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Nonlinear alfvénic fast particle transport and losses
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Abstract. Magnetohydrodynamic instabilities like Toroidal Alfvén Eigenmodes or core-localized
modes such as Beta Induced Alfvén Eigenmodes and Reversed Shear Alfvén Eigenmodes driven by
fast particles can lead to significant redistribution and losses in fusion devices. This is observed in
many ASDEX Upgrade discharges. The present work aims to understand the underlying resonance
mechanisms, especially in the presence of multiple modes with different frequencies. Resonant mode
coupling mechanisms are investigated using the drift kinetic HAGIS code [Pinches 1998].
Simulations were performed for different plasma equilibria, in particular for different q profiles,
employing the availability of improved experimental data. A study was carried out, investigating
double-resonant mode coupling with respect to various overlapping scenarios. It was found that,
depending on the radial mode distance, double-resonance is able to enhance growth rates as well as
mode amplitudes significantly. Small radial mode distances, however can also lead to strong nonlinear
mode stabilization of a linear dominant mode.
With the extended version of HAGIS, losses were simulated and directly compared with experimental
loss measurements. The losses’ phase space distribution as well as their ejection signal is consistent
with experimental data. Furthermore, it allowed to characterize them as prompt, resonant
or stochastic. It was found that especially in multiple mode scenarios (with different mode
frequencies), abundant incoherent losses occur in the lower energy range, due to a broad phase-space
stochastization. The incoherent higher energetic losses are “prompt”, i.e. their initial energy is too
large for confined orbits.

1. Introduction
Fusion devices contain fast particle populations due to external plasma heating and (eventually)
fusion-borne α-particles. Fast particle populations can interact with global electromagnetic waves,
leading to the growth of MHD-like and kinetic instabilities – e.g., Toroidicity Induced Eigenmodes
(TAE) [1], Reversed Shear Alfvén Eigenmodes (RSAE) [2] or Beta Induced Alfvén Eigenmodes
(BAE) [3]. In this work, drift-kinetic fast particle simulations performed with the HAGIS code [4]
are carried out to obtain a deeper understanding of the dynamics of wave-fast particle interaction in
scenarios with two modes of different frequencies: what is the mode coupling mechanism, and how
does it dependent on radial mode distance? In a second study, the extended version of HAGIS [5] is
used to simulate fast particle losses and to compare them with experimental loss measurements [6]
in ASDEX Upgrade (AUG). The losses’ phase space distribution as well as their ejection signal allows
to characterize them as prompt, resonant or stochastic.

2. Simulation Tool and Experimental Reference Case
The numerical investigations are performed with the HAGIS Code [4], a nonlinear, drift-kinetic,
perturbative Particle-in-Cell code, that models the interaction between a distribution of energetic
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particles and a set of Alfvén Eigenmodes. The plasma equilibrium for HAGIS is based on the CLISTE

[7] and HELENA [8] codes. The data for the MHD equilibria originate from the ICRH minority heated
ASDEX Upgrade discharge #23824, at times t = 1.16 s and t = 1.51 s. At the earlier time point,
the q profile is slightly inverted (q0 = −1.55, qmin = −1.43) at the later time point, it is monotonic,
with lower absolute values (q0 = qmin = −0.97)1. This particular reference scenarios were chosen
due to the availability of detailed experimental data concerning fast particle-wave interaction and
losses. The comparison between these data and numerical results is subject of section 4.

3. Numerical Study on Double-Resonance
Theoretical Picture Theory (e.g. Ref. [9]) predicts that conversion of free energy to wave energy
is enhanced in a multiple-mode scenario, i.e., the interaction of multiple modes produces energy
conversion rates higher than that which would be achieved with each mode acting independently.
This effect is called “double-resonance” and can be partially explained by the principle of gradient
driven mode growth – according to2: γ ∝ ∇ f (s) [10] – which can be extended to multiple modes
[9, 11]. This picture of gradient driven double-resonance is based on the precondition that modes
share resonances in the same phase space area. Through the resulting redistribution by each
mode, a steeper gradient is produced at the other mode’s position, enhancing its drive. The radial
overlapping of modes leads then to a much larger conversion of free energy to wave energy.
However, this mechanism can only work if the modes not only share resonance regions in phase
space, but if there is also spatial mode overlap in the radial direction. In Ref. [5] simulations
were carried out, finding a double-resonant effect also without this precondition. Furthermore, a
superimposed oscillation on the modes’ amplitudes was observed, clearly indicating mode-mode
interaction. The modes without radial overlap are then coupled radially through the particles’
trajectories: A population of particles that shares resonances in phase space with both modes and
passes both modes’ location at once, can transfer energy from one mode to the other [5]. Due to
the particle orbits’ width, it is not necessary that both modes have a radial overlap. In the following,
this mechanism is called inter-mode energy transfer.

