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Abstract. 
We investigate shape phase transitions in odd nuclei within the Interacting Boson Fermion 

Model. Special attention is given to the case of the transition from the vibrational behaviour to 
the stable axial deformation. The odd particle is assumed to be moving in the three single particle 
orbitals j=l/2,3/2,5/2 with a boson-fermion Hamiltonian that leads to the occurrence of the SU^^(3) 
boson-fermion symmetry when the boson part approaches the SU{3) condition. Both energy spectra 
and electromagnetic transitions show characteristic patterns similar to those displayed by the even 
nuclei at the corresponding critical point. The role of the additional particle in characterizing the 
properties of the critical points in finite quantal systems is investigated by resorting to the formalism 
based on the intrinsic frame. 

Keywords: Shape phase transition. Interacting Boson Fermion Model. Critical point symmetries. 
PACS: 21.60.-n,21.60.Fw,21.60.Ev 

Introduction 

The study of shape phase transitions in finite nuclear quantal systems has recently 
been the subject of many investigations. Most of the work has been carried out for even-
even nuclei, using either the Bohr Hamiltonian and the surface collective variables or 
algebraic approaches based on the use of interacting bosons. In the case of odd-even 
nuclei, where an odd particle is coupled to an even core undergoing a phase transition, 
attention has been put on the shape transition from sphericity to deformed gamma-
instability. In correspondence to the critical point in the even core, characterized by 
the critical point symmetry E(5), two new boson-fermion critical point symmetries have 
been proposed, in the case of an odd particle moving in a single j=3/2 shell (E(5/4) 
symmetry [1]) or in the j= 1/2,3/2,5/2 shells (E(5/12) symmetry [2]). Characteristic 
sequences of levels and ratios of electromagnetic transitions are predicted in both cases. 

We consider here another leg of the Casten shape triangle, namely the transition 
from the spherical vibrational behaviour to stable axial deformation. This transition 
in the even-even case is normally named after the critical point symmetry X(5) [3]. 
We will couple along the transition the even-even core to an odd particle moving 
in the j=1/2,3/2,5/2 single-particle shells. This situation will be described within the 
framework of the IBFM (Interacting Boson Fermion Model), choosing a boson-fermion 
Hamiltonianthat leads to the occurrence of the SU^^{3) boson-fermion symmetry when 
the boson part approaches the SU{3) condition. 

Our aim is twofold. From one side one we would like to show that spectra and tran
sitions in the neighbour odd nuclei display characteristic features at the phase transition 
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and offer therefore additional clear signatures of the phase transition. Our second point 
deals instead with the concept itself of critical point in finite quantal systems. For well 
deformed cases the contribution of the couphng to the additional odd particle (of the 
order of 1/N) does not change appreciably the position of the sharp minumum in the 
deformation parameter for the energy surface. At the critical point, however, the energy 
surface in the even core is known to be rather flat in the deformation parameter, a feature 
that precisely characterizes the transition point. This behaviour may imply that some 
of the energy surfaces characterizing the different odd nucleus states may be driven by 
the coupling in either direction (i.e. towards axial deformation, sphericity or triaxiality), 
effectively changing the position of the critical point. 

The model 

We will consider the spherical to deformed axially symmetric transition in the frame
work of the IBFM, when the odd particle can sit in a triplet of orbitals, namely 
j = 1/2,3/2 and 5/2. For this purpose we have chosen a Hamiltonian based on the 
one used for the corresponding U(5) to SU(3) transition in the IBM [4] 

/T^ = {l-x)nd-—-QB.QB 
4^5 

(1) 

where QB = {s'^ x J)(^) + {ct^ x S)^^^ — ^{ct^x J)(^) is the quadrupole operator The pa
rameter X is a control parameter that drives the behaviour of the system. The Hamiltonian 
H^ can be written in terms of Casimir operators as 

H^ = ( l-x)<ri(f/^5)- ^2(^ f /^3 ) - -^2 (0^3 ) (2) 

We wiU use a similar form for the Hamiltonian that describes the transition from spheri
cal to axially deformed odd-even nuclei with IBFM, replacing the bosonic algebras with 
the corresponding Bose-Fermi algebras, i.e. 

