [2], Bronzi,

Mondaini and Rosa provided a general framework for the theory of trajectory statistical

solutions for evolution equations with similar properties to those of the 3D Navier-

Stokes equations. In [4], Bronzi, Mondaini and Rosa established an abstract framework

for the theory of statistical solutions for general evolution equations. The proofs of

existence of trajectory statistical solutions for the initial value problem in [2,4] are based

on the Krein-Milman approximation of the initial measure by convex combinations of

Dirac deltas, as done in [12,15]. This is an approach via functional analysis, topological

analysis and measure theory.

Very recently, Zhao and Caraballo in [45] investigated the existence and regularity of
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the trajectory statistical solutions for the 3D globally modified Navier-Stokes equations,

via the approach of infinite dynamical systems. They successfully used the natural

translation semigroup and trajectory attractor to construct the trajectory statistical

solutions. In the end of the article [45], the authors pointed out that the approach

employed in [45] could be raised to an abstract level and the constructed trajectory

statistical solutions should satisfy a Liouville type equation in Statistical Mechanics.

In this article, we continue to investigate the abstract theory concerning the con-

structions of trajectory statistical solutions for general evolution equations, including

not only the systems possessing global well-posedness but also those displaying the

property of global existence of weak solutions but without a known result of global

uniqueness. Precisely speaking, we will first present sufficient conditions ensuring the

existence of trajectory statistical solutions for general autonomous evolution equations.

We prove that if a general evolution system satisfies the following two conditions:

(1) the trajectory space of the system is a metrizable topological space;

(2) the translation semigroup has a trajectory attractor in the trajectory space;

then the evolution system possesses trajectory statistical solutions. We then establish

that the constructed trajectory statistical solutions possess an invariant property under

the action of the translation semigroup and satisfy a Liouville type equation. Further,

we will reveal that the equation describing the invariant property of the trajectory

statistical solutions is exactly a particular situation of the Liouville type equation.

We remark that our abstract framework to construct trajectory statistical solutions

is different from that in [2,4]. As it has already been mentioned, the abstract framework

of [2,4] is formulated mainly through the topological analysis and measure theory, and

its proofs of existence of trajectory statistical solutions for the initial value problem are

based on the Krein-Milman approximation of the initial measure by convex combina-

tions of Dirac deltas, while our sufficient conditions are merely from the point of view of

infinite dynamical system. Our proofs rely on the theory of infinite dynamical systems,

the Kakutani-Riesz Representation Theorem and an elementary topological observa-

tion. We point out that our idea of the topological observation originates from [5, 26],

but the approaches of [5,26] to construct invariant measures can not be applied in our

situation because that the solution operators of the addressed systems here might not

generate a semigroup or process. The essential difference between [5,26] and this article

is that we consider the invariant measures on the trajectory space, while [5,26] consider

the invariant measures on the phase space of the addressed system. The advantage of

our abstract results is that it is convenient to check for the purpose of applications in

concrete evolution equations.

To illustrate the wide applicability of our abstract results, we will study the equa-

tions of 3D incompressible magneto-micropolar fluids in detail. The equations of

magneto-micropolar fluids describe the motion of electrically conducting micropolar

fluids in the presence of magnetic fields, whose equations consist of a particular mutual

coupling of the Navier-Stokes equations with equations for the micro-rotational velocity

and magnetic field. Also, our abstract results are valid for the general reaction-diffusion
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system and nonlinear wave equation discussed in [8, 37]. Both of the systems possess

trajectory attractors and their trajectory spaces are metrizable topological spaces. Of

course, our results are also valid for the 3D Navier-Stokes equations studied by Foias

et al. in a series of works [12–14,16,17].

The article is organized as follows. In Section 2, we first prove sufficient condi-

tions ensuring the existence of trajectory statistical solutions for general autonomous

evolution equations. Then we establish that the constructed trajectory statistical solu-

tions are invariant under the action of the translation semigroup and satisfy a Liouville

type equation. Further, we reveal that the equation describing the invariant property

of the trajectory statistical solutions is exactly a particular situation of the Liouville

type equation. In Section 3, we study the 3D incompressible magneto-micropolar flu-

ids in detail, showing how to apply our abstract results to some concrete autonomous

evolution equations.

2 Sufficient conditions for the existence of trajectory sta-
tistical solutions for autonomous evolution equations

In this section, we will prove sufficient conditions ensuring the existence of trajec-

tory statistical solutions of general autonomous evolution equations. Then we establish

that the constructed trajectory statistical solutions possess an invariant property under

the action of the translation semigroup and satisfy a Liouville type equation.

Let (X , ‖ · ‖X ) and (Y, ‖ · ‖Y) be two Banach spaces with Y ↪→ X , where the

embedding is continuous. We consider the following autonomous evolution equation

with initial value

∂u(x, t)

∂t
= F (u), t > 0, (2.1)

u(x, t)|t=0 = u0 ∈ X , (2.2)

where u(x, t): (x, t) ∈ Ω× [0,+∞) 7−→ X is the unknown function, Ω ⊂ Rn is a domain

satisfying some conditions, F (u) is some nonlinear differential or abstract operator

acting on X . Usually, F (·) : Y 7−→ Y∗, where Y∗ is the dual space of Y and such a

relation is typical for differential operators. For example, we shall take X = Ĥ, Y = V̂

and Y∗ = V̂ ∗ for the 3D incompressible magneto-micropolar fluids in Section 3.

We will investigate global in time solutions u(·) of problem (2.1)-(2.2) defined on

the time interval [0,+∞). A certain sufficiently broad family of such solutions will

be called the trajectory space (the definition will be specified in Definition 2.1(2)) of

equation (2.1). We can see that the choice of the trajectory space plays an important

role in our construction of the trajectory statistical solutions.

We use Xw to denote the space X endowed with its weak topology. For instance,

in Section 3, the collection of open sets in Ĥw has a characterization by a basis of
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neighborhoods given by

Ow(u, r, v1, v2, · · · , vN ) =
{
w ∈ Ĥw

∣∣∣ N∑
j=1

|(u− w, vj)|2 < L2
}
,

for u ∈ Ĥw, L > 0, N ∈ N, and v1, v2, · · · , vN ∈ Ĥ, where (·, ·) is the inner product in

Ĥ (cf. [3]). Further, we use

F+
loc = Cloc([0,+∞);Xw)

to denote the space of continuous functions from R+ = [0,+∞) to Xw. This space can

also be seen as the space of weakly continuous functions from R+ to X . The topology

on F+
loc, which is denoted by Θ+

loc, is that of uniform convergence in Xw on compact

subinterval of R+, that is, by definition, wn(t) −→ w(t) (n → +∞) in the topology

Θ+
loc, if, for every T > 0, (wn(t),Φ) −→ (w(t),Φ) uniformly on [0, T ] (n → +∞) for

each Φ in the dual space X ∗ of X (or for each Φ in X if it is a Hilbert space), here (·, ·)
is the dual pairing between X and X ∗ (or is the inner product of X if it is a Hilbert

space).

Generally speaking, the topology Θ+
loc in the space F+

loc is not metrizable. However,

we will use the property that the topology Θ+
loc in the trajectory space T tr

X is metrizable.

To this end, we usually assume that the trajectory space T tr
X ⊂M

+
loc and the topology

Θ+
loc is metrizable in the space

M+
loc = Cloc([0,+∞);Xw),

where X is a fixed bounded subset of X , and Xw is the space X endowed the topology

inherited from Xw. This assumption is quite natural in some concrete evolution equa-

tions. For instance, when we investigate the 3D incompressible magneto-micropolar

fluids in Section 3, Cloc([0,+∞); Ĥw) is not metrizable but Cloc([0,+∞);B(Ĥ)w) is

metrizable for a fixed bounded subset B(Ĥ) of Ĥ (see [30]).

We next specify the definitions of global weak solution, global regular weak solution,

trajectory space T tr
X and regular trajectory space T tr

Y for equation (2.1).

Definition 2.1.

(1) A function u(·) ∈ F+
loc ∩ L

∞(R+;X ) ∩ L2
loc(R+;Y) is called a global weak so-

lution of equation (2.1) if it satisfies equation (2.1) in the sense of distribution

D′(0,+∞;Y∗). A global weak solution u belonging to L∞(R+;Y) is called a global

regular weak solution.