Simulation Conditions As the first question, the understanding of double mode resonance is very
fundamental, the simulations were performed under quite simple physical conditions: radial particle
distribution f (ψ) with constant gradient (to avoid different mode drive at different radial mode
positions only due to a steeper gradient) and a slowing down function as energy distribution
function. The volume averaged fast particle beta is βf=1%. The particles are distributed isotropically
in pitch angle (as e.g., fusion borne α-particles would be).
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(a) analytical perturbation
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(b) numerical perturbation

Figure 1: Two Alfvénic modes: (a) gauss-shaped perturbation as used in the following simulations, (b) for
comparison: perturbations occurring in AUG discharge #23824, as calculated numerically with
LIGKA [12].

1 Note that the q profile is negative here, due to the AUG current direction.
2 s refers to the radial coordinate as the square root of the normalized poloidal flux: s = (ψpol/ψpol,edge)1/2.
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As MHD perturbations, analytic, gauss shaped functions are used (see figure 1), without background
damping. The mode frequencies are chosen to match experimental data: one high frequency mode
120 kHz (TAE) and one lower frequency mode at 55 kHz (possible RSAE or BAE).

Simulation Results A scan over the radial mode distance reveals an effective double-resonance as
shown in figure 2: depicted are the ratios of the linear growth rates (a) and the amplitudes (b) in
the double mode case vs. the single mode case over the radial mode distance ∆s. The amplitude
level was compared after ≈ 300 TAE periods (= 2.5 ms) of simulation time. This time is sufficient
for the single amplitudes to saturate, but still significantly below energy slowing down time. One
can see that the growth rates of both the TAE and the RSAE are enhanced in all double mode
cases compared to the single mode ones. However, the growth rate of the outer TAE is enhanced
most strongly and independently of the radial mode distance – i.e. gradient driven double-resonance
works even if there is no radial mode overlap. In contrast, the enhancement of the inner and weaker
RSAE decreases with the radial mode distance for small ∆s. Then it increases again for ∆s > 0.15.
These larger mode distances match the double-resonant particle orbits and therefore enable inter-
mode energy exchange, driving the weak mode. For higher∆s, the larger, i.e. higher energetic orbits
fit the mode distance and lead to even more energy exchange. Furthermore, with larger radial mode
distances, the modes are able to tap energy from a wider gradient region. The amplitude ratios,
however, are even lowered in the double-resonant case compared to the respective single mode
levels, if the radial mode distance is small. This happens due to the mutual gradient depletion at the
other mode’s radial position. If the modes are at a larger radial distance (∆s > 0.15), the double
mode scenario amplitudes are much higher compared to the single mode amplitudes, both for the
TAE and the RSAE. Both modes drive each other – most for a radial distance of about ∆s ≈ 0.25.
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(a) Growth rates enhancement
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(b) Amplitudes enhancement (at t ≈ 300 T)

Figure 2: Mode evolution scanned over the radial mode distance∆s in the inverted q profile case. Depicted is
the∆s dependence of the ratios of growth rates (a) and amplitudes (b) in double mode simulations
over those from single mode simulations. Red star: RSAE, blue square: TAE. One can clearly see
that larger radial mode distances lead to higher amplitudes, whereas amplitudes are even lower
than in the single mode case for ∆s ≤ 0.15. The linear growth rates, however, are higher than in
the single mode simulation throughout the ∆s range. The RSAE growth rate experiences a small
drop at ∆s ≈ 0.15.

It is important to note that the distance ∆s = 0.25 giving maximum amplitude ratios depends
strongly on the absolute mode positions with respect to the radial distribution function, and espe-
cially on the amplitude regime (stochastic or non-stochastic) of each mode. The same applies for
the value ∆s = 0.15 at which the transition towards double-resonant amplitude enhancement takes
place.
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Summary (I) Growth rates are generally enhanced by the presence of another mode, whereas for
the amplitudes, this is only the case, if the modes have sufficiently large radial distance. For small
distances, modes at radial positions, where the initial distribution function is already relatively flat,
double-resonance leads to strong mode stabilization with respect to the single mode case. If the
amplitudes are enhanced, their amplification level is, however, mainly determined by whether the
mode reaches the stochastic regime. The stochastic threshold is reached much earlier or even only
if a second mode is present.

4. Fast Particle Losses in Numerical Simulations vs. Experimental Measurements
Experimental Loss Observations In the AUG discharge #23824, during the inverted q profile
equilibrium at t = 1.16 s, a high loss signal is observed at the Fast Ion Loss Detector (FILD), with the
majority of losses characterized as incoherent. Later, at t = 1.51 s, during the monotonic q profile
equilibrium, only very few losses occur, and all are identified as coherent [6]. In the following,
simulations within this experimental reference frame are presented, that were performed to identify
the origin of the different loss types.

Simulation Conditions The simulations presented in this section are carried out with an extended
HAGIS version [5], including the vacuum region, and are based on more realistic plasma conditions:
The radial particle loading follows a Fermi-like potential law f (s) = (1− s2)5, that decays to zero
at s = 0.6. It was chosen in a way that does not produce prompt losses in the simulations with
monotonic q profile, as seen in the experiment. Furthermore, the markers are initialized in pitch and
poloidal angle distribution according to an analytical function that models the distribution created
by ICRH (main heating method in AUG #23824). βf is set to 0.1%. As MHD perturbation, the
analytic, gauss functions (figure 1) are used, without background damping. The mode frequencies,
positions and widths are chosen to be consistent with experimental data: at t = 1.16 s, a 120 kHz
TAE at s = 0.45 and a 55 kHz RSAE at s = 0.35, whereas at t = 1.51 s, there is a TAE of 180 kHz at
s = 0.6 and a BAE of 80 kHz at s = 0.35 [13]. These data were obtained from Fourier spectrograms
of the SXR signal, Mirnov Coils and the FILD signal [14].
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(a) redistribution in phase space
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(b) losses in phase space

Figure 3: Double mode simulation in the inverted q profile equilibrium: Redistribution in E-s space during
(a): redistribution phase (t ≈ 0.6 ms), (b) stochastic phase (t ≈ 1.8 ms) Red: particles
accumulate, blue: particles move away. One can see the good accordance of redistribution
areas (black arrows) and the resonance lines (pink) in the modes’ vicinity (horizontal lines).
The redistribution in the areas, where the resonance lines meet the loss boundary (black circles)
coincide with the losses (see figure 4a).
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Simulation Results Consistent with results from the numerical study, it is found that the mode
amplitudes grow slower with the monotonic q profile and do not reach the stochastic threshold (at
≈ 2 · 10−3δB/B). A superimposed oscillation frequency is visible in both scenarios, originating from
the double-resonance mechanism of inter-mode energy exchange. Its frequency matches with the
beat frequency of both modes. In the inverted q profile, the modes reach the stochastic regime.
There, particle redistribution in phase space takes place broadly over the whole energy range
(figure 3b) at the modes’ radial position. Slightly before, during the resonant phase, however,
redistribution in phase space occurs along the resonance lines (figure 3a). The energy of the losses
obtained during this “redistribution phase” (see figure 4a) matches roughly with the energy, at
which the higher resonance lines meet the loss boundary. This indicates, that losses in this time
period are resonant, i.e. coherent losses. In the simulation with the monotonic q profile, there is
no redistribution into the loss region. Thus, very few losses appear, consistent with experimental
measurements.
To learn more about the identity of the incoherent losses, their phase space pattern is
analyzed in the following. The distribution function of the fast particles is not known exactly,
therefore, the markers are loaded according to an estimated distribution function. To learn
how sensitive the loss pattern is with respect to the parameters defining the distribution
function, a scan is performed over the radial, as well as over the poloidal distribution function.
Combining the results of both the radial and the poloidal marker loading scan, it turns
out that there is a phase space region that cannot be covered by prompt losses in neither
loading scenario: the phase space region of energies below 600 keV (45 mm gyroradius) at
negative pitch angles smaller than 63◦. These losses are very likely to be stochastic losses.
For the rest of the phase space, it is not possible to discern prompt from later losses yet.
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Figure 4: Lost particles at the first wall over
simulation time in the inverted q profile:
in the stochastic phase, losses spread
over a large energy range, even to lower
energies around 500 keV. For comparison,
the edge of the phase space region of the
prompt losses in this simulation is shown
(white lines). Black lines: amplitude
evolution of RSAE (upper) and TAE
(lower).

Figure 5: Fast ion losses in phase space (AUG
discharge #23824): colors give the FILD
measured loss pattern [6], lines give
the boundary of the numerical calculated
loss region. Black lines: upper estimate
for the (drift corrected) border of the
prompt losses appearance resulting from
the radial and poloidal marker loading
scan. White lines: same for the losses
during the stochastic phase of the MHD
perturbations. The lighter shaded area
indicates the peak region of stochastic
losses.

Figure 5 shows the good accordance of the numerically calculated losses and the experimentally
measured ones: the whole loss area as well as the peak region of the numerical values lies almost
entirely within the respective experimentally measured region of phase space. The experimental
peak being slightly broader results mainly from over exposure of the FILD loss plate. The higher
energetic losses (i.e. the pattern at gyroradii > 90 mm or energy > 1 MeV) do not appear in the
simulation, as the fast particle energy was cut at 1 MeV. The lower energetic losses below 50 mm
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gyroradius are expected to appear when simulating with more than two modes at lower frequencies
(work in progress).
When looking closely at the loss time traces, one can perceive an ejection modulation. A Fourier
analysis of the loss signal gives a peak at 65 kHz, which is exactly the beat frequency. In the above
simulation, the mode frequencies result in beat frequencies of 65 kHz and 175 kHz. Unfortunately,
the RSAE frequency is very close to the lower beat frequency, and the TAE frequency almost coincides
with the first harmonic of it. Therefore, another simulation was performed, using ωRSAE = 70 and
ωTAE = 100 kHz. A Fourier analysis of the loss signal is performed for the resonant phase (figure 6a),
and the stochastic phase (figure 6b). In the resonant phase, the RSAE frequency peak at around 70
keV is visible, whereas the TAE’s amplitude is still too small to produce significant losses. Later
on in the simulation, the TAE grows towards the same amplitude range as the RSAE, likewise, the
beat frequency peak becomes visible in the Fourier spectrum. This is consistent with FILD spectra,
showing the beat frequency as well.
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(a) FFT of losses’ time signal during resonant phase
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(b) FFT of losses’ time signal during stochastic phase

Figure 6: Fourier spectra of losses time signal. (a) in the resonant phase: a significant number of particles is
ejected with the frequency of the dominating RSAE (70 kHz). (b) in the stochastic phase: the beat
frequency (30 kHz) is by far dominating (and its higher harmonics). All frequencies experience a
slight down-shift.

Summary (II) With the extended version of HAGIS, losses were simulated and compared with ex-
perimentally observed losses at the Fast Ion Loss Detector. The simulated losses’ phase space pattern
coincides very well with the experimental one. Especially in multi-mode scenarios with different
mode frequencies, stochastic redistribution sets in over a broad energy range, leading to lower ener-
getic losses, that are incoherent. The resonant losses appear from the late linear phase on, mainly in
the high energy regime, showing good coherence with the modes’ frequencies and especially their
beat frequencies. The higher energetic part of experimentally measured incoherent losses was iden-
tified as mainly prompt losses. The internal redistribution, as well as the losses can be understood
very well as processes in phase space, when combining resonance lines, loss boundary and radial
positions of the Alfvénic modes.
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