BFc H"" = ( l-x)<ri(f/"^5) •r2(5'f/^^3)--<r2(C»^^3] (3) 

In order to get physical insight into the problem, we rewrite the boson-fermion 
Hamiltonian (3) as. 

j^BF ^ = ( 1 - x ) In^ + «3 + «5 j 
4NB 

QBF-Q. BF (4) 

where QBF = QB + QF is the total (boson-fermion) quadrupole operator Note that the 
choice of the fermion space is such that one can profitably visuahze the three angular 
momenta as arising from the coupling of a pseudo spin 1/2 with a pseudo angular 
momentum 0 or 2. Since the hamiltonian does not depend on the pseudo spin, this 
gives rise to repeated level doublets. This degeneracy might eventually be broken by 
introducing a term proportional to J^ in the Hamiltonian. 
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FIGURE 1. Energy levels (normalized to the energy of the first excited state) as a function of the 
control parameters in the Hamiltonian (3). A number A'g = 9 of bosons has been assumed. Each state 
is characterized by the (A,/j) asymptotic quantum numbers (strictly valid only forx = 1, at the SU^^{3) 
extreme) and L. The two vertical lines indicate the position of the critical value of x for the even-even and 
odd-even systems. 

With our choice of the Hamiltonian we obtain for x = 0 the U^^ (5) dynamic symme
try and for X = 1 the SU^^ (3) one. In the latter case the levels are arranged in rotational 
bands, characterized by the quantum numbers (A, ji) and K. Some of them can be iden
tified with those of the even case with a number N5+I bosons, but others (not fully 
symmetric with ji odd) arise genuinely from the fermion-boson nature of the problem. 
In addition to the degeneracy coming from the pseudo spin coupling, we have degenera
cies coming from the bosonic plus fermionic orbital parts. 

Some of the degeneracies disappear outside the SU^^{3) extreme of the transition. 
This transition from S'f/^^(3) towards U^^{5) is more complicated than the one studied 
before [5] from 0^^{6) to U^^{5). In that case there was a common subgroup, 0^^{5), 
which supplied labels all over the transition. This is not the case any longer, and we 
can only use "asymptotic" quantum numbers (A,^) to label the states outside the 
extremes of the transition. One could invoke the concept of quasi dynamical symmetry 
to have a criterion on how to assign the asymptotic quantum numbers. Similarly the 
arrangement of the levels into bands is not always unique and the information from the 
electromagnetic matrix elements may be not always sufficient. 
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In fig. 1 we show the full evolution of the energy of some selected levels, normalized to 
the energy of the first excited state, along the transition, in the case of TVg = 9. The states 
are labelled all over with the SU{3) quantum numbers (A,^) and L, which are strictly 
valid only forx = 1. The total angular momenta come from the couphng of the 0^^{3) 
quantum number L to the SUf{2) quantum number S. In general the states are doubly 
degenerate except for Z = 0. The general behaviour of the energy levels is rather smooth 
close to the dynamic symmetry limits, changing more rapidly in the neighbourhood 
of the critical point for the even core, indicated by a vertical fine. It is clear from the 
figure that by using only energies (and transition rates) is rather difficult to single out the 
precise position of the critical point. This can be done by resorting in the next section to 
the concepts of intrinsic frame and energy surfaces. 

The intrinsic frame description and the critical point 

A usuful way of looking at phase transitions is to resort to the concept of intrinsic 
states and associated energy surfaces. In the case of the Interacting Boson Model for 
even nuclei one introduces a ground state intrinsic state of the form 

o,,(/3,r) = -^{bUii,r)f^\o) (5) 

where the basic boson creation operator is given in the form 

bl{l3,Y) = -^=^l^sUl3cosY4 + ^smY{dl + di^)^ (6) 

and /3 and 7 play a role similar to the intrinsic collective variables in the Bohr Hamil
tonian. The ground state energy surface is obtained as expectation value of the boson 
Hamiltonian (1) in the intrinsic state, i.e. £gi(/3,7) = {^gsiP, 7) \HB\^gs{fi, 7)). In our 
specific case, for any value of the control parameter x the energy surface has a minimum, 
as a function of the parameter 7, for 7 = 0. In other words, our boson hamiltonian can 
never lead to a stable triaxial shape. As far as the /3 dependence is concerned, for small 
values of x the system finds more convenient a spherical shape (/3mm=0), while after 
the critical point the second (and deformed) minimum becomes lower in energy. This 
first-order transition takes place at x = 167VB/(347VB — 27), i.e. for x=0.516 in the case 
of NB = 9 bosons. 

