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The frequency and intensity of natural disasters are expected to increase due to cli-
mate change. In this context, this work advances in the estimation of an absolute 
measure of mortality risk generated by natural disasters, in regions of Argentina. In 
particular, exceedance probabilities of mortality are estimated using the information 
diffusion method.
The historical data of natural disasters provided by the records of DesInventar are 
used. These records cover the 1970-2015 period and are published by the Social 
Studies Network in Disaster Prevention in Latin America (LA RED).
The results suggest that the Centro region is the one with the highest risk of absolute 
mortality, while the Noreste region has the lowest risk levels. In a given year there is 
a 0.93 probability that, at least, one death will occur due to natural disasters in the 
Centro region. In the Noreste region, this probability is 0.77. The results are robust 
and significant.
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Se espera que la frecuencia e intensidad de los desastres naturales aumenten, a fu-
turo, debido al cambio climático. En este contexto, este trabajo avanza en la estima-
ción de una medida absoluta del riesgo de mortalidad generado por desastres 
naturales, en regiones de Argentina. En particular, se estiman probabilidades de ex-
cedencia de mortalidad utilizando el método de difusión de información.
Se utilizan los datos históricos de desastres naturales proporcionados por los regis-
tros de DesInventar. Estos registros cubren el período 1970-2015 y son publicados 
por la Red de Estudios Sociales en Prevención de Desastres en América Latina (LA 
RED).
Los resultados sugieren que la región Centro es la que tiene el mayor riesgo de mor-
talidad absoluta, mientras que la región Noreste tiene los niveles de riesgo más ba-
jos. En un año dado hay una probabilidad de 0.93 de que, al menos, una muerte 
tenga lugar debido a desastres naturales en la región Centro. En la región de Nores-
te, esta probabilidad es 0.77. Los resultados son robustos y significativos.
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1.  INTRODUCTION

A disaster is a serious disruption of the functioning of a community or society involving widespread human, 
material, economic or environmental losses and impacts, which exceeds the ability of the affected com-
munity or society to cope with using its own resources (United Nations International Strategy for Disaster 
Reduction [UNISDR], 2009). If the primary cause of the disaster is nature, it is called a natural disaster, while 
if it is directly generated by human behaviour it is called an anthropogenic or technological disaster. This work 
examines natural disasters and this includes geophysical, hydrological, meteorological and climatological 
disasters (Centre for Research on the Epidemiology of Disasters [CRED], 2009)1.

Every year a large number of natural disasters of all kinds take place globally. During 2019 alone, natural 
disasters affected 95 million people worldwide -with an estimated mortality of more than 11,000 people- and 
generated losses of US$ 130 billion (CRED, 2020). In the future, an increase in the frequency and severity of 
natural disasters, associated with climate change, is expected (Banholzer, Kossin & Donner, 2014; Montroull, 
Saurral & Camilloni, 2018; IPCC, 2018).

In the case of Argentina, natural disasters that took place, between 1980-2018, implied a cost of U$S 
24.000 million in economic losses and generated 1037 deaths directly (Munich Re, 2019) 2, being the most 
frequent disasters floods (32%), tempests (21%) and forest fires (8%) (DesInventar, 2018). In 2018, Argentina 
was among the ten most disaster-affected countries in the world (CRED, 2019). In turn, of all registered nat-
ural disasters in Argentina, between 1970-2015, 41% occurred in the last fifteen years (DesInventar, 2018). 
This seems to suggest a growing trend in the frequency of disasters. However, other factors may explain 
this: for example, the availability of better disaster records or a greater social interest in them.

Globally, a growing consensus has developed around the idea of   joint consideration of the multiple types 
of natural disasters that occur in a country or region to enable a comprehensive analysis of the risk profile 
(Kousky, 2012; Liu, Siu & Mitchell, 2016). Frequently, the risk analysis associated with multiple natural disas-
ters is conceived in a relative way: based on the construction of indexes -which consider elements of hazard, 
exposure and vulnerability- qualitatives or semi-quantitatives, comparisons are made between countries 
or regions to detect those zones which present a greater risk of disaster (Xu et al., 2016). The relative risk 
approach is adopted in numerous publications at regional and global level (UNDP, 2004; World Bank, 2005; 
Brecht, Deichmann & Gun Wang, 2013; German Watch, 2019). The foregoing, however, does not allow to 
quantify joint probabilities of occurrence of disasters or losses exceedance probabilities3. In this regard, 
knowing -in probabilistic terms- the economic cost or human deaths associated with different natural disas-
ters is relevant in the assessment and mitigation of risk.