(2) The trajectory space T tr
X and regular trajectory space T tr

Y for equation (2.1) are

defined as

T tr
X ={u(·)

∣∣u(·) is a global weak solution of equation (2.1) and

‖u(t)‖X 6 R for some fixed R > 0, t ∈ R+},
T tr
Y ={u(·)

∣∣u(·) is a global regular weak solution of equation (2.1) and

‖u(t)‖Y 6 R1 for some fixed R1 > 0, t ∈ R+}.
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Elements of T tr
X are called bounded, complete trajectories of equation (2.1). Con-

sider the family of translation operators {T (t)}t>0 acting in the space F+
loc via the

formula

T (t)u(s) = u(t+ s), ∀ t > 0.

It is not difficult to check that the family of operators {T (t)}t>0 generate a continuous

(with respect to the topology Θ+
loc ) semigroup on the space F+

loc (cf. [8, page 222,

Proposition 1.3]). In concrete applications, we will have the following property

T (t)T tr
X ⊆ T tr

X , ∀ t > 0, (2.3)

and this property is quite natural for solutions of general autonomous evolution equa-

tions.

Since the topology Θ+
loc in the trajectory space T tr

X is metrizable, we use dT tr
X

(·, ·) to

denote the metric which is compatible with the topology Θ+
loc in T tr

X . For a set P ⊂ T tr
X

and some ε > 0, we set

O(P, ε) = {w ∈ T tr
X
∣∣ dT tr

X
(w,P) = inf

φ∈P
dT tr
X

(w, φ) < ε}.

In addition, we use C(T tr
X ) to denote the space of continuous functions from T tr

X to R.

Definition 2.2.

(1) A set P ⊆ T tr
X is said to be attracting for the semigroup {T (t)}t>0 in the topology

Θ+
loc, if for any set B ⊂ T tr

X , the set T (t)B is attracted to P in the topology Θ+
loc

as t → +∞, that is, for any ε > 0, there exists a τ = τ(B, ε) > 0 such that

T (t)B ⊆ O(P, ε) for all t > τ .

(2) A set Atr
X ⊆ T tr

X is called a trajectory attractor for the semigroup {T (t)}t>0 in the

topology Θ+
loc, if

(a) Atr
X is compact in the topology Θ+

loc;

(b) Atr
X is an attracting set in the topology Θ+

loc;

(c) Atr
X is strictly invariant under the action of T (t): T (t)Atr

X = Atr
X , ∀ t > 0.

Definition 2.3. We say a Borel probability measure ρ on T tr
X is a T tr

X -trajectory sta-

tistical solution over [0,+∞) (or simply a trajectory statistical solution) for equation

(2.1) if

(1) ρ is tight for any B ∈ B(T tr
X ) (the collection of Borel sets of T tr

X ) in the sense that

ρ(B) = sup
{
ρ(E)

∣∣E ∈ B(T tr
X ) and E ⊂ B

}
;

(2) ρ is supported by a Borel subset of T tr
X .

The following two lemmas, which were proved in our recent article [45], play the

essential role when we prove the existence of the trajectory statistical solutions. For

the convenience of the reader, we reproduce the proofs here.
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Lemma 2.1. Let K be some compact subset of T tr
X . Then for every ψ ∈ C(T tr

X ), there

exists some ε > 0 such that

sup
w∈O(K,ε)

|ψ(w)| < +∞.

Proof. Fix some ψ ∈ C(T tr
X ). For every w ∈ K we can choose δ = δw > 0 such

that for every v ∈ O(w; δw) = {Φ ∈ T tr
X | dT tr

X
(w,Φ) < δw} there holds |ψ(w) −

ψ(v)| < 1. Picking numbers δw > 0 in this way we can construct an open covering

Λ = {O(w; δw3 ) | w ∈ K} for K. Since K is compact in T tr
X , we may extract from this

open covering a finite one

Λm =
{
O(w1;

δw1

3
),O(w2;

δw2

3
), · · · ,O(wm;

δwm
3

)
}
.

Set

ε =
min{δw1 , δw2 , · · · , δwm}

3
, C = 1 + max

16j6m
|ψ(wj)|.

Given any w ∈ O(K, ε) we can choose v ∈ K so that dT tr
X

(w, v) < 2ε. Since Λm covers

K we can choose wj such that dT tr
X

(v, wj) <
δwj
3 . Hence we obtain

dT tr
X

(w,wj) < dT tr
X

(w, v) + dT tr
X

(v, wj) < 2ε+
δwj
3

6 δwj ,

and conclude that |ψ(w)| 6 C. By the arbitrariness of w ∈ O(K, ε), we end the

proof.

Lemma 2.2. Let K be some compact subset of T tr
X and let ψ, φ ∈ C(T tr

X ) satisfying

ψ(w) = φ(w) for every w ∈ K. Then for every ε > 0 there exists a δ = δ(ε) > 0 such

that sup
w∈O(K,δ)

|ψ(w)− φ(w)| < ε.

Proof. Consider given ε > 0. For every w ∈ K we pick γw > 0 so that |φ(w)− φ(v)|+
|ψ(w)−ψ(v)| < ε whenever v ∈ O(w; γw). Due to the compactness of K in T tr

X , we can

cover K with a finite collection

Λk =
{
O(w1;

γw1

3
),O(w2;

γw2

3
), · · · ,O(wk;

γwk
3

)
}

withwj ∈ K, j = 1, 2, · · · , k.

Set 3δ = min{γw1 , γw2 , · · · , γwk}, then for every v ∈ Kδ we can choose w ∈ K so

that dT tr
X

(v, w) < 2δ. Notice that K is covered by Λk, we may take wj such that

dT tr
X

(w,wj) <
γwj

3 . Thus

dT tr
X

(v, wj) 6 dT tr
X

(v, w) + dT tr
X

(w,wj) 6 2δ +
γwj
3

6 γwj .

Therefore for arbitrary v ∈ O(K, δ), there exists some j such that v ∈ O(wj ; γwj ).

Keeping in mind that ψ(wj) = φ(wj), we have

|ψ(v)− φ(v)| 6 |ψ(v)− ψ(wj)|+ |φ(wj)− φ(v)| < ε.

The proof of Lemma 2.2 is completed.
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We next recall the definition of generalized Banach limit and a useful property.

Definition 2.4. ( [12, 26]) A generalized Banach limit is any linear functional, which

we denote by LIMt→+∞, defined on the space of all bounded real-valued functions on

[0,+∞) satisfying

(1) LIMt→+∞f(t) > 0 for nonnegative functions f(·) on [0,+∞);

(2) LIMt→+∞f(t) = lim
t→+∞

f(t) if the usual limit lim
t→+∞

f(t) exists.

Let B+ be the collection of all bounded real-valued functions on [0,+∞). For any

generalized Banach limit LIMt→+∞, the following useful property

|LIMt→+∞f(t)| 6 lim sup
t→+∞

|f(t)|, ∀ f(·) ∈ B+, (2.4)

is presented in [12, (1.38)] and in [5, (2.3)].

We now begin to state and prove our abstract results. First, a sufficient condi-

tion ensuring the existence of trajectory statistical solutions for autonomous evolution

equations reads as follows.

Theorem 2.1. Suppose that the autonomous evolution equation (2.1) satisfies the fol-

lowing two conditions:

(A1) Equation (2.1) possesses a nonempty trajectory space T tr
X which is metrizable with

the topology Θ+
loc.

(A2) The translation semigroup {T (t)}t>0 possesses a trajectory attractor Atr
X ⊆ T tr

X
in the topology Θ+

loc.

Then, equation (2.1) possesses at least one trajectory statistical solution which is sup-

ported by the trajectory attractor Atr
X .

Proof. Let LIMt→+∞ be a given generalized Banach limit. Since T tr
X is nonempty,

we can pick some v ∈ T tr
X . Consider some ψ ∈ C(T tr

X ). By assumption (A2), the

translation semigroup {T (t)}t>0 possesses a trajectory attractor Atr
X ⊆ T tr

X . By the

attracting property of the trajectory attractor we see that for every ε > 0, there exists

a time tε > 0 such that

T (t)v ∈ O(Atr
X , ε), for every t > tε. (2.5)

By Lemma 2.1 we can choose ε > 0 such that

C1 = sup
u∈O(Atr

X ,ε)

|ψ(u)| < +∞. (2.6)

Since T (t) maps Atr
X continuously into itself, the function t 7−→ |ψ(T (t)v)| is continuous

on [0,+∞) and thus |ψ(T (t)v)| is bounded on the compact interval [0, tε]. Hence, we

can take tε as required in (2.5) for the picked ε, and

C2 = sup
t∈[0,tε]

|ψ(T (t)v)| < +∞. (2.7)
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It then follows from (2.6) and (2.7) that

1

t

∫ t

0
ψ(T (s)v)ds =

1

t

∫ tε

0
ψ(T (s)v)ds+

1

t

∫ t

tε

ψ(T (s)v)ds 6
C2tε
t

+
C1(t− tε)

t
< +∞,

which implies that the map defined by t 7−→ 1

t

∫ t

0
ψ(T (s)v)ds is bounded over [0,+∞).

Therefore, if ψ ∈ C(T tr
X ) is non-negative, then

Lv(ψ) = LIMt→+∞
1

t

∫ t

0
ψ(T (s)v)ds (2.8)

is well defined as a positive linear functional on C(T tr
X ).

We next prove that the positive linear functional Lv(ψ) depends only on the values

of ψ on the trajectory attractor Atr
X . To this end, we shall prove that if ψ(w) = φ(w)

for every w ∈ Atr
X then Lv(ψ) = Lv(φ). Indeed, for any given ε > 0, we can choose, by

Lemma 2.2, a corresponding δ > 0 such that

sup
v∈O(Atr

X ,δ)

|ψ(v)− φ(v)| < ε. (2.9)

We now pick tδ > 0 such that T (t)v ∈ O(Atr
X , δ) for every t > tδ. Set

Cδ = sup
t∈[0,tδ]

(|ψ(T (t)v)|+ |φ(T (t)v)|).

Analogous to (2.7), we see that Cδ < +∞. Combining (2.4), (2.7) and (2.9) yields

|Lv(ψ − φ)| =
∣∣∣LIMt→+∞

1

t

∫ t

0

(
ψ(T (s)v)− φ(T (s)v)

)
ds
∣∣∣

6 lim sup
t→+∞

1

t

∣∣∣ ∫ t

0

(
ψ(T (s)v)− φ(T (s)v)

)
ds
∣∣∣

6 lim sup
t→+∞

1

t

∫ tδ

0

∣∣ψ(T (s)v)− φ(T (s)v)
∣∣ds

+ lim sup
t→+∞

1

t

∫ t

tδ

∣∣ψ(T (s)v)− φ(T (s)v)
∣∣ds

6 lim sup
t→+∞

tδCδ
t

+ lim sup
t→+∞

(t− tδ)ε
t

6 ε.

Since ε > 0 is arbitrary, the positive linear functional Lv(ψ) depends only on the values

of ψ on the trajectory attractor Atr
X .

Now we define G(ψ) = Lv(ψ̃), where ψ̃ is a zero extension of ψ from C(Atr
X ) to

C(T tr
X ) given by the Tietze theorem (see [12, Theorem A.7]). By Definition 2.4(1)

and (2.8), we can find that G(·) is a positive linear functional on C(Atr
X ). Notice that

Atr
X ⊆ T tr

X is compact with respect to the topology Θ+
loc. Then, Atr

X is obviously a locally

compact topological space with respect to the topology Θ+
loc. By the Kakutani-Riesz
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Representation Theorem (see [12, Theorem A.1]), we assert that there exists a unique

positive, finite, Borel measure ρv on Atr
X such that

G(ψ) =

∫
Atr
X

ψ(u)dρv(u). (2.10)

Taking ρv(E) = ρv(Atr
X ∩ E) for E ∈ B(T tr

X ), we extend ρv by zero to a Borel measure

on T tr
X . Thus for every ψ ∈ C(T tr

X ), we have

G(ψ) = Lv(ψ) = LIMt→+∞
1

t

∫ t

0
ψ(T (s)v)ds =

∫
Atr
X

ψ(u)dρv(u) =

∫
T tr
X

ψ(u)dρv(u),

(2.11)

and obviously ρv(T tr
X \Atr

X ) = 0. Now, by assumption (A1), T tr
X is a metrizable topolog-

ical space, every finite Borel measure is tight in the sense of Definition 2.3(1) (see [1,

Theorem 12.5]. To see that ρv is a Borel probability measure we pick ψ ≡ 1 in (2.11).

Therefore, by Definition 2.3, ρv is a trajectory statistical solution for equation (2.1).

The proof of Theorem 2.1 is completed.

Remark 2.1. From Definition 2.1 we see that the elements in Atr
X are bounded, com-

plete trajectories of equation (2.1). Thus Atr
X is called weak trajectory attractor. Notice

that Y ↪→ X and in concrete evolution partial differential equations the space Y is usu-

ally more regular than X . A trajectory attractor (if exists) Atr
Y consisting of all bounded

global regular weak solutions of equation (2.1) is called a regular trajectory attractor. If

further we have

Atr
X = Atr

Y , (2.12)

then we say that equation (2.1) possesses the property of “trajectory asymptotic smooth-

ing effect”. Recall that the regularity of the trajectory statistical solutions means that

it is supported by a set in the trajectory space in which all weak solutions are in fact

regular weak solutions. Therefore, from our constructions of the trajectory statistical

solutions we see that another interesting point of our abstract results is that the regu-

larity problem of the trajectory statistical solutions come down to the regularity problem

of the trajectory attractor, that is, the regularity of the trajectory statistical solutions

for equation (2.1) will be a direct consequence of the relation (2.12). The regularity

relation (2.12) of the trajectory attractors for the 2D incompressible non-Newtonian

fluids and the 3D globally modified Navier-Stokes equations was established respectively

in [43] and [45]. As a byproduct of our abstract results, we have the assertion that the

2D incompressible non-Newtonian fluids and the 3D globally modified Navier-Stokes

equations possess regular trajectory statistical solutions.

Remark 2.2. If problem (2.1)-(2.2) is globally well-posed in X , then its solution op-

erator S(t), defined by

S(t) : u0 ∈ X 7−→ u(t) = u(t;u0) = S(t)u0 ∈ X ,
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generates a continuous semigroup {S(t)}t>0 in X , where u(t) is the solution of problem

(2.1)-(2.2) corresponding to the initial value u0. In this case, by the uniqueness of the

weak solutions, we have

S(t)u(s) = T (t)u(s), ∀u(s) ∈ T tr
X .

Therefore, if the conditions of Theorem 2.1 hold, then we can also use the semigroup

{S(t)}t>0 of the solution operators and its trajectory attractor to construct the same

trajectory statistical solutions as that as in Theorem 2.1 for equation (2.1). This implies

that we present a unified approach to construct the trajectory statistical solutions for

those general evolution equations which possess nonempty metrizable trajectory space

and trajectory attractor.

We next establish that the trajectory statistical solution ρv is invariant under the

action of the translation semigroup {T (t)}t>0. Moreover, if we set µt = T (t)ρv by define

µt(E) = T (t)ρv(E) = ρv(T (t)−1(E)) (2.13)

for every set E ⊆ T tr
X that is ρv-measurable, then we prove that µt satisfies a Liouville

type equation in Statistical Mechanics. To this end, we first introduce the definition of

the class T of test functions. We expect that the function Φ(·) ∈ T satisfies

d

dt
Φ(u(t)) = 〈Φ′(u(t)), F (u(t))〉, t > 0, (2.14)

for every global weak solution u(t) of equation (2.1), where 〈·, ·〉 is the dual pairing

between Y and Y∗.

Definition 2.5. (cf. [12, pages 178-179, Definition 1.2]) We define the class T of test

functions to be the set of real-valued functionals Φ = Φ(u) on X that are bounded on

bounded subset of X and satisfy

(a) for any u ∈ Y, the Fréchet derivative Φ′(u) exists: for each u ∈ Y there exists an

element Φ′(u) such that

|Φ(u+ v)− Φ(u)− 〈Φ′(u), v〉|
‖v‖Y

−→ 0 as ‖v‖Y → 0, v ∈ Y;

(b) Φ′(u) ∈ Y for all u ∈ Y, and the mapping ψ 7−→ Φ′(u) is continuous and bounded

as a functional from Y to Y;

(c) for every global weak solution u(t) of equation (2.1), (2.14) holds true.

For example, we can consider the cylindrical test function depending only on a

finite number m of component of u. In fact, Y ↪→ X ↪→ Y∗ and the embeddings are

continuous. We consider the cylindrical test function defined on Y. Let m be some

positive integer, ϕ1, ϕ2, · · · ϕm belong to Y and γ be a continuously differentiable

real-valved function on Rm with compact support. For each u ∈ Y, define Φ(u) via

Φ(u) = γ(〈ϕ1, u〉, 〈ϕ2, u〉, · · · , 〈ϕm, u〉),
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where 〈ϕj , u〉 is the dual pairing between ϕj ∈ Y and u ∈ Y ⊂ Y∗. Then the func-

tion Φ(·) is obviously continuous from Y to R and in fact is differentiable on Y, with

differential Φ′(·) at u ∈ Y given by

Φ′(u) =
m∑
j=1

∂jγ(〈ϕ1, u〉, 〈ϕ2, u〉, · · · , 〈ϕm, u〉)ϕj , (2.15)

where ∂jγ denotes the derivative of γ with respect to its j-th coordinate. (2.15) shows

that Φ′(·) ∈ Y. Above analyses show that the cylindrical test functions of above form

satisfy Definition 2.5.

Theorem 2.2.

(1) Let ρv be the trajectory statistical solution proved in Theorem 2.1, then ρv satisfies

the following invariant property∫
T tr
X

ψ(T (t)u)dρv(u) =

∫
T tr
X

ψ(u)dρv(u) =

∫
Atr
X

ψ(u)dρv(u), ∀ t > 0, (2.16)

for every ψ ∈ C(T tr
X ).

(2) µt = T (t)ρv satisfies the following Liouville type equation

d

dt

∫
T tr
X

Φ(u)dµt(u) =

∫
T tr
X

〈Φ′(u), F (u)〉dµt(u), (2.17)

for all test functions Φ ∈ T .

Proof. We first prove that ρv is invariant under the action of the translation semigroup

{T (t)}t>0, that is ρv satisfies (2.16). To this end, we fix any t∗ > 0 and any ψ ∈ C(T tr
X ).

Since the interval [0, t∗] is compact in R and t 7→ |ψ(T (t)u)| is continuous, we have,

using the property of generalized Banach limit (2.4),∣∣∣LIMt→+∞
1

t

∫ t∗

0
ψ(T (s)u)ds

∣∣∣ 6 lim sup
t→+∞

∣∣∣1
t

∫ t∗

0
ψ(T (s)u)ds

∣∣∣ = 0,

and thus

LIMt→+∞
1

t

∫ t∗

0
ψ(T (s)u)ds = 0. (2.18)

At the same time, we use (2.6) and also the property of generalized Banach limit (2.4)

to deduce ∣∣∣LIMt→+∞
1

t

∫ t+t∗

t
ψ(T (s)u)ds

∣∣∣ 6 lim sup
t→+∞

t∗

t
C1 = 0,

and hence

LIMt→+∞
1

t

∫ t+t∗

t
ψ(T (s)u)ds = 0. (2.19)
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Therefore, (2.11) and (2.18)-(2.19) imply∫
T tr
X

ψ(T (t∗)u)dρv(u) =LIMt→+∞
1

t

∫ t

0
ψ(T (t∗)T (s)u)ds

=LIMt→+∞
1

t

∫ t

0
ψ(T (t∗ + s)u)ds

=LIMt→+∞
1

t

∫ t+t∗

t∗
ψ(T (s)u)ds

=LIMt→+∞
1

t

∫ t+t∗

t
ψ(T (s)u)ds− LIMt→+∞

1

t

∫ t∗

0
ψ(T (s)u)ds

+ LIMt→+∞
1

t

∫ t

0
ψ(T (s)u)ds

=LIMt→+∞
1

t

∫ t

0
ψ(T (s)u)ds =

∫
T tr
X

ψ(u)dρv(u).

The invariant property of ρv under the action of {T (t)}t>0 is proved.

We next establish that µt = T (t)ρv, which is defined by (2.13), satisfies the Liouville

type equation in Statistical Mechanics. In fact, since the mapping T (t) from T tr
X into

itself is continuous and ρv is a probability measure on T tr
X , it is not difficult to check

that µt = T (t)ρv is a probability measure on T tr
X . Now, for any Φ ∈ T , we have∫

T tr
X

Φ(u)dµt(u) =

∫
T tr
X

Φ(u)d(T (t)ρv)(u) =

∫
T tr
X

Φ(T (t)u)dρv(u). (2.20)

Notice that the function t 7−→ Φ(T (t)u) is differentiable and (2.14) holds true. We use

the generalized chain differentiation rule to differentiate (2.20) and obtain

d

dt

∫
T tr
X

Φ(u)dµt(u) =
d

dt

∫
T tr
X

Φ(u)d(T (t)ρv)(u) =
d

dt

∫
T tr
X

Φ(T (t)u)dρv(u)

=

∫
T tr
X

〈
Φ′(T (t)u),

d

dt
T (t)u

〉
dρv(u)

=

∫
T tr
X

〈Φ′(T (t)u), F (T (t)u)〉dρv(u)

=

∫
T tr
X

〈Φ′(u), F (u)〉dµt(u).

This proves (2.17) and the proof of Theorem 2.2 is therefore finished.

We point out that, if a statistical equilibrium has been reached by the system, then

the statistical informations do not change with time, that is Φ′(u(t)) = 0. In this

situation, (2.17) implies

d

dt

∫
T tr
X

Φ(u)dµt(u) =

∫
T tr
X

〈Φ′(u), F (u)〉dµt(u) = 0. (2.21)
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(2.21) shows that µt is independent of time t. Thus (2.20) and (2.21) imply∫
T tr
X

Φ(T (t)u)dρv(u) =

∫
T tr
X

Φ(u)dµt(u) =

∫
T tr
X

Φ(u)dµ0(u) =

∫
T tr
X

Φ(u)dρv(u). (2.22)

(2.22) describes exactly the invariant property of the trajectory statistical solutions

under the action of the translation semigroup {T (t)}t>0, which has been proved in

Theorem 2.2(1). The previous analysis reveals that the equation describing the in-

variant property of the trajectory statistical solutions is a particular situation of the

Liouville type equation.

3 Trajectory attractor and trajectory statistical solution
for the 3D incompressible magneto-micropolar fluids

In this section, we study the 3D incompressible magneto-micropolar fluids in details,

illustrating how to apply our abstract results to some concrete autonomous evolution

equations.

3.1 The 3D incompressible magneto-micropolar fluids

We consider the following system of incompressible magneto-micropolar fluids equa-

tions:

∂u

∂t
− (ν + νr)∆u+ (u · ∇)u+∇(p+

1

2
h · h) = 2νr∇× ω + r(h · ∇)h+ f,

j
∂ω

∂t
− α∆ω − β∇divω + 4νrω + j(u · ∇)ω = 2νr∇× u+ g,

∂h

∂t
− µ∆h+ (u · ∇)h− (h · ∇)u = 0,

div u = 0,div h = 0,

(3.1)

with the initial and boundary conditions

u(x, 0) = u0(x), ω(x, 0) = ω0(x), h(x, 0) = h0(x), x ∈ Ω, (3.2)

u(x, t) = ω(x, t) = h(x, t) = 0, (x, t) ∈ ∂Ω× [0,+∞), (3.3)

where 
u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t))
ω = ω(x, t) = (ω1(x, t), ω2(x, t), ω3(x, t))
h = h(x, t) = (h1(x, t), h2(x, t), h3(x, t))
p = p(x, t),

are unknown functions, here u(x, t) denotes the velocity of the fluid at a physical point

x = (x1, x2, x3) and at the moment of time t; ω(x, t), h(x, t) and p(x, t) denote respec-

tively the micro-rotational velocity, magnetic field and hydrostatic pressure of the fluid;
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f = f(x, t) = (f1(x, t), f2(x, t), f3(x, t)) and g = g(x, t) = (g1(x, t), g2(x, t), g3(x, t)) are

the external force and the angular momentum, respectively; ν, νr, r, j, α, β and µ are

positive constants associated to properties of the material. In this article, we consider

above equations (3.1) in a 3D bounded domain Ω ⊂ R3 with suitable smooth boundary

∂Ω, and take r = j = µ = 1 for simplicity.

Above equations (3.1) describe the motion of electrically conducting micropolar

fluids (see [23]) in the presence of magnetic fields. The theory of magneto-micropolar

fluids was first introduced by Galdi and Rionero in [18]. If the magnetic field h =

(0, 0, 0), equations (3.1) reduce to the 3D micropolar fluids system, which was first

proposed by Eringen [10] and the pullback dynamical behavior was investigated by

Zhao et al. [44]. If we ignore the micro-rotation of particles, equations (3.1) reduce to

the 3D incompressible magneto-hydrodynamic (MHD) equations, which can model the

magnetic properties of electrically conducting fluids (see e. g. [40, 42, 47]). When the

magnetic field is absent (h = (0, 0, 0)) and there is no micro-structure (νr = 0), then

equations (3.1) turn to the classical 3D incompressible Navier-Stokes equations.

The incompressible magneto-micropolar fluids equations have been extensively stud-

ied due to its abundant physical background. In the 2D space, the global existence of

solutions for the equations with mixed partial viscosity was studied in [28]; the global

regularity of solutions was investigated in [6,29,34,39]; the existence of uniform attrac-

tor was obtained in [22]. In the 3D space, Li and Shang studied the large time decay of

solutions in [20]; Yuan studied the regularity of weak solutions and the blow-up criteria

for smooth solutions in [41]; Rojas-Medar proved the local existence and uniqueness of

strong solutions in [31]. The global existence of weak solutions for the 3D case and the

uniqueness of weak solution for the 2D case were obtained in [32]. However, as far as

we know, there are few references investigating the invariant measures and trajectory

statistical solutions for the 3D magneto-micropolar fluids equations.

The purpose of this section is to investigate the existence of trajectory attractors

and trajectory statistical solutions for the 3D incompressible magneto-micropolar flu-

ids equations. Similar to the 3D incompressible Navier-Stokes equations, the global

uniqueness of weak solution for the 3D incompressible magneto-micropolar fluids equa-

tions is still unproved. Thus the semigroup of solution operators is not well defined in

the phase space.

3.2 Global existence and estimates of weak solutions

We first introduce some notations. Let Lq(Ω) = (Lq(Ω))3 to denote the 3D

Lebesgue space, with the norm denoted by ‖ · ‖Lq . The norm in L2(Ω) will be de-

noted just by ‖ · ‖. Let Wm,p
0 = (Wm,p

0 )3 to denote the 3D Sobolev spaces, with the

norm denoted by ‖ · ‖m,p. Especially, we write Wm,p
0 (Ω) = Hm

0 for p = 2. We also use

the following function spaces:

V =
{
ϕ = (ϕ1, ϕ2, ϕ3) ∈ (C∞0 (Ω))3|∇ · ϕ = 0

}
,

H = the closure of V in L2 with inner product (·, ·) and norm as in L2, ‖ ·‖H = ‖ ·‖,
V = the closure of V in H1 with norm ‖ · ‖V = ‖ · ‖1,2,
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Ĥ = H × L2 ×H with inner product (·, ·) and norm ‖ · ‖Ĥ = ‖ · ‖ defined as

(Φ,Ψ) = (φ, ξ) + (ϕ, η) + (ψ, ζ), Φ = (φ, ϕ, ψ),Ψ = (ξ, η, ζ) ∈ Ĥ,
‖Φ‖ = (‖φ‖2 + ‖ϕ‖2 + ‖ψ‖2)1/2, Φ = (φ, ϕ, ψ) ∈ Ĥ,

V̂ = V ×H1
0 × V with norm ‖ · ‖V̂ defined as

‖Φ‖V̂ = (‖φ‖2V + ‖ϕ‖21,2 + ‖ψ‖2V )1/2, Φ = (φ, ϕ, ψ) ∈ V̂ ,

here, we use the same notation (·, ·) to denote the inner product in L2(Ω), H and Ĥ

when no confusion is possible. At the same time, we use V̂ ∗ to denote the dual space

of V̂ and use 〈·, ·〉 to denote the dual pairing between V̂ and V̂ ∗.

Now we use Ĥw to denote the space Ĥ endowed with its weak topology. In fact, the

collection of open sets in Ĥw has a characterization by a basis of neighborhoods given

by

Ow(u, r, v1, v2, · · · , vN ) =
{
w ∈ Ĥw

∣∣∣ N∑
j=1

|(u− w, vj)|2 < L2
}
,

for u ∈ Ĥw, L > 0, N ∈ N, and v1, v2, · · · , vN ∈ Ĥ. Further, let F+
loc = Cloc([0,+∞); Ĥw)

be the space of continuous functions from [0,+∞) to Ĥw. This space can also be seen

as the space of weakly continuous function from R+ to Ĥ. The topology on F+
loc, which

is still denoted by Θ+
loc, is that of uniform convergence in Ĥw on compact subinterval

of R+, that is, by definition, wn(t) −→ w(t) (n → +∞) in the topology Θ+
loc, if, for

every T > 0, (wn(t),Φ) −→ (w(t),Φ) uniformly on [0, T ] (n→ +∞) for each Φ ∈ Ĥ.

We next introduce some operators. Define a trilinear form b(·, ·, ·) as

b(u, ω, h) =
3∑

i,j=1

∫
Ω
ui
∂ωj
∂xi

hjdx, ∀u ∈ V, ∀ω, h ∈ H1
0.

It is not difficult to check that b(u, ω, h) is continuous on V ×H1
0 ×H1

0 and

b(u, ω, h) = −b(u, h, ω), b(u, ω, ω) = 0, ∀u ∈ V, ω, h ∈ H1
0. (3.4)

We also define the operator B: V̂ × V̂ 7−→ V̂ ∗ by

〈B(w,Φ),Ψ〉 =b(u, φ, ξ) + b(u, ϕ, η) + b(u, ψ, ζ)− b(h, φ, ζ)− b(h, ψ, ξ),

for any w = (u, ω, h), Φ = (φ, ϕ, ψ), Ψ = (ξ, η, ζ) ∈ V̂ . As a consequence of (3.4), we

have

〈B(w,Φ),Φ〉 = 0, ∀w,Φ ∈ V̂ . (3.5)

Further, for each w = (u, ω, h) ∈ V̂ we define two operators A and N : V̂ 7−→ V̂ ∗ as

〈Aw,Φ〉 = (ν+νr)(∇u,∇φ)+α(∇ω,∇ϕ)+(∇h,∇ψ)+β(divω,divϕ), ∀Φ = (φ, ϕ, ψ) ∈ V̂ ,

〈N(w),Φ〉 = −2νr(∇× ω, φ)− 2νr(∇× u, ϕ) + 4νr(ω, ϕ), ∀Φ = (φ, ϕ, ψ) ∈ V̂ .
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In the sequel, we let F = (f, g, 0) ∈ Ĥ be independent of time t. Using the above

notations and operators, we can write the initial boundary values problem (3.1)-(3.3)

as following:

dw(t)

dt
+Aw(t) +B(w(t), w(t)) +N(w(t)) = F, t > 0, (3.6)

w|t=0 = w0 = (u0, ω0, h0) ∈ Ĥ, (3.7)

where (3.6) is understood in the sense of distributions D′(0,+∞; V̂ ∗).

Definition 3.1. Let w0 = (u0, ω0, h0) ∈ Ĥ. A function w(t) = (u(t), ω(t), h(t)) is said

to be a weak solution of problem (3.6)-(3.7) satisfying the initial condition w0, if

(1)
dw(t)

dt
∈ L4/3([0, T ]; V̂ ∗), w(t) ∈ C([0, T ]; Ĥw) ∩ L2([0, T ]; V̂ ) for all T > 0;

(2) w(t) satisfies the equation

(
dw(t)

dt
,Φ) + 〈Aw(t),Φ〉+ 〈B(w(t), w(t)),Φ〉+ 〈N(w(t)),Φ〉 = 〈F,Φ〉, ∀Φ ∈ V̂ ,

in the distribution sense D′(0,+∞), and w(t) satisfies the following energy in-

equality

‖w(t)‖2 + 2

∫ t

0
〈Aw(s), w(s)〉ds+ 2

∫ t

0
〈N(w(s)), w(s)〉ds

6‖w0‖2 + 2

∫ t

0
(F,w(s))ds (3.8)

in the sense that

− 1

2

∫ t

0
‖w(t)‖2φ′(t)dt+

∫ t

0
〈Aw(t), w(t)〉φ(t)dt+

∫ t

0
〈N(w(t)), w(t)〉φ(t)dt

6
∫ t

0
(F (t), w(t))φ(t)dt, ∀φ(·) ∈ C∞0 ([0, t]) with φ(t) > 0, ∀t > 0. (3.9)

In the sequel of the article, we will use for brevity the notation q1 . q2 to mean that

q1 6 cq2 for a universal constant c > 0 that only depends on the parameters coming

from the problem.

For the existence and some estimates of weak solutions to problem (3.6)-(3.7), we

have the following result.

Lemma 3.1. Assume F ∈ Ĥ. Then, for any w0 = (u0, ω0, h0) ∈ Ĥ, there exists at

least one corresponding weak solution w(t) to problem (3.6)-(3.7). Moreover, for the

positive constant R = 1+‖f‖2 +‖g‖2 there exists a positive time t∗ > 0 depending only

on Ω, f , g, α, ν and w0 such that

w(t) ∈ X , {v ∈ Ĥ
∣∣ ‖v‖ 6 R}, ∀t > t∗. (3.10)

17



Proof. The proof of the existence of weak solutions to problem (3.6)-(3.7) can be found

in [32]. We next prove (3.10). Taking the dual pairing of w(t) with equation (3.6)

yields

1

2

d

dt
‖w(t)‖2 + (ν + νr)‖∇u(t)‖2 + α‖∇ω(t)‖2 + ‖∇h(t)‖2

− 2νr

∫
Ω
∇× ω(t) · u(t)dx− 2νr

∫
Ω
∇× u(t) · ω(t)dx

+ 4νr‖ω(t)‖2 + β‖divω(t)‖2 =

∫
Ω
fu(t)dx+

∫
Ω
gω(t)dx. (3.11)

Since ∇ · v = 0, direct computations imply

∇× (∇× v) = −∆v, ∀v ∈ V. (3.12)

Taking inner product of uv with (3.12) yields

‖∇ × v‖2 = ‖∇v‖2, ∀v ∈ V.

Then using Cauchy inequality and the following Poincaré inequality

‖φ‖2 6 λ‖∇φ‖2, ∀φ ∈ H1
0(Ω), λ is a constant depending only on Ω, (3.13)

we have

2νr

∫
Ω
∇× ω(t) · u(t)dx = 2νr

∫
Ω
∇× u(t) · ω(t)dx

6 2νr‖ω(t)‖2 +
νr
2
‖∇u(t)‖2, (3.14)∫

Ω
fu(t)dx+

∫
Ω
gω(t)dx .

α

2λ
‖ω(t)‖2 + ‖g‖2 +

ν

2λ
‖u(t)‖2 + ‖f‖2

.
α

2
‖∇ω(t)‖2 + ‖g‖2 +

ν

2
‖∇u(t)‖2 + ‖f‖2. (3.15)

Combining (3.11) and (3.14)-(3.15), we see that there exists a constant δ depending

only on α and ν such that

d

dt
‖w(t)‖2 + δ‖∇w(t)‖2 . ‖g‖2 + ‖f‖2. (3.16)

It then follows from (3.13), (3.16) and the Gronwall inequality that

‖w(t)‖2 . ‖w0‖2e−
δ
λ
t + ‖g‖2 + ‖f‖2, ∀t > 0,

from which we readily obtain (3.10). The proof of Lemma 3.1 is completed.

3.3 Existence of the trajectory attractor

We will prove the existence of trajectory attractor for equation (3.6). Hereinafter,

we letX be the fixed set defined by (3.10). We begin with the definition of the trajectory

space.
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Definition 3.2. The trajectory space T +

Ĥ
of equation (3.6) consists of functions w(t) ∈

L∞([0,+∞); Ĥ)∩L2
loc([0,+∞); V̂ ) such that w(t) is a weak solution of (3.6) on [0,+∞)

and w(t) ∈ X for all t ∈ [0,+∞).

LetM+
loc = Cloc([0,+∞);Xw) be the space of continuous functions from [0,+∞) to

Xw, where Xw denotes the space X endowed with the weak topology inherited from

Ĥw. We endow M+
loc also with the topology Θ+

loc. Since X is a fixed bounded subset

of the Banach space Ĥ, the topology Θ+
loc in M+

loc is metrizable. Note that M+
loc is a

Hausdorff topological space.

The natural translation semigroup {T (t)}t>0 on F+
loc is defined as

(T (t)w)(s) = w(t+ s), ∀w ∈ F+
loc.

We obviously have T (t)T +

Ĥ
⊆ T +

Ĥ
, ∀t > 0.

Now we have given the definitions of spaces F+
loc,M

+
loc, the trajectory space T +

Ĥ
and

its corresponding topology Θ+
loc, as well as the translation semigroup {T (t)}t>0 acting

on F+
loc. Then the definitions of trajectory attracting set and trajectory attractor for

the equations of 3D incompressible magneto-micropolar fluids are similar to those in

Definition 2.2. To prove the existence of trajectory attractor for equation (3.6), we

next establish some lemmas.

Lemma 3.2. Let w(t) = (u(t), ω(t), h(t)) ∈ L∞([0, T ]; Ĥ)∩L2([0, T ]; V̂ ) for all T > 0,

then

t 7−→ Aw(t) ∈ L2([0, T ]; V̂ ∗), (3.17)

t 7−→ B(w(t), w(t)) ∈ L4/3([0, T ]; V̂ ∗), (3.18)

t 7−→ N(w(t)) ∈ L2([0, T ]; V̂ ∗). (3.19)

Proof. Consider a fixed T > 0 and w(t) = (u(t), ω(t), h(t)) ∈ L∞([0, T ]; Ĥ)∩L2([0, T ]; V̂ ).

Then for a.e. t ∈ [0, T ], we see from the definitions of the operators A, B(·, ·) and N(·)
that Aw(t), B(w(t), w(t)) and N(w(t)) belong to V̂ ∗. Also, the measurability of the

functions t 7−→ Aw(t), t 7−→ B(w(t), w(t)), t 7−→ N(w(t)) are not difficult to check.

We first prove that t 7−→ Aw(t) ∈ L2([0, T ]; V̂ ∗). In fact, using the Cauchy inequal-

ity we obtain

|〈Aw(t),Φ〉| . |(∇u(t),∇φ)|+ |(∇ω(t),∇ϕ)|+ |(∇h(t),∇ψ)|+ |(divω,divϕ)|
. ‖∇u(t)‖‖∇φ‖+ ‖∇ω(t)‖‖∇ϕ‖+ ‖∇h(t)‖‖∇ψ‖
. ‖u(t)‖V ‖φ‖V + ‖ω(t)‖1,2‖ϕ‖1,2 + ‖h(t)‖V ‖ψ‖V
. ‖w(t)‖V̂ ‖Φ‖V̂ , ∀Φ = (φ, ϕ, ψ) ∈ V̂ . (3.20)

Hence, ‖Aw(t)‖V̂ ∗ . ‖w(t)‖V̂ and∫ T

0
‖Aw(t)‖2

V̂ ∗
dt .

∫ T

0
‖w(t)‖2

V̂
dt <∞.
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We next prove that t 7−→ B(w(t), w(t)) ∈ L4/3([0, T ]; V̂ ∗). By using the Hölder

inequality, the Gagliardo-Nirenberg inequality and the embedding V̂ ↪→ L6 × L6 × L6,

we have

|b(u, u, φ)| . ‖(u · ∇)u(t)‖L6/5‖φ‖L6 . ‖u(t)‖L3‖∇u(t)‖‖φ‖L6

. ‖u(t)‖1/2‖∇u(t)‖1/2‖u(t)‖V ‖φ‖L6 . ‖u(t)‖1/2‖u(t)‖3/2V ‖φ‖L6

. ‖w(t)‖1/2‖w(t)‖3/2
V̂
‖Φ‖L6×L6×L6

. ‖w(t)‖1/2‖w(t)‖3/2
V̂
‖Φ‖V̂ , ∀Φ = (φ, ϕ, ψ) ∈ V̂ .

Thus, it is obvious that

|〈B(w(t), w(t)),Φ〉| . ‖w(t)‖1/2‖w(t)‖3/2
V̂
‖Φ‖V̂ , ∀Φ ∈ V̂ . (3.21)

Hence, ‖B(w(t), w(t))‖V̂ ∗ . ‖w(t)‖3/2
V̂
‖w(t)‖1/2 for w(t) ∈ L∞([0, T ]; Ĥ)∩L2([0, T ]; V̂ ),

and we have ∫ T

0
‖B(w(t), w(t))‖4/3

V̂ ∗
dt .

∫ T

0
‖w(t)‖2/3‖w(t)‖2

V̂
dt <∞.

Also, using the Cauchy inequality and (3.13) yields

|〈N(w(t)),Φ〉| . |(∇× ω(t), φ)|+ |(∇× u(t), ϕ)|+ |(ω(t), ϕ)|
. ‖∇ω(t)‖‖φ‖+ ‖∇u(t)‖‖ϕ‖+ ‖ω(t)‖‖ϕ‖
. ‖ω(t)‖1,2‖φ‖V + ‖u(t)‖V ‖ϕ‖V + ‖ω(t)‖1,2‖ϕ‖V
. ‖w(t)‖V̂ ‖Φ‖V̂ , ∀Φ = (φ, ϕ, ψ) ∈ V̂ . (3.22)

Whence, ‖N(w(t))‖V̂ ∗ . ‖w(t)‖V̂ and∫ T

0
‖N(w(t))‖2

V̂ ∗
dt .

∫ T

0
‖w(t)‖2

V̂
dt <∞.

The proof of Lemma 3.2 is completed.

Lemma 3.3. For any Φ = (φ, ϕ, ψ) ∈ V̂ , we have

‖Φ‖2
V̂
. 〈AΦ,Φ〉+ 〈N(Φ),Φ〉 . ‖Φ‖2

V̂
.

Proof. According to (3.20) and (3.22),

〈AΦ,Φ〉+ 〈N(Φ),Φ〉 . ‖Φ‖2
V̂
.

From the definition of operator A, we see that

〈AΦ,Φ〉 = (ν + νr)(∇φ,∇φ) + α(∇ϕ,∇ϕ) + (∇ψ,∇ψ) + β(divϕ,divϕ)

> (ν + νr)‖∇φ‖2 + α‖∇ϕ‖2 + ‖∇ψ‖2. (3.23)
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At the same time, using (3.14), we have

〈N(Φ),Φ〉 > −2νr‖ϕ‖2 −
νr
2
‖∇φ‖2 − 2νr‖ϕ‖2 −

νr
2
‖∇φ‖2 + 4νr‖ϕ‖2

> −νr‖∇φ‖2. (3.24)

Combining (3.23) and (3.24) yields

〈AΦ,Φ〉+ 〈N(Φ),Φ〉 > ν‖∇φ‖2 + α‖∇ϕ‖2 + ‖∇ψ‖2 & ‖Φ‖2
V̂
.

The proof of Lemma 3.3 is thus completed.

Lemma 3.4. Let {wn(t)}n>1 be a sequence of weak solutions to equation (3.6) such

that wn(t) ∈ X for all t > 0. Then

(1) for all T > 0,

{wn(t)}n>1 is bounded in L2([0, T ]; V̂ ) ∩ L∞([0, T ]; Ĥ), (3.25){ d

dt
wn(t)

}
n>1

is bounded in L4/3([0, T ]; V̂ ∗), (3.26)

(2) there is a subsequence {wnj (t)}nj>1 of {wn(t)}n>1 that converges in C([0, T ]; Ĥw)

to some weak solution w(t) of equation (3.6) and w(t) ∈ X, i.e.,

(wnj (t),Φ)→ (w(t),Φ) uniformly on [0, T ], nj →∞, ∀Φ ∈ Ĥ. (3.27)

Proof. Let {wn(t)}n>1 be a sequence of weak solutions to problem (3.6) such that

wn(t) ∈ X for all t > 0. For a given T > 0, we integrate (3.16) over [0, T ] and obtain

‖wn(t)‖2 + δ

∫ T

0
‖∇wn(t)‖2dt . ‖wn(0)‖2 + T (‖g‖2 + ‖f‖2), t > 0, (3.28)

which implies that

{wn(t)}n>1 is bounded in L2([0, T ]; V̂ ) ∩ L∞([0, T ]; Ĥ). (3.29)

We thus conclude from equation (3.6), Lemma 3.2 and the embedding L2([0, T ]; V̂ ∗) ↪→
L4/3([0, T ]; V̂ ∗) that

∥∥dwn(t)

dt

∥∥
L4/3([0,T ];V̂ ∗)

6‖Awn(t)‖L4/3([0,T ];V̂ ∗) + ‖B(wn(t), wn(t))‖L4/3([0,T ];V̂ ∗)

+ ‖N(wn(t))‖L4/3([0,T ];V̂ ∗) + ‖F‖L4/3([0,T ];V̂ ∗)

.‖wn(t)‖L2([0,T ];V̂ ) + ‖wn(t)‖1/2
L∞([0,T ];Ĥ)

‖wn(t)‖3/2
L2([0,T ];V̂ )

+ ‖wn(t)‖L2([0,T ];V̂ ) + T‖F‖.

(3.30)

Since that F ∈ Ĥ, we see from (3.29) that the right hand side of (3.30) is bounded by

a constant independent of n. Assertion (1) of Lemma 3.4 is proved.

21



We next prove assertion (2) of Lemma 3.4. In fact, from assertion (1) of this

lemma, we see that there exists some w(t) ∈ L∞([0, T ]; Ĥ)∩L2([0, T ]; V̂ ) with
dw(t)

dt
∈

L4/3([0, T ]; V̂ ∗) and a subsequence {wnj (t)}nj>1 of {wn(t)}n>1, such that

wnj (t) ⇀ w(t) weakly star in L∞([0, T ]; Ĥ) as nj →∞, (3.31)

wnj (t) ⇀ w(t) weakly in L2([0, T ]; V̂ ) as nj →∞, (3.32)

dwnj (t)

dt
⇀

dw(t)

dt
weakly in L4/3([0, T ]; V̂ ∗) as nj →∞. (3.33)

Now we denote by E the Banach space consisting of functions Φ ∈ L2([0, T ]; V̂ ) and
dΦ(t)

dt
∈ L4/3([0, T ]; V̂ ∗), and endow E with the norm

‖Φ‖E = ‖Φ‖L2([0,T ];V̂ ) + ‖Φ‖L4/3([0,T ];V̂ ∗).

Then we have (cf. [23], Theorem 2.3.1)

E ⊂ C([0, T ]; Ĥw) and E ↪→ L2([0, T ]; Ĥ) with compact embedding. (3.34)

From (3.31)-(3.34) we conclude that

wnj (t)→ w(t) in C([0, T ]; Ĥw), nj →∞. (3.35)

Next we check that w(t) is a weak solution of (3.6). Firstly, by (3.32) and definitions

of the operators A and N(·) we obviously have

Awnj (t) ⇀ Aw(t) weakly in L2([0, T ]; V̂ ∗), nj →∞, (3.36)

N(wnj (t)) ⇀ N(w(t)) weakly in L2([0, T ]; V̂ ∗), nj →∞. (3.37)

For the nonlinear term B(wnj (t), wnj (t)), we can use the same derivation as that as [35]

to obtain

B(wnj (t), wnj (t)) ⇀ B(w(t), w(t)) weakly in L4/3([0, T ]; V̂ ∗), nj →∞. (3.38)

Since for each nj > 1 we have

dwnj (t)

dt
+Awnj (t) +B(wnj (t), wnj (t)) +N(wnj (t)) = F, a.e. for t > 0 (3.39)

in L4/3([0, T ]; V̂ ∗), we therefore conclude from (3.33) and (3.36)-(3.39) that

dw(t)

dt
+Aw(t) +B(w(t), w(t)) +N(w(t)) = F, a.e. for t > 0 (3.40)

in L4/3([0, T ]; V̂ ∗). Since L4/3[0, T ] ⊂ D′[0, T ], we see that w(t) satisfies (3.6) in the

sense of distributions in D′(0, T ; V̂ ∗).

Secondly, we check that w(t) matches the energy inequality in the sense of (3.9).

In fact (3.34) and (3.35) imply

wnj (t) −→ w(t) strongly in L2([0, T ]; Ĥ), nj →∞, (3.41)

‖wnj (t)‖2 −→ ‖w(t)‖2 for a.e. t ∈ [0, T ], nj →∞. (3.42)
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Consider a given φ(·) ∈ C∞0 ([0, T ]) with φ(t) > 0. Obviously, ‖wnj (t)‖2φ′(t) ∈ L1([0, T ]).

‖wnj (t)‖2φ′(t) has essential upper bound due to (3.31), thus it possesses an integrable

dominated function. (3.42) and the Lebesgue Dominated Convergence Theorem imply

lim
nj→∞

∫ T

0
‖wnj (t)‖2φ′(t)dt =

∫ T

0
‖w(t)‖2φ′(t)dt. (3.43)

Also, according to the lower semicontinuity of norm and (3.32), we have∫ T

0
‖w(t)‖2

V̂
φ(t)dt 6 lim

nj→∞

∫ T

0
‖wnj (t)‖2V̂ φ(t)dt. (3.44)

Now Lemma 3.3 shows that 〈Aw(t), w(t)〉 + 〈N(w(t)), w(t)〉 is equivalent to ‖w(t)‖2
V̂

.

Hence, ∫ T

0
〈Aw(t), w(t)〉φ(t)dt+

∫ T

0
〈N(w(t)), w(t)〉φ(t)dt

6 lim inf
nj→∞

∫ T

0

(
〈Awnj (t), wnj (t)〉+ 〈N(wnj (t)), wnj (t)〉

)
φ(t)dt.

(3.45)

Since {wnj (t)}nj>1 is a sequence of weak solutions satisfying

− 1

2

∫ T

0
‖wnj (t)‖2φ′(t)dt+

∫ T

0
〈Awnj (t), wnj (t)〉φ(t)dt+

∫ T

0
〈N(wnj (t)), wnj (t)〉φ(t)dt

6
∫ T

0
(F,wnj (t))φ(t)dt, ∀φ ∈ C∞0 ([0, T ]) with φ > 0, (3.46)

we pass to the limit in (3.46), using (3.35), (3.43)-(3.45) and conclude that w(t) satisfies

the energy inequality (3.9). The proof of Lemma 3.4 is completed.

Theorem 3.1. The translation semigroup {T (t)}t>0 possesses a trajectory attractor

Atr
Ĥ

in M+
loc ⊂ F

+
loc satisfying

Atr
Ĥ

= Π+KĤ =
{
w(t)|[0,+∞)

∣∣∣w(t) ∈ KĤ
}
⊂ T +

Ĥ
,

where KĤ= {w(t)|w(t) is a weak solution of (3.6) on (−∞,+∞) and w(t) ∈ X for all

t ∈ (−∞,+∞) } and Π+w(t) = w(t) if t ∈ [0,+∞).

Proof. According to [9, Theorem 7.4], we only need to prove that T +

Ĥ
is compact in

M+
loc. In fact, T +

Ĥ
⊂ M+

loc is clear. Now pick any sequence {wn(t)}n>1 in T +

Ĥ
. By

Lemma 3.4, there exists a subsequence {w(1)
n (t)}n>1 of {wn(t)}n>1 which converges to

some w(1)(t) ∈ T +

Ĥ
in C([0, 1];Xw) as n → ∞. Similarly, there exists a subsequence

{w(2)
n (t)}n>1 of {w(1)

n (t)}n>1 which converges to some w(2)(t) ∈ T +

Ĥ
in C([0, 2];Xw) as

n→∞, and we have w(1)(t) = w(2)(t) on [0, 1]. Analogously, there exists a subsequence

{w(k)
n (t)}n,k>1 of {w(k−1)

n (t)}n,k>1 converging to some w(k)(t) ∈ T +

Ĥ
in C([0, k];Xw) as

n→∞, and we have w(k)(t) = w(k−1)(t) on [0, k−1]. By using the diagonal procedure,

we can extract a subsequence {w(nk)(t)}nk>1 of {wn(t)}n>1 and some w(t) ∈ T +

Ĥ
such

that

w(nk)(t)→ w(t) in Cloc([0,+∞);Xw), nk →∞.

The proof of Theorem 3.1 is completed.

23



3.4 The trajectory statistical solutions and Liouville type equation

We have defined the corresponding spaces F+
loc,M

+
loc and the trajectory space T +

Ĥ
, as

well as its topology Θ+
loc for equation (3.6) of the 3D incompressible magneto-micropolar

fluids. The definition of trajectory statistical solutions for equation (3.6) is then the

same as Definition 2.3. To state the existence and Liouville type equation for the

statistical solutions, we write equations (3.6) as

dw(t)

dt
= F(w), t > 0,

where F(w) = Aw(t) + B(w(t), w(t)) + N(w(t)) + F . Note that F(w) ∈ V̂ ∗ for each

w ∈ V̂ .

Definition 3.3. We define the class T of test functions to be the set of real-valued

functionals Υ = Υ(w) on Ĥ that are bounded on bounded subset of Ĥ and satisfy

(1) for any w ∈ V̂ , the Fréchet derivative Υ′(w) exists: for each w ∈ V̂ there exists

an element Υ′(w) such that

|Υ(w + v)−Υ(w)− (Υ′(w), v)|
‖v‖V̂

−→ 0 as ‖v‖V̂ → 0, v ∈ V̂ ;

(2) Υ′(w) ∈ V̂ for all w ∈ V̂ , and the mapping w 7−→ Υ′(w) is continuous and

bounded as a functional from V̂ to V̂ ;

(3) for every global weak solution w(t) of equation (3.6), there holds

d

dt
Υ(w(t)) = 〈Υ′(w(t)),F(w(t))〉, t > 0.

Similar to the example given after Definition 2.5, we also can construct the cylin-

drical test functions satisfying Definition 3.3. The details are omitted here.

At this stage, we have proved that equation (3.6) possesses a nonempty trajectory

space T tr
Ĥ

which is metrizable with the topology Θ+
loc, and the translation semigroup

{T (t)}t>0 possesses a trajectory attractor Atr
Ĥ
⊆ T tr

Ĥ
in the topology Θ+

loc. Thanks to

the abstract results of Theorems 2.1 and 2.2, we have

Theorem 3.2.

(1) Let v ∈ Atr
Ĥ

, then there exists a trajectory statistical solution ρv on T tr
Ĥ

of equation

(3.6), which satisfies the following invariant property∫
T tr
Ĥ

Γ(T (t)w)dρv(w) =

∫
T tr
Ĥ

Γ(w)dρv(w) =

∫
Atr
Ĥ

Γ(w)dρv(w), ∀ t > 0, (3.47)

for any Γ ∈ C(T tr
Ĥ

).
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(2) Define µt = T (t)ρv by set

T (t)ρv(E) = µt(E) = ρv(T (t)−1E)

for every set E ⊆ T tr
Ĥ

that is ρv-measurable. Then µt satisfies the following

Liouville type equation

d

dt

∫
T tr
Ĥ

Υ(w)dµt(w) =

∫
T tr
Ĥ

〈Υ′(w),F(w)〉dµt(w), (3.48)

for all test functions Υ ∈ T .

Remark 3.1. The trajectory statistical solution ρv obtained in Theorem 3.2(1) is sup-

ported by the trajectory attractor Atr
Ĥ

. We see that Atr
Ĥ

consists of all bounded, complete

trajectories of equation (3.6) and Atr
Ĥ

attracts any subset of T tr
Ĥ

in the topology Θ+
loc.

Notice that Θ+
loc is indeed a weak topology of Cloc([0,+∞); Ĥ). If we can prove that Atr

Ĥ

is compact in the strong topology Θ+
s,loc of Cloc([0,+∞); Ĥ) and Atr

Ĥ
attracts any subset

of T tr
Ĥ

in the strong topology Θ+
s,loc as well, then we call Atr

Ĥ
the strong compact strong

trajectory attractor (cf. [27]). With this strong compact strong trajectory attractor (if it

exists), we can also construct the trajectory statistical solution which will be called the

strong trajectory statistical solution. Chepyzhov, Vishik and Zelik proved the existence

of strong compact strong trajectory attractors for dissipative Euler equations in [7].

Very recently, Zhao, Song and Caraballo proved that the dissipative Euler equations

addressed in [7] possesses strong trajectory statistical solutions (see [46]).
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[19] Cláudia B. Gentile Moussa, Invariant measures for multivalued semigroups, J.

Math. Anal. Appl., 455(2017), 1234-1248.

[20] M. Li, H. Shang, Large time deacy of solutions for the 3D magneto-micropolar

equations, Nonlinear. Anal.-RWA, 44(2018), 479-496.

[21] X. Li, W. Shen, C. Sun, Invariant measures for complex-valued dissipative

dynamical systems and applications, Discrete Cont. Dyn. Syst.-B, 22(2017),

2427-2446.

[22] G.  Lukaszewicz, W. Sadowski, Uniform attractor for 2D magneto-micropolar

fluid flow in some unbounded domains, Z. Angew. Math. Phys., 55(2004), 247-

257.

[23] G.  Lukaszewicz, Micropolar Fluid-Theory and Appliction, Birkhäuser, Boston,
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