The corresponding intrinsic frame states and energy surfaces for odd systems can be 
constructed by coupling the odd single-particle states (with each angular momentum j 
and magnetic component k) to the intrinsic states of the even core. The lowest odd states 
are expected to originate from the coupling to the intrinsic ground-state Og^(/3,7). One 
first constructs the coupled states 

¥,i(/3,7) = Og,(/3,7)®U^) (7) 

and diagonahze in this basis (for each value of /3 and 7) the total boson-fermion Hamil
tonian, giving a set of energy eigenvalues i?„(/3,7), n being a running index to count 
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FIGURE 2. Energy surfaces for odd systems. The left frame refers to the case of x=\ {SU^^{3) 
dynamical symmetry). The central frame has been obtained for .:«=0.516, corresponding to the critical 
value of the even core, while the right frame correspond to the "effective" odd critical point, i.e. x=0.485. 
Dashed lines give the ground state energy surface for the even core. 

the solutions. In our specific f/^( 12) algebra we have a total of 12 components, but re
stricted to 6 because of the symmetry k ^^ —k. In addition, since the Hamiltonian does 
not depend on the pseudo spin, the active role is played by the orbital angular momenta 
/ = 0 (with^/ = 0) and/ = 2 (with^/ = 0,=F1,=F2). We expect therefore for the general 
Hamiltonian (4) four different intrinsic states and consequently four different bands. For 
7=0 the hamiltonian preserves the quantum number k and the diagonalization is inde
pendently done for each value of ^. In this case we obtain two states with k= 1/2, one 
degenerate pair with k= 1/2,3/2 and the last degenerate pair with k = 3/2,5/2. 

We first show in the left frame of Fig. 2 the boson-fermion energy surfaces for a 
well deformed case (x = 1, leading to the SU^^{3) dynamical symmetry). For a better 
comparison we also include, as dashed line, the energy surface corresponding to the 
core ground state. We can see that all energy surfaces display the minimum for the same 
value of the deformation parameter /3. In this well deformed case, therefore, the addition 
of the extra particle is not changing the features of the system and each odd state can 
be put in correspondence with one of the rotational bands appearing in the spectrum. 
The situation is different around the critical point of the even core (central frame). We 
see from the figure that in this case the odd particle drives the system towards larger or 
smaller deformation (according to the different odd states). This gives rise to an effective 
shift of the critical point which is different for each given state. For example, for the 
ground band, the critical point moves to x=0.485, where in fact the corresponding energy 
surface becomes flat (right frame). 
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FIGURE 3. Spectra obtained at the critical points in the case of N5=9 bosons. The upper part display the 
spectrum in the even case (x£,„}=0.516), the lower part the spectrum in the neighbour odd boson-fermion 
case (Xcr,}=0.485). In the odd case the value of the orbital angular momentum (without the coupling to the 
pseudo spin) is shown, but for clarification the ground band is enlarged and the total angular momenta are 
shown. 

Spectrum and transitions at the critical point 

The resulting spectrum at the critical point is finally shown in Fig. 3. The sequence 
of levels are arranged in bands, on the basis of the transition intensities. For a better 
comparison, in the upper part of the figure we show the corresponding spectrum for the 
even core at the corresponding value for the critical point. The odd spectrum clearly 
resembles the corresponding even one, aside from the presence of bands which are not 
allowed in the fully symmetric boson case. 

Additional important information comes from the electromagnetic transitions. The 
corresponding intensities will be reported in Ref [6]. Also in this case the general 
behaviour for the odd case closely follows the one for the even case. 
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