The estimation of probabilistic models applied to the analysis of natural disasters has many precedents 
(Grunthal et. al, 2006; Askan & Yucemen, 2010; Winter, Schneeberger, Huttenlau & Stotter, 2017, Stephen-
son, Hunter, Youngman & Cook, 2018). Frequently, probabilistic models assume a certain distribution for 
natural disaster losses (parametric estimation) and use historical disaster data to estimate distribution pa-
rameters (Grunthal et al., 2006; Winter et al., 2017). Given the limited availability of historical disaster data 
-that is, small samples- nonparametric estimation methods are used (Xu et al., 2016). This includes estimates 
of kernel density, histogram density and information diffusion. The use of histograms presents the difficulty 
of choosing the intervals, while the estimation of kernel densities implies defining an adequate bandwidth4 
(Liu, Siu, Mitchell & Xu, 2013).

On the other hand, Huang (1997) proposed the use of the information diffusion method to overcome the 
limitations of non-parametric methods in contexts where historical data on disasters are limited (Liu et al., 
2013; Xu et al., 2016). In particular, this method adopts notions specific from the theory of fuzzy sets and 

1. Despite this distinction between natural and technological disasters, the fact that human behaviour can influence the occurrence 
and impact of natural disasters is not ignored.

2. Values are expressed in constant 2018 dollars.
3. Probability for a specific value -for example, of deaths per year- to be equaled or exceeded.
4. Bandwidth is a smoothing parameter of the estimator. A discussion about its choice can be consulted in Heidenreich, Schindler 

& Sperlich (2013).
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where each observation can belong -with different probabilities- to multiple subsets of the domain of the 
data. This allows to improve the estimation of probabilities based on the expansion of observations.

In this context, the present work tries to contribute to the estimation of exceedance probabilities of loss-
es of human lives (mortality) associated with multiple natural disasters in Argentina -that is, an absolute risk 
measure- between 1970-2015. In turn, given the existence of deep regional disparities in Argentina, in terms 
of income, poverty, life expectancy, education, prices -among others- (Longhi & Osatinsky, 2017; González, 
2020) the estimates are conducted by region, making it possible to compare them.

From now on, section 2 presents the conceptual framework, section 3 describes the methodology, the 
source of information and the regionalization adopted for the Argentine case. Section 4 presents the results 
and finally, section 5 considered main conclusions.

2.  CONCEPTUAL FRAMEWORK

The impact of natural disasters on mortality is a topic that has been widely studied. This work focuses on 
those deaths directly attributable to the disaster. However, the literature suggests that after the disaster, 
mortality may also increase due to diseases such as hepatitis E, gastrointestinal disease or leptospirosis in 
the case of floods (Alderman, Turner, &Tong, 2012), respiratory diseases after extreme temperatures (Gron-
lund, Sullivan, Kefelegn, Cameron & O´neill, 2018) or some kind of psychological distress after earthquakes 
(Matsubayashi, Sawada & Ueda, 2013; Fujiwara et al., 2017).

In aggregate terms, the literature has highlighted the relevance of two factors in explaining mortality 
from disasters. First, location at the time of the disaster determines the exposure, or not, to the disaster. 
Some countries are more prone to extreme events due to their location or climate. The literature has also 
advanced in the study of differences within the same city or region: often poor people are located in high risk 
areas (Hallegatte, Vogt-Schilb, Rozenberg, Bangalore & Beaudet, 2020). This means that a higher mortality 
from disasters is expected in developing countries and in the poorer regions within countries. The empirical 
evidence confirms this: despite the number of disasters is similar in developed and developing countries, 
most deaths occur among developing ones (Hu, Zhang, Shi, Chen & Fang, 2018; CRED, 2015). Of all the nat-
ural disasters that took place, in 2015, 44% occurred in low-income countries while 68% of all deaths from 
natural disasters occur in these countries. In other words, each disaster causes, on average, three times as 
many deaths in a low-income country than in a high-income country (CRED, 2015).

Second, household conditions are of great importance during a disaster (Frankenberg, Thomas, Samuel, 
Bondan & Duncan, 2011; Hallegatte, Vogt-Schilb, Rozenberg, Bangalore & Beaudet, 2020). A household with 
precarious materials (in the ceiling or walls) is undoubtedly more exposed to potential negative consequenc-
es in the event of an extreme disaster. This risk is transferred to its occupants. Also, increasing time indoors 
due to extreme outdoor conditions might have indirect adverse health consequences (Gronlund et al., 2018). 
Lack of access to basic services, such as drinkable water, electricity, or a sewer network, also increases the 
risk of mortality given the simultaneousness between infectious diseases and the disaster. These material 
deprivations (precarious housing and lack of access to basic services), in conjunction with other factors, 
determine the susceptibility or predisposition of a community or individual to suffer damage in the case a 
disaster occurs -i.e. vulnerability to disasters- (Inter-American Development Bank, 2003).

