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Abstract. An adaptive N -fidelity (NF) metamodel is presented for the solution of simulation-
based design optimization and uncertainty quantification problems. A multi-fidelity approximation
is built by an additive correction of a low-fidelity metamodel with metamodels of hierarchical
differences (errors) between higher-fidelity levels. The metamodel is based on the expected value
of an ensemble of stochastic radial-basis functions, which also provides the uncertainty associated
to the prediction. New training points are added to the appropriate fidelity level, based on the
NF prediction uncertainty and the computational cost. The method is demonstrated for an
analytical test function, the shape optimization of a NACA hydrofoil, and the operational-
uncertainty quantification of a RoPax ferry. The fidelity levels are defined by adaptive-grid
refinement and multi-grid approach, for the NACA hydrofoil and the RoPax ferry, respectively.
The generalization of the multi-fidelity concept to N fidelities shows promising results both in
terms of accuracy and computational cost.

1 INTRODUCTION

Ship performance depends on design and operational (including environmental) parameters.
The accurate prediction of significant design metrics (such as resistance and powering requirements;
seakeeping, maneuverability, and dynamic stability; structural response and failure) requires
prime-principle-based high-fidelity computational tools (e.g., for computational fluid/structural
dynamics, CFD/EFD), especially for innovative configurations and off-design conditions. These
tools are generally computationally expensive, making the exploration of design (such as in
simulation-based design optimization, SBDO) and operational-uncertainty (such as in uncertainty
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quantification, UQ) spaces a technological challenge.
To reduce the computational cost of SBDO and UQ processes, metamodeling methods have

been developed and successfully applied in several engineering fields [1]. Among other metamodels,
radial basis functions (RBF) methods have demonstrated their accuracy and efficiency in engineering
design [2]. Further efficiency is gained using dynamic metamodels, for which the design of
experiments (DoE) for metamodel training is not defined a priori but dynamically updated,
exploiting the information that becomes available during the analysis process. Thus, training
points are added where it is most useful, reducing the number of function evaluations required
to properly represent the function. An adaptive sampling criterion based on the maximum
prediction uncertainty for dynamic radial basis functions (DRBF) has been presented by [3].
Other sampling approaches are based on the expected improvement [4] and multi-criteria adaptive
sampling [5].

In addition to dynamic metamodels, multi-fidelity approximation methods have been developed
to further reduce the cost of the SBDO procedure, combining the accuracy of high-fidelity solvers
with the computational cost of low-fidelity solvers. Multi-fidelity (MF) metamodels use mainly
low-fidelity simulations and few high-fidelity (accurate, expensive) simulations used to preserve
the accuracy of the overall model. Several metamodels have been used in the literature with
MF data, like non-intrusive polynomial chaos [6], co-kriging [7] and RBF [8]. In SBDO based on
CFD computations, high- and low-fidelity evaluations may be obtained by varying the physical
model, the size of the computational grid, and/or combining experimental data with numerical
simulations [9]. Most MF approaches generally use two fidelity levels.

The objective of the present work is to formulate and assess an N -fidelity (NF) metamodel
for design and operational-uncertainty space exploration of complex industrial problems.

The NF metamodel is developed as an extension of the authors’ previous work [10]. The
methodology is tested on a 1-D analytical problem and then applied to: (i) the shape optimization
of a NACA hydrofoil and (ii) the uncertainty quantification of a roll-on/roll-off passengers
(RoPax) ferry. CFD computations are based on two unsteady Reynolds averaged Navier-Stokes
equations (RANSE) solvers: (1) ISIS-CFD [11], developed at Ecole Centrale de Nantes/CNRS
and integrated in the FINE/Marine simulation suite from NUMECA Int, for the SBDO problem;
(2) χnavis [12], developed at CNR-INM, for the UQ problem. In ISIS-CFD, mesh deformation
and adaptive grid refinement techniques are adopted to allow the automatic shape deformation
of the hydrofoil. The fidelity levels are defined by the grid refinement ratio. In χnavis, different
fidelities are obtained using multi-grids.

2 N-FIDELITY METAMODEL

Consider x ∈ RD as the design and/or operational uncertainty vector of dimension D. Let
the true function f(x) be assessed by MF simulations: the highest-fidelity level is f1(x), the
lowest-fidelity is fN (x), and arbitrary intermediate fidelity levels are {fi}N−1

i=2 (x). Let training

sets be available for each level: {Ti}Ni=1 = {xj , fi(xj)}Jij=1, with {Ji}Ni=1 the training set size.
Then an intra-level error εi(x) = fi(x) − fi+1(x) can be defined with an associate training set
Ei = {(x, fi(x)− fi+1(x)) |x ∈ Ti ∩ Ti+1}.

Using these sets, metamodels f̃N and {ε̃i}N−1
i=1 are trained, where “∼” denotes metamodel

prediction based on a stochastic ensemble of radial basis functions, which also provides the
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prediction uncertainty U . Assuming the uncertainty associated to the prediction of the lowest-
fidelity Uf̃N

and intra-level errors Uε̃i as uncorrelated, the NF approximation f̂(x) of f(x) and
its uncertainty Uf̂ reads

f̂(x) = f̃N (x) +

N−1∑
i=1

ε̃i(x) and Uf̂ (x) =

√√√√U2
f̃N

(x) +

N−1∑
i=1

U2
ε̃i
(x) (1)

The contribution of each fidelity level to Uf̂ is assessed and used to refine adaptively the training

sets as the sampling of the design/operational space progresses.

2.1 Adaptive sampling method

The NF metamodel is dynamically updated by iteratively adding a new training point
following a two-step procedure (see Fig. 1): firstly, the coordinates of the new training point x�

are identified based on the metamodel maximum uncertainty [10], solving the single-objective
maximization problem:

x� = argmax
x

[Uf̂ (x)]. (2)

secondly, once x� is identified, either TN or all the training sets from Tk to Tk+1 are refined
according to Eq. 3. Defining βi = ci+1/ci, i = 1, ..., N − 1, where ci is the computational cost
associated to the i-th level, U ≡ {β1Uε̃1 , ..., βN−1Uε̃N−1 , Uf̃N

} as the metamodel uncertainty
vector, and k = maxloc(U):

{
If k = N add {x�, fN (x�)} to TN ,
else, add {x�, fi(x

�)} to Ti with i = k, k + 1
(3)

In the first case, only the lowest-fidelity evaluation is performed, whereas two evaluations are
required at the same x� in the second case.

2.2 Stochastic radial basis functions

The metamodel prediction f̃ (x) is computed as the expected value (EV) over a stochastic
tuning parameter of the RBF metamodel, τ ∼ unif[1, 3]:

f̃ (x) = EV [g (x, τ)]τ , with g (x, τ) =

J∑
j=1

wj ||x− xj ||τ , (4)

where wj are unknown coefficients, ||·|| is the Euclidean norm. The coefficients wj are determined
enforcing exact interpolation at the training points g (xj , τ) = f (xj) by solving Aw = f , with
w = {wj}, alj = ||xl − xj ||τ and f = {f (xj)}.

The uncertainty U
f̃
(x) associated with the stochastic RBF metamodel prediction is quantified

by the 95%-confidence interval of g(x, τ), evaluated using a Monte Carlo sampling over τ [3].
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Figure 1: N -fidelity adaptive sampling procedure.

3 ANALYTICAL TEST

One analytical test problem is selected to assess the adaptive NF metamodel performance. It
is mono-dimensional and multi-modal. Figure 2a shows the highest-fidelity level (f1), whereas
Figs. 2b and c show, respectively, the same analytical function along with one (f2) and two
(f2,3) lower-fidelities and the corresponding errors (ε1,2). The analytical test is defined in Tab.
1.
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Figure 2: Analytical test problem with different number of fidelities N .
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Table 1: Analytical test problem.

N Problem Domain

1 f1(x) = −0.5x(sin(0.25x) cos(0.5x) + 1− ex + 2.0) + 8 [−12, 2]

2 f1(x) = −0.5x(sin(0.25x) cos(0.5x) + 1− ex + 2.0) + 8
[−12, 2]f2(x) = f1(x)− ε1(x)

ε1(x) = 0.075(x)2 + 3 cos(0.5x− 0.76) + 3

3 f1(x) = −0.5x(sin(0.25x) cos(0.5x) + 1− ex + 2.0) + 8

[−12, 2]
f2(x) = f1(x)− ε1(x)
f3(x) = f2(x)− ε2(x)
ε1(x) = 0.075x2

ε2(x) = 3 cos(0.5x− 0.76) + 3

4 NACA HYDROFOIL SHAPE OPTIMIZATION PROBLEM

This problem addresses the drag minimization of a NACA four-digit airfoil. The following
minimization problem is solved

minimize CD(x)
subject to CL(x) = 0.6

and to l ≤ x ≤ u
(5)

where x is the design variable vector, CD and CL are respectively the drag and lift coefficient,
and l and u are the lower and upper bound of x. The equality constraint on the lift coefficient
is necessary in order to compare different geometries at the same lift force (typically equal to
the weight of the object), since the drag depends strongly on the lift.

The hydrofoil shape (see Fig. 3) is defined by the general equation for four-digit NACA foils.
The upper (yu) and lower (yl) hydrofoil surfaces are computed as

⎧⎪⎪⎨
⎪⎪⎩

ξu = ξ − yt sin θ
ξl = ξ + yt sin θ
yu = yc + yt cos θ
yl = yc − yt cos θ

with yc =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m

p2

�
2p

ξ

c
−

�
ξ

c

�2
�
, 0 ≤ ξ < pc

m

(1− p)2

�
(1− 2p) + 2p

ξ

c
−

�
ξ

c

�2
�
, pc ≤ ξ ≤ c

(6)

where ξ is the position along the chord, c the chord length, yc the mean camber line, p the
location of the maximum camber, m the maximum camber value, and yt the half thickness
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Figure 3: NACA 4-digit hydrofoil.
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(a) Coarse grid, 3.6k cells (b) Medium grid, 5.7k cells (c) Fine grid, 12.8k cells

Figure 4: NACA hydrofoil computational grids.

given by

yt = 5t
(
0.2969

√
ξ − 0.1260ξ − 0.3516ξ2 + 0.2843ξ3 − 0.1015ξ4

)
(7)

In this work, the design variables vector is defined as x = {t,m} with t ∈ [0.030, 0.120] and
m ∈ [0.025, 0.065]. The maximum camber position is fixed at p = 0.4. The simulation conditions
are: velocity U = 10 m/s, chord c = 1 m, fluid density ρ = 1, 026 kg/m3, and Reynolds number
Re = 8.41 · 106.

CFD simulations are performed with the unstructured finite-volume RANSE solver ISIS-
CFD developed at ECN – CNRS [11], available in the FINETM/Marine computing suite from
NUMECA Int. Computational grids are created through adaptive grid refinement [13, 14] to
take into account the need for high and low fidelity. The simulation strategy in the context
of metamodel creation is explained by [10]. The adaptive grid refinement method adjusts the
computational grid locally, during the computation, by dividing the cells of an original coarse
grid, to improve the precision. The decision where to refine comes from a refinement criterion, a
tensor field C(x, y, z) computed from the flow. The tensor is based on the water surface position
and on second derivatives of pressure and velocity. The mesh is refined until the dimensions dp,j

(j = 1, 2, 3) of each hexahedral cell p satisfy

�Cpdp,j� = Tr (8)

The refinement criterion based on the second derivatives of the flow is not very sensitive to grid
refinement [14], so the cell sizes everywhere are proportional to the constant threshold Tr.

For NF optimization, the interest of this procedure is that different fidelity results can be
obtained by running the same simulations with different thresholds Tr. Herein, three fidelity
are used. The initial computational grid has 2,654 cells, the refinement threshold value Tr is
set equal to 0.1, 0.2, and 0.4 from highest- to lowest-fidelity. The actual computational grids
have 12.8, 5.7, and 3.7k cells, respectively (see Fig. 4). Highest- to lowest-fidelity simulations
require about 17, 9, and 5 minutes, respectively, of wall-clock time to converge. The resulting
computational cost ratios are about β1 = 0.5 and β2 = 0.3.

The domain runs from 11c in front of the leading edge to 16c behind the hydrofoil and from
−10c to 10c vertically. Dirichlet conditions on the velocity are imposed, except on the outflow
side which has an imposed pressure condition. The hydrofoil surface is treated with a wall law
and y+ = 60 for the first layer. Turbulence is modeled with the standard k − ω SST model.
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To maintain a constant lift (see Eq. 5), the angle of incidence α for the hydrofoil is adjusted
dynamically during the simulations.

The budget is defined in terms of normalized computational cost and is equal to 22. The
initial training set for the problem is a set of 2N + 1 points including the domain center and
min/max coordinates for each variable. All fidelities are sampled in these points.

5 ROPAX UNCERTAINTY QUANTIFICATION PROBLEM

This problem addresses the UQ of a RoPax ferry in terms of estimation of expected value
(EV) and standard deviation (SD) of the (model-scale) resistance (RT ), subject to operational
uncertainty. Specifically, the uncertain parameter is the Froude number with a uniform probability
density function from 0.25 to 0.35. The RoPax ferry is characterized by: length between
perpendicular LPP = 162.85 m, displacement (DWT) of 5, 000 t, block coefficient CB = 0.5677.
The analysis is performed with a scale factor λ = 27.14. The parametric geometry of the RoPax
is produced with the computer-aided design (CAD) environment integrated in the CAESES R©

software, developed by FRIENDSHIP SYSTEMS AG, and made available in the framework of
the H2020 EU Project Holiship.

The hydrodynamics performance of the RoPax is assessed by the unsteady RANSE code
χnavis developed at CNR-INM. It is based on finite volume scheme, with variable co-located
at cell centers. Turbulent stresses are taken into account by the Boussinesq hypothesis, with
Spallart-Almaras turbulence model. Free-surface effects are taken into account by a single-phase
level-set algorithm. Wall-functions are not adopted, therefore y+ = 1 is ensured on the wall.
On solid walls, the velocity is set equal to zero and zero normal gradient is enforced on the
pressure field; at the (fictitious) inflow boundary, velocity is set to the undisturbed flow value
and the pressure is extrapolated from the inside; the dynamic pressure is set to zero at the
outflow, whereas the velocity is extrapolated from inner points. On the top boundary, which
remains always in the air region, fluid dynamic quantities are extrapolated from inside. Chimera
overlapping grid capabilities are used, the numerical solutions are computed by means of a full
multi grid–full approximation scheme (FMG–FAS), with four grid levels (from coarser to finer:
G4, G3, G2, and G1), each obtained from the next finer grid with a refinement ratio equal to
2, resulting in β1 = 0.125 and β2 = 0.0625. In the FMG–FAS approximation procedure, the

(a) CFD hull grid (b) Non-dimensional wave elevation, Fr =
0.245

Figure 5: RoPax ferry.

7

183



Serani A., Pellegrini R., Broglia R., Wackers J., Visonneau M., and Diez M.

solution is computed on the coarsest grid level first. Secondly, it is approximated on the next
finer grid and the solution is iterated by exploiting all the coarser grid levels available with a
V-Cycle. The process is repeated up to the finest grid level. For the present UQ problem G1,
G2, and G3 grids are used. Simulations are performed considering a water density ρ = 998.2
kg/m3, cinematic viscosity ν = 1.105E-6 m2/s, gravitational acceleration g = 9.81 m/s. The
grid is composed by 53 blocks, for a total of 4.88 M cells, see Fig. 5; the domain extends to
2LPP in front of the hull, 3LPP behind, and 1.5LPP each side; a depth of 2LPP is imposed.

6 NUMERICAL RESULTS

The normalized computational cost is defined as 1 for each f1 evaluation and βi, i = 1, ..., N−1
for each fi+1 evaluation. It is worth noting that, the normalized computational cost for the CFD
problems is defined, considering only the cost of the highest-fidelity level sampled. This is due
to the fact that, adaptive grid refinement and FMG–FAS compute the solution at grid level k
using solutions from grid level N to k.

The DPSO algorithm presented in [15] is used for the solution of Eqs. 2 and 5.

6.1 Analytical test problem

The performance of the adaptive NF metamodel is assessed in terms of convergence of the
normalized root mean square error (NRMSE), the objective function minimum, and the number
of highest-fidelity evaluations, as shown in Fig.6.
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Figure 6: Analytical test problem: convergences of (a) NRMSE, (b) objective function minimