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Treatment of continuum in nuclear reactions
involving weakly bound systems.

A simple model to test different prescriptions

describing the coupling to continuum states.

C.H. Dasso* and A. Vitturi®

*Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Fisica
Universidad de Sevilla, Apartado 1065, 41080 Sevilla, Spain
TDipartimento di Fisica Galileo Galilei and INFN, Via Marzolo 8, 35131 Padova, Italy

Abstract. We exploit a model describing the break-up of weakly-bound nuclei that can be used
as a laboratory for testing different prescriptions that have been advanced in the literature to take
into account the near-by presence of continuum states. In the model we follow the evolution of a
single particle wave function in one dimension, initially bound by a Woods-Saxon type potential
and then perturbed by a time- and position-dependent external field. Proper choices of this potential
can simulate the effect of the interaction between reaction partners in a nuclear collision. These
processes generate inelastic excitation probabilities that — distributed over the bound and continuum
states of the system — lead to either a partial or a total fragmentation of the final wave function. The
comparison with the exact calculations shows that standard coupled channel descriptions based on
discretization of the continuum can be accurate only when a proper choice is made of the number
of discrete states, of the energy mesh and of the energy cutotf. This may imply, even in simplified
cases, the use of a rather large (and unpracticable) number of channels. The use of a more restricted
number of channels may lead to misleading results.

Keywords: Heavy ion reactions, Break-up processes, Continuum states, Discretized Coupled
Channel calculations
PACS: 21.60.-n, 21.60.Fw, 21.60.Ev, 21.10.Re

INTRODUCTION

For much longer than a decade we have witnessed a sustained interest in reactions
involving weakly-bound nuclear systems. In particular those with projectiles or targets
close to the nucleon evaporation lines; under such conditions a sudden ejection of one (or
more) of their constituent nucleons may take place. These so-called break-up processes
are very important and they have forced us to re-examine closely the role played by
the continuum of asymptotically open states which lay close to the particle-emission
threshold. From the point of view of reaction theory we are no longer talking about a
simple binary process but of a quite complex situation that, if strictly approached, would
put to a severe test anyone’s expertise in the handling of nuclear reaction formalisms.

It is in the nature of things, however, that people immediately made simplifying
assumptions and proceeded to implement detailed calculations for the process right
away. These did not just aim to yield simple estimates of the cross sections but have
led to quantitative predictions as well. In retrospective — and with benevolence — one
can argue that such early analyses fulfill the double purpose of identifying ingredients
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of interest and of testing the possibilities of different formalisms to reproduce the orders
of magnitude shown by the measured cross sections.

In this type of studies one should not, however, be guided exclusively by the ability
of a given prescription to produce good fits to the experimental data. When unfamiliar
approximations are involved (even if they appear obvious and reasonable) it is imperative
to check the extent to which they are suitable to function within the new context. To this
end one must construct alternative solutions of the problem that are far less objectionable
and test thoroughly the consequences of their implementation.

One certainly wishes to avoid in the study of break-up phenomena some of the
mistakes incurred in other fields. By the uncontestable fact that the number of continuum
states is indeed infinite, every single calculation performed so far with a coupled-channel
formalism had to resort to some discretization (better or worse) of the space of scattering
states. The computing power available at present has normally limited the positive
energy states to be accounted for by at most a double-digit number of channels. Is
this enough? What can we expect to believe of the results obtained from a calculation
performed in a such a restricted space? The shape of the wavefunction representative of
the process? The predicted Q-value distribution? Can we develop some feeling about the
size of the energy bins that may be appropriate? And what about the effective truncation
of the basis to a maximum energy value?

The present contribution is motivated and ellaborated in the spirit of the considerations
sketched above. The model we shall soon describe is rather simple. Yet, we trust that
it incorporates enough of the correct ingredients to allow for the extrapolation of its
findings to other realistic situations. We rush to state that this is not by any means
the first time that a time-dependent approach is used in the context of nuclear break-
up processes [1]. But we have deliberately restricted ourselves to examine the results
extracted from this scheme in close correspondence with those of its coupled-channel
counterpart in a totally equivalent problem. This has provided us with a solid tool to
judge the reliability of the latter technique. After all that is — unavoidably and for
the foreseeable future — the only formulation that will be sistematically used for the
actual interpretation of experimental data. It is precisely the possibility of investigating
any aspect of the problem from the two distinct perspectives (and under controlled
circumstances) that lends true value to our exercise.