From the above, it appears that the potential damage resulting from a disaster does not depend solely on 
the underlying natural hazard (geophysical, meteorological, hydrological or climatic event) but also on the 
exposure to this hazard (location in affected areas) and on vulnerability arising from the existence of basic 
material deprivations. In other words, the so-called natural disaster is a complex interrelation between the 
natural and socio-economic dimension (Barrenechea, Gentile, González & Natenzon, 2000; Natenzon, 2016) 
and the disaster risk arises from the combination of these 3 elements (hazard, exposure and vulnerability).

The risk of disasters in Argentina has some relevant features. First, almost a third of the Argentine pop-
ulation is concentrated in the Gran Buenos Aires agglomerate. Its increasing population density and urban-
ization patterns make this agglomerate especially susceptible to the occurrence of disasters (Ríos, 2014). 
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Wide disparities of disaster risk are observed within this agglomerate (Herrero, Natenzon & Miño, 2018). 
Floods are especially worrying in this case (Barros et al., 2006; Ríos & González, 2011) but also in other re-
gions (Maldonado, Natenzon & Cóccaro, 2005; Casco, 2011). However, given the territorial breadth of Argen-
tina, its regions present different profiles of disaster risk (Viand & Briones, 2015).

The Argentine case stands out for the existence of wide territorial disparities in vulnerability to disasters. 
The northern provinces of Argentina are those with the highest levels of incidence of poverty, infant mortal-
ity, malnutrition, among others (Longhi & Osatinsky, 2017). These provinces include the Noreste (NEA) and 
Noroeste (NOA) regions (see section 3 for a detailed explanation)5. Some of these regional disparities are 
analysed in Table 1 in which selected indicators are presented. It can be observed that the NEA, with 9% of 
the population, contributes with 3.7% of GDP, 1.7% of total exports, and only 4.4% of all registered jobs. NOA 
shares are somewhat better, but also disproportionate in relation to their population contribution. The NEA 
and NOA infant mortality rates are two to three points higher than in the other regions, and the percentage 
of the population with Unsatisfied Basic Needs is approximately double that in the rest of the regions. Child 
malnutrition also has worrying prevalences in northern Argentina (Bolzan et al., 2005).

Table 1. Selected indicators by region.

Region Populationa Share of population Share of GDPb Share of exportsc Share of registered jobsd

NEA 3,679,609 9.17 3.75 1.7 4.42

NOA 4,911,412 12.24 6.46 7 7.44

Cuyo 2,852,294 7.11 6.41 5.7 6.07

Centro 26,573,593 66.24 75.07 73.4 75.57

Patagonia 2,100,188 5.24 8.31 8.4 6.50

Argentina 40,117,096 100 100 100 100

Source: Own elaboration based on data from Ministerio de Economía, Ministerio de Trabajo and the Censo Nacional 
de Población, Hogares y Vivienda (2010).

aOwn calculations based on the Censo Nacional de Población, Hogares y Vivienda (2010). 
bOwn calculations based on INDEC (2004). 
cInformation extracted from INDEC (2018). Exports of undetermined origin or those goods subject to a temporary 
admission regime are not included. 
dOwn calculations for the IV Quarter of 2017 based on the Ministerio de Producción y Trabajo de la Nación (2018).

Such a disadvantageous position for the provinces of Northern Argentina is not recent (Cortés Conde, 
1998; Díaz Orueta, González Villar, Lourés & Sintes, 2000; Gorenstein et al., 2012). It goes back to the origins 
of the formation of the national space (since the end of the 18th century), where the City of Buenos Aires 
and the Centro region tended to concentrate most of the productive structure. This was favoured by political 
decisions such as the closure of inland rivers to the navigation of overseas, the status of Buenos Aires as the 
only port, the monopoly of customs revenues, the concentration of rail lines around Buenos Aires and the 
free access of imported manufactures, with which the interior economies could not compete. Later stages 
tended to perpetuate existing disparities (González, 2019).

In a context of wide regional disparities, this work provides estimates of mortality risk from natural disas-
ters in Argentina. However, a first limitation is the relative scarcity of mortality records. For Argentina, the only 
complete database is DesInventar and in most of its records there is no information on the number of deaths 
associated with each disaster. Given this scarcity of mortality records an information diffusion method is used 

5. The other regions include: Cuyo, Centro, Patagonia and Gran Buenos Aires.
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-trying to overcome this lack of data- (Huang, 1997). This allows generating non-parametric and absolute es-
timates of mortality risk. Logically, this work builds on the theoretical and empirical contributions of previous 
works on this topic.

Liu et al. (2013) develop a multi-hazard risk assessment method based on information diffusion theory to 
overcome the lack of historical and spatial data on natural disasters. They provide estimates for the China’s 
Yangtze River Delta region and find that Hangzhou and Ningbo cities are those of highest risk (measure by 
exceedance probabilities) while Shanghai presents the lowest risk. The estimated exceedance probabilities 
of one death are 0.99 and 0.20, respectively. The estimates are normalized considering population. These 
authors remark that the exceedance probability is the inverse of the return period, this is, the risk associated 
to a 0.05 (5%) exceedance probability is the same as a 20-years return period.

Also for the Chinese case, Xu et al. (2016) provides estimates of exceedance probabilities for meteorologi-
cal disasters. They find that southeastern provinces present a higher risk of multiple meteorological hazards 
as a result of their geographical location and topography.

Extending the analysis of disaster risk, Bai, Zhang, Hong, Qian & Wang (2014) propose an algorithm to 
assess the risk of earthquakes in the Chinese province of Yunnan. They compare this algorithm with other 
methods (neural networks and regression analysis) and find that their algorithm based on the method of 
information diffusion generates a better estimate of risk.

Yang, Hu & Jaeger (2016) focus on the analysis of hurricanes for the case of the Chinese province of 
Hainan. They explore the risk of loss in transportation network and find that the most important spatial 
characteristics includes location and that the high-way network of Hainan may suffer a 90% damage every 
4.28 years (return period).

Liu, Siu & Mitchell (2017) consider multiple natural disasters and their potential interactions in the case 
of the northeast region of Zhejiang (China). They show that a short period of time between natural disasters 
(two successive hurricanes for example) significantly increases the expected losses in the affected region. 
This takes place because people are particularly vulnerable after the first disaster and do not reach a full 
rebuild before the second event takes place.

To the best of my knowledge, a few other studies exist and this includes the analysis of risk of crop loss 
(Balezentis, Streimikiene, Melnikiene & Yu, 2017; Xu et al., 2019) and precipitation risk (Olya & Alipour, 2015). 
In particular, Balezentis et al. (2017) propose a non-parametric measure of yield risk for Lithuanian crop 
farming and find that maize, buckwheat and winter rape presents the highest yield risk. Xu et al. (2019) fo-
cus on the Chinese case and study the crop loss risk due to heavy rain and strong wind in the Yangtze River 
Delta. They find that districts located in the southeast of the region are those that present a higher risk. In 
turn, the risk decreases, between districts, from south to north and from east to west. Finally, Olya & Alipour 
(2015) explore the relationship between precipitation risk and tourism for the case of North Cyprus. They 
find that the northern borders of the island are exposed to higher levels of precipitation, resulting in adverse 
effects on tourism.

It should be noted that the literature on this topic (non-parametric estimates using information diffusion 
method) is really scarce. All the antecedents I cite date from the last 5 years and most of them provide es-
timates for the case of China. This method allows obtaining robust probability estimates -when historical 
records are scarce- and normative decisions are not required as in other non-parametric methods.

3.  METHODS

3.1  Methodology

The procedure for the calculation of exceedance probabilities based on the information diffusion method 
is detailed below, following Liu et al. (2013) and Xu et al. (2016). Equations (1) to (9) must be estimated for 
each of the r regions and, in turn, equations (1) to (6) for each of the d types of natural disasters considered. 
Equations (7) to (9) proceed with the aggregation of natural disasters by region.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES
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Let mt be the deaths toll caused -in a certain region and by type of natural disaster- in year t and be Ud the 
fuzzy set of the number of deaths -for the entire analysed period-, which is determined from the historical 
disasters data and is in the interval [0-r] -being r a positive integer-. So:

Ud={uj |j=1,2,..,r + 1} ={u1,u2,..,ur+1} = {0,1,..,r} (1)

The mortality data of each year can be diffused to the discrete domain of discourse from the following 
equation:

(2)

where h is the diffusion coefficient established from the minimum and maximum mortality values -mmin and 
mmax, respectively- and the sample size n -defined by the number of years in the sample-:

(3)

Huang (1997) details h values for different sample sizes. The information distribution -ut(uj)-, is obtained 
from the normalization of ft (uj ) and the result can be expressed as a continuous probability density function:

(4)

Then, the probability distribution p(uj) in uj can be calculated from equations (5) and (6):

(5)

(6)

where p (uj) is the probability distribution of 0-r deaths for a given type of natural disaster. On the other hand, 
assuming that the occurrence of each natural disaster considered is independent of the occurrence of other 
disasters, the deaths toll caused by multiple natural disasters (umj) can be obtained as:

(7)

Therefore, the probability distribution of deaths caused by multiple natural disasters can be calculated as:

(8)

where ujd is the number of deaths (uj) caused by each type of natural disaster d. Finally, mortality exceedance 
probability due to multiple natural disasters, P (umj), is obtained as:

(9)
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In summary, the computation of exceedance probabilities allows us to know which is the probability -in 
a given region- of experience annually, at least, a certain death number due to multiple natural disasters. 
In this way, the exceedance probability of 0 deaths will be equal to 1, while for arbitrarily high values the 
exceedance probability tends to 0.

3.2  Stochastic dominance and comparisons between regions

From the exceedance probabilities it is possible to construct loss curves relating number of deaths (X axis) 
with exceedance probabilities (Y axis) -by region-. The greater the slope of the curve, the higher the probabil-
ity of occurrence of a given event -in this case, deaths from disasters- and the greater the area under the loss 
curve, the greater the uncertainty about the occurrence of a given event -that is, the probability distribution 
is wider-.

Advantageously, the loss curves allow comparison between regions based on the use of stochastic domi-
nance techniques, that is, they allow concluding if a region is unambiguously more or less risky than another 
in terms of mortality from natural disasters. In particular, if an accumulated distribution function F(x) allows 
knowing the non-exceedance probability for a given value b of x -that is, the probability of obtaining a value 
less than or equal to b-, a loss curve can be understood as the complement of an accumulated distribution 
function [1-F(x)], that is, computes the exceedance probability for a given value of x. Complementary cumu-
lative distribution functions are also called survival functions in other disciplines (Alkire et al., 2015).

In this way, let F1(x) be the function representing the loss curve of region 1, it is said that first order sto-
chastically dominates F2(x) -the loss function of region 2- if F1(x) ≥ F2(x) for all x and F1(x) (x)>F2(x) for some x. 
This implies that, if F1(x) stochastically dominates F2(x), no matter how many deaths are chosen for compari-
son, the exceedance probability of region 1 will always be greater than or equal to the exceedance probabil-
ity of region 2 and, therefore, it will be region 1 the one that presents -unambiguously- the highest absolute 
risk of mortality due to natural disasters.

The use of stochastic dominance techniques -when making comparisons between regions- gives the ad-
vantage that the conclusions obtained are robust, that is, valid for any chosen mortality value. However, in 
case the loss curves intersect -in at least one point- the criterion does not allow reaching a conclusion and, 
therefore, the ordering is incomplete. Trying to overcome the above, some applications have implemented 
restricted stochastic dominance techniques, that is, limited to a certain interval of the distribution function 
(Alkire & Santos, 2014).

It should be considered that, despite the possible existence of first order stochastic dominance between 
any pair of regions -comparing the exceedance probabilities for all mortality values- this does not imply that 
the differences are significant. In this regard, advancing the issue, Santos & Zaratiegui (2017) test the sig-
nificance of the differences between two distributions using a Kolmogorov-Smirnov type test proposed by 
Barrett & Donald (2003). Considering two representative functions of the loss curves of regions 1 and 2 - F1(x) 
and F2(x), respectively-, the hypotheses to be considered are:

H0: 1(x) ≥ 2(x) for all x ϵ (0,)
Ha: 1(x) < 2(x) for some x ϵ (0,)
with x ϵ R++ and x <∞

If H0 is not rejected, F1(x) first order stochastically dominates F2(x). The considered statistic is:

(10)

where sups it is the supremum of the difference between both empirical distributions and, n and m are the 
sample sizes for distributions 1 and 2, respectively. Then, the values obtained for the statistic Ŝ1 must be com-
pared with the critical values suggested by Barret & Donald (2003) -1,073, 1,2239 and 1,5174 for significance 
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levels of 10%, 5% and 1%, respectively - and the null hypothesis is rejected if Ŝ1 is greater than the critical 
reference value.

Successively, the test can be repeated for each pair of considered distributions, evaluating the signifi-
cance of the differences. For each pair considered, it is possible to test whether F1(x) stochastically domi-
nates F2(x) or, if on the contrary, F2(x) is the one that stochastically dominates.

3.3 Data source

In Argentina, the most complete historical record of natural disasters is the Disasters Inventory System 
(DesInventar in Spanish), developed by the Social Studies Network on Disaster Prevention in Latin America 
(LA RED in Spanish), in which are registered different types of natural and anthropic disasters occurred in 
Argentina, between 1970-2015, with a level of disaggregation up to the municipal level. For each registered 
event, information is provided on the number of people exposed, estimated economic losses, damages 
caused, duration and type of disaster. The database is constructed from reports of newspapers of national 
circulation.

In particular, for the 1970-2015 period, DesInventar presents -for each type of natural disaster consid-
ered in this work- the following mortality records:

Table 2. Deaths per type of natural disaster in Argentina 1970-2015.

Natural disaster Number of deaths %

Avalanche 44 1.57

Alluvium 208 7.43

Landslide 31 1.11

Hailstorm 9 0.32

Frost 317 11.33

Forestal fire 104 3.72

Flood 796 28.45

Rain 51 1.82

Fog 160 5.72

Snowstorm 118 4.22

Heat wave 14 0.50

Drought 13 0.46

Earthquake 100 3.57

Tempest 499 17.83

Electric storm 104 3.72

Twister 31 1.11

Gale 199 7.11

Total 2798 100

Source: Own elaboration based on DesInventar (2018).
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In the examined period, 1970-2015, there were more than 2,600 deaths associated with the analyzed natu-
ral disasters according to the records of DesInventar. Floods and tempests explain almost 50% of deaths toll.

3.4.  Regions in Argentina

The Argentine territory is divided into regions which include two or more provinces. The National Institute 
of Statistics and Censuses (INDEC in Spanish) -the official statistical agency of Argentina- considers the exist-
ence of six regions (INDEC, 2019):

 ‒ Noreste (NEA): covers the provinces of Misiones, Corrientes, Chaco and Formosa.
 ‒ Noroeste (NOA): includes the provinces of Salta, Jujuy, Tucumán, Santiago del Estero, Catamarca and 

La Rioja.
 ‒ Cuyo: covers the provinces of Mendoza, San Juan and San Luis
 ‒ Centro: includes Entre Ríos, Santa Fe, Córdoba and Buenos Aires
 ‒ Patagonia: covers Rio Negro, Neuquén, Santa Cruz, Chubut, Tierra del Fuego and La Pampa.
 ‒ Gran Buenos Aires (GBA): includes the City of Buenos Aires and its suburbs -districts from the Provin-

ce of Buenos Aires6- which constitute the Gran Buenos Aires agglomerate (INDEC, 2003).

Due to the limited geographical disaggregation in DesInventar’s disaster records, it is not possible to 
identify -in all cases- the city of disaster occurrence. For this reason, it is not possible -for the districts of the 
suburbs of the City of Buenos Aires- to determine if a disaster should be attributed to Gran Buenos Aires or to 
the Centro region. Consequently, from now on, it is decided to include the suburbs of the City of Buenos Aires 
within the Centro region. That is, all the districts of the Province of Buenos Aires are part of the Centro region.

Map 1 presents the location of the Argentine regions. In each case, the number of disasters occurred and 
their participation in the national total are indicated.

It should be noted that, in 1987, the provinces that constitute the NEA and NOA regions celebrated the 
Norte Grande Argentino Integration Treaty (NGA in Spanish), following criteria of geographical proximity 
and socio-economic similarities. In this way, a region encompassing the ten provinces of northern Argen-
tina was created. For its part, the province of La Pampa, which is frequently included in the Centro region, 
celebrated the Patagonian Provinces Agreement in 1996 and, therefore, opts for its inclusion among the 
Patagonian provinces. Table 3 presents the distribution of population and area by region in Argentina:

Table 3. Area and population by region in Argentina, 2010.

Region Population in % Area in % (km2)

Buenos Aires City 7.20 0.007

Centro 58.25 24.62

Cuyo 7.11 11.34

NEA 9.17 10.42

NOA 12.24 20.14

Patagonia 6.03 33.47

Argentina 40117096 2780400

Source: Own elaboration based on National Population, Household and Housing Census 2010.

6. In Spanish these districts are called partidos in the Province of Buenos Aires and departamentos in other provinces.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES


Fernando Antonio Ignacio González / REA N. 40 (2020) 78 - 95

87

© Editorial Universidad de Sevilla 2020 | Sevilla, España| CC BY-NC-ND 4.0 | e-ISSN: 2340-2776 | doi: https://dx.doi.org/10.12795/rea.2020.i40.05

Map 1. Argentine regions and frequency of natural disasters. Source: Own elaboration based on DesInventar (2018). 
Note: regionalization corresponds to INDEC (2019). All the districts of the Province of Buenos Aires are included in 

the Centro region. % indicates the proportion of disasters that, of the Argentine total, occurred in each region.
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It is observed that, Argentina is a country with wide regional imbalances: Buenos Aires City, with 0.007% 
of the surface of the country, concentrates about 7% of the total population. The Patagonia, in turn, with a 
large area concentrates a smaller population.

4.  RESULTS AND DISCUSSION

Next, Table 4 presents the exceedance probabilities, by region, of mortality due to multiple natural disasters.

Table 4. Exceedance probabilities from natural disasters for a given number of deaths in regions of Argentina (1970-2015).

Region 1 2 3 5 10 20 30 Death tolla

Buenos Aires City 0.939 0.777 0.552 0.175 0.001 0.000 0.000 316

Centro 0.999 0.994 0.982 0.931 0.646 0.108 0.004 1163

Cuyo 0.919 0.833 0.745 0.570 0.224 0.010 0.000 272

NEA 0.772 0.473 0.248 0.044 0.000 0.000 0.000 219

NOA 0.982 0.943 0.883 0.715 0.265 0.006 0.000 446

Patagonia 0.957 0.860 0.720 0.409 0.031 0.000 0.000 382

Source: Own elaboration based on DesInventar (2018). 
aNumber of deaths, per region, between 1970-2015.

The Centro region has the highest exceedance probabilities for any number of deaths chosen in the com-
parison. The NEA, on the other hand, has the lowest exceedance probabilities. It is striking that, even with 
similar populations, the exceedance probabilities in some regions are widely dissimilar. This is valid in the 
NOA and NEA comparison and to a lesser extent, Cuyo and Patagonia. In this way, the absolute number of 
deaths and population -by region- do not seem to follow a linear relationship.

These results are, partially, in line with previous evidence. In particular, Liu et al. (2013) report exceedance 
probabilities of one death of 0.8 or higher (except for Shanghai) and the same is true for Xu et al. (2016). 
However, the differences in probabilities across observational units are less pronounced in this work than 
in Liu et al. (2013). This is, the difference between the Centro and NEA regions for one death -for example- 
(0.99 and 0.77) is smaller than that between Hangzhou and Shanghai (0.99 and 0.20). This may be due to 
differences in the aggregation level of observational units. While Liu et al. (2013) consider cities of a region 
of China, this work employs regions (defined as a set of provinces). Xu et al. (2016) analyse Chinese provinces 
and report similar results to those of this work.

On the other hand, the loss curves by region are presented in Graph 1. Again, it is observed that the 
Centro region is the one with the highest exceedance probabilities. This implies that the complementary 
cumulative distribution function of this region first order stochastically dominates the functions of the other 
regions. In turn, the NEA region is first order stochastically dominated by the other regions -in terms of their 
respective complementary cumulative distribution functions-.

The Buenos Aires City, Patagonia, NOA and Cuyo regions have intersecting loss curves and, therefore, it is 
not possible to establish a complete ordering of regions. Table 5 describes the existence of relations of first 
order stochastic dominance between regions (table 5).
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Graph 1. Loss curves (deaths) for regions in Argentina, 1970-2015. Source: Own elaboration based on DesInventar (2018).

Table 5. First order stochastic dominance in regions of Argentina (mortality).

Dominated

Centro Cuyo Buenos 
Aires City NEA NOA Patagonia

Dominates

Centro *** YES YES YES YES YES

Cuyo NO *** INC YES INC INC

Buenos 
Aires City NO INC *** YES NO NO

NEA NO NO NO *** NO NO

NOA NO INC YES YES *** YES

Patagonia NO INC YES YES NO ***

Source: Own elaboration based on DesInventar (2018). 
Note: INC is Inconclusive (there is no first order stochastic dominance).

It is observed that the Cuyo region is the one with the most cases where it is not possible to conclude 
unambiguously about the existence of first order stochastic dominance. For its part, the NOA dominates 
stochastically Patagonia and Buenos Aires City, while Patagonia dominates the Buenos Aires City.

It is also evaluated the significance of the differences for each pair of regions in which the existence of 
a relationship of stochastic dominance is observed (Table 6), using the test proposed by Barret & Donald 
(2003). The statistic values can be observed in table 6.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es_ES


Fernando Antonio Ignacio González / REA N. 40 (2020) 78 - 95

90

© Editorial Universidad de Sevilla 2020 | Sevilla, España| CC BY-NC-ND 4.0 | e-ISSN: 2340-2776 | doi: https://dx.doi.org/10.12795/rea.2020.i40.05

Table 6. Significance of differences between loss curves of regions in Argentina.

Dominated

Centro Cuyo Buenos 
Aires City NEA NOA Patagonia

Dominates

Centro --- 0.000 0.000 0.000 0.000 0.000

Cuyo 2.111*** --- INC 0.000 INC INC

Buenos 
Aires City 3.891*** INC --- 0.000 2.588*** 1.123*

NEA 4.256*** 2.602*** 1.462** --- 3.314*** 2.263***

NOA 1.831*** INC 0.000 0.000 --- 0.000

Patagonia 3.239*** INC 0.000 0.000 1.641*** ---

Source: Own elaboration based on DesInventar (2018). 
Notes: INC is Inconclusive (there is no first order stochastic dominance). * significant at 10%, significant at 5%, signi-
ficant at 1%.

It is observed that, in cases where there is a relationship of stochastic dominance (Table 5), the differenc-
es are significant -at 1%- except for the cases of Buenos Aires City-NEA (significant at 5%) and Patagonia- 
Buenos Aires City (significant at 10%). This implies that, the regions that first order stochastically dominate 
the others, not only have a greater exceedance probability -for any mortality level chosen for the compari-
son- but also these probabilities are significantly higher.

Considering all the above, it is clear that the Centro region has the highest mortality risk while the NEA re-
gion the lowest one. This seems to be counterintuitive given that northern provinces (those of NEA and NOA) 
have the highest incidence of poverty and child mortality and malnutrition rates. This is, northern provinces 
-and their populations- are more vulnerable to the occurrence of disasters and higher levels of vulnerability 
are associated with a higher mortality (CRED, 2019). In this regard, two considerations must be made.

First, exceedance probabilities, in this work, have not been normalized by population. This is, is not the 
same one death in the NEA region (with an approximate population of 4 million inhabitants) than one death 
in the Centro region (more than 20 million inhabitants). However, regions with similar populations -NEA, 
NOA, Cuyo and Patagonia- present wide differences in death toll. This work exploited this geographical var-
iation in mortality.

Second, given the main database used, DesInventar, it is conceivable the presence of bias. This is be-
cause the database is constructed from newspaper reports and most of these newspapers are located in 
the Centro region. For this, it is not unjustified to think that DesInventar reflects more precisely disasters 
that take place in this region but to a lesser extent those disasters of peripheral regions (as NEA or NOA). 
Some caveats related to the use of newspaper information in the analysis of disasters can be consulted in 
Natenzon (2003).

On the other hand, it should be emphasized -despite the objective of this work- that mortality is not the 
only aspect that matters after the occurrence of a natural disaster. In this sense, disasters may also affect the 
formation of human capital. On the one hand, they can destroy educational and health centres or the trans-
port infrastructure of affected areas. On the other hand, if they affect household income, the demand for 
human capital may be reduced given the lower disposable income and increased marginal utility of labour 
(Ferreira & Schady, 2008). In extreme cases, natural disasters can affect nutrition. This, in turn, may generate 
long-lasting negative effects (persistence).

The persistence of the effects of disasters has been evaluated on broad topics such as health (Maclean et 
al., 2016; Hikichi, Aida, Kondo & Kawachi, 2019; Ogasawara, 2019), education (Caruso, 2017), income (Muel-
ler & Osgood, 2009), poverty (Shahabuddin & Ali, 2006) or risk aversion (Cassar, Healy & Von Kessler, 2017). 
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For the case of Argentina, González et al. (2020) find -considering a differences-in-differences specification- 
that early exposure (during the first year of life) to natural disasters has a negative and significant effect on 
educational achievement of adults. Controlling by district and birth cohort and other individual attributes, 
people exposed to natural disasters -during their first year of life- have 0.03 less years of education than 
unexposed people. Exposure also increases the chances of being unemployed (OR = 1.02) and is associated 
with an increase in the chances of being multidimensionally poor in adulthood (OR = 1.05).

All of the above is in line with an idea that has broad consensus: natural disasters are a really complex 
socio-economic phenomenon. In addition to mortality directly attributable to the disaster, other diseases 
can contribute to increasing the number of post-disaster deaths. In turn, even without considering this, dis-
asters impose series interruptions to the functioning of the affected communities due to the destruction of 
their essential infrastructure and the potential long-lasting effects on the affected people.

5.  CONCLUSIONS

Throughout this work I have tried to quantify -in probabilistic terms- the risk of mortality from natural dis-
asters in regions of Argentina, using historical records of the DesInventar series for the 1970-2015 period. 
Using an information diffusion method -initially applied in this subject by Huang (1997)- results were found 
concordant with the idea that the Centro region is the one that presents the highest exceedance probabilities 
for any level of mortality. In turn, the Noreste region (NEA) appears with the lowest exceedance probability.

Robust comparisons -between pairs of regions- were made based on first order stochastic dominance cri-
terion considering loss curves (complementary cumulative distribution functions). In turn, the significance 
of the differences was evaluated from the test proposed by Barret and Donald (2003) from which it was 
detected that, with the exception of the pairs of Buenos Aires City-NEA and Patagonia-Buenos Aires City, the 
differences are significant at 1% in all cases where there is a relationship of first order stochastic dominance.

This work provided novel estimates of mortality risk for the Argentine case. This was the main contribu-
tion in the analysis of natural disasters. However, further research is needed. In particular, the presence of 
geographical bias in DesInventar records must be examine. This is, given that the records in this database are 
built from what is reported by the main newspapers in the country, it is reasonable to think that the disasters 
that take place in the Centro region will be better recorded than those that take place in peripheral regions

In synthesis, the results of this research attempted to contribute to the mitigation of disaster risk, espe-
cially considering the regional disparities in Argentina. In the future, to fully achieve the above, the availa-
bility of detailed and updated records of natural disasters occurring in Argentine territory is of utmost im-
portance. Therefore, active government actions are strongly recommended in the generation and provision 
of data on natural disasters. It is desirable to incorporate information from multiple agencies -public and 
private-, contributing in this way to a better understanding of the phenomenon and its consequences and 
avoiding the potential presence of bias.
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