FORMULATION OF THE MODEL AND ITS DIRECT SOLUTION
IN THE TIME-DEPENDENT APPROACH

We start illustrating a simple model that can provide for us an adequate representation
of a one-nucleon break-up process. Let us briefly review some of the elements that
guide our search. The problem posed should admit solutions in terms of a coupled-
channels formalism which resorts to a discretization of the continuum. This is, after all,
the situation whose soundness we set out to test and have listed as the main motivation
of the whole exercise. But, clearly, it should nevertheless be possible to generate the
evolution of the wavefunction in an alternative manner, unaffected by a questionable
handling of the continuum. To such solutions one could then assign the label of “exact”
and they would become the standards of reference to compare with coupled-channels
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results. The model should also be simple, so that its solutions turn out to be fast and
easy to construct. This is because we intend to use it as the basic source for the numerous
checks required to explore different aspects of the two alternative schemes.

Incorporating all the elements listed above, in what follows we set to describe the
evolution of a single-particle wavefunction ¥(x,¢), initially a bound eigenstate of the
one-dimentional Woods-Saxon potential

Vo
V(x)= (H
N el —R/d
and perturbed by a space- and time-dependent interaction
Veoup(0,) = Voexp(—1* /207 ) exp(—(x —x0)* /207) , )

As we can see, the coupling is for simplicity assumed to be of gaussian shape. We
note, however, that this is not really essential and the expression (2) can be easily
changed — within the present implementation of the model — to any other functional
dependence as long as it stays separable. The potential V., (x,f) is meant to simulate
the inelastic excitation fields resulting from a collision between two heavy ions. In
particular, adjusting the widths o;, oy, the asymmetry parameter xy and the overall
strenght 7, one is able to mock up realistic situations that arise from different collision
times, bombarding energies, interaction ranges, distances of closest approach, impact
parameters, etc.

The evolution of the wavefunction follows, naturally, from the time-dependent
Schroedinger equation

ihw = HO(X>+Vcoup(x7l> ‘P(X7Z)7 3)
where
92
Hy(x) = —m o2 + V(x) 4)

can be identified as our “unperturbed” hamiltonian. The equation has to be solved
(numerically) supplying, as an initial condition at time ¢ = #, the wavefunction W(x, =
fp). According to what it was previuously stated we take as the initial state for the
time-dependent integration precisely one of those bound eigenstates of the unperturbed
hamiltonian Hy(x)

An example of solution of the time-dependent equation is shown in Fig. 1, where the
N=3 bound state is chosen as the initial configuration and the perturbing external inter-
action is chosen to be strong enough to generate excitations to the continuum.. It can be
immediately seen, in fact, that, evolving in time, a major fraction of the wave function
“escapes” the potential well by populating unbound states in the continuum. This can be
interpreted as describing final break-up events. As the, now stronger, perturbation was
chosen asymmetric (x¢£0), breakup probabilities are different in one direction or the
other. We can also see that a fraction of the wave function remains localized in the po-
tential region, corresponding to some finite probability of populating only bound states.
The situation can therefore be interpreted as describing a partial breakup process. Going

266



initial bound state N=3
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FIGURE 1. Time evolution of the square of the wave function. An asymmetric perturbation has been
used, and the initial configuration corresponds to that of the N=3 bound state. Note the increasing range
of the abcissas in the different frames; this is necessary to accomodate a distribution of probability that
has began to expand outwards, both to left and right.

towards the “left” or towards the “right” is the equivalent, in one dimension, to breaking
up emitting the fragment into different orientation angles. The actual situation in the or-
dinary three-dimensional space is reconstructed — as it was previously mentioned — from
the expansion of the incident flux in angular momentum (partial wave) components.
The solution of the problem so far has not involved an expansion of the time dependent
wave function into any basis of single-particle states. In particular, it has not yet been
necessary to introduce explicitly any scattering states, since continuum effects are au-
tomatically incorporated in |¥(x,)[2. In cases involving emerging fragments, however,
one might like to predict not only the total break-up probability but also learn about the
Q-value distribution of the emitted nucleons. To this end one needs to expand the final
wave function into a complete set of energy eigenstates of Hy including, of course, those
lying in the continuum. The resulting continuum Q-value distribution is shown in Fig.2.

COUPLED-CHANNEL APPROACH

As an alternative to the direct numerical solution of the time-dependent Schroedinger
equation one can resort to the familiar coupled-channel formalism, where the
Schroedinger equation is solved by expanding the total wave function in a basis of
eigenstates @, (x,¢) of the hamiltonian Hy. This is the preferred approach in most situa-
tions, where the direct numerical solution of the full time-dependent many-body wave
function is very complicated. For these reasons it is also the conventional approach that
is used in most of the current computer codes available in the market. We will use here
a simplified version of the coupled-channel scheme, adapted to our one-dimentional
problem.

If the basis states are identified with the eigenstates of a finite potential, the complete
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Coupled-channel results

compared with the solution
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FIGURE 2. Case of partial break-up starting from a well-bound orbital (N=3). Comparison of final Q-
value distribution obtained in the exact calculation and with the discretized continuum. In the later case,
different energy meshes are used in the different frames. The energy cut-off was fixed at 20 MeV.

set of states necessarily includes the discrete bound states but also the continuum states
at positive energies. This is indeed the case of the potential considered in this work.
In our context — and using the positive energies £ as a label for the continuum states,
®(E,x) — the expansion of the full wave function does in fact incorporate continuum
amplitudes a(E,¢) in the form

W) = 3 a()@u(r) + / dE(a,(EJ) ®_(Ex) +a(E,f) CI>+(E7x)> (5)
N=1

having taken into account that for each positive energy E there are two independent
solutions. We have chosen these, quite naturally, as the solutions of the scattering
problem at energy £ with boundary conditions of incoming plane wave from the left
(®_) and from the right (O ).

With the full (bound plus continuum) basis the standard coupled equations for the
discrete part of the amplitudes, a,(f)

ilian =Y, e BBl < @, Vigup (1)@ > (1) (6)
m=1
has to be generalized to now include terms that not only couple to the other discrete
amplitudes but also to the continuum ones. In addition, we have other analogous coupled
equations for the continuum amplidudes a. (E,¢).

So far we have not performed any sort of energy discretization. But in order to solve
the continuum differential set of equation it is imperative to reduce the channels to a
finite (preferably small) number. Different prescriptions have been proposed to provide
a discrete basis. A first, simple, procedure consists in slicing the energy continuum in
equally-spaced bands. Each slice, assumed to be associated to a single state, is then
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chosen to be represented by the true continuum wave function corresponding to the
central energy of the band. The norm of each of those effective, discrete “states” must
be weigthed by a factor v/AE to restore correct units for the distribution of continuum
probabilities over the chosen energy mesh of size AE. In a second popular procedure [2],
normally used in CCDC codes, again each slice is made to corresponds to a single state.
But this time the effective configuration is obtained by averaging over the continuum
states in the interval AE with some weighting function w(E).

An example of the comparison between the “exact” results and those obtained within
the coupled-channel approximation is given in Fig. 2, for different choices of the energy
mesh (and consequently different number of basis states). The comparison focuses on
the Q-value distribution of the final break-up wave function. In the former case this is
obtained by projecting the final wave function on the set of basis states (bound plus con-
tinuum). For the positive energy part this gives rise to a continuum Q-value distribution
(reported as the solid yellow curves), without the need of actually implementing a con-
tinuum discretization. In the coupled-channel approach, on the other hand, the projection
is done over the discretized states we consider and are directly given by the final ampli-
tudes a,. The corresponding Q-value distribution will therefore consist of discrete lines,
whose number and position will depend on the parameters of the discretization model.
We can see from the figure that even in this unidimensional case a number of dozens of
channels is needed to give a proper account of the process. No significant difference was
found by using either procedure for the discretization.

Further examples can be found in Ref. [3, 4, 5], where different situations have been
considered. We can summarize these results by stating that the comparison with the exact
calculations shows that standard coupled channel descriptions based on discretization of
the continuum can be accurate only when a proper choice is made of the number of
discrete states, of the energy mesh and of the energy cutoff. This may imply, even in
simplified cases, the use of a rather large (and unpracticable) number of channels. The
use of a more restricted number of channels may lead to misleading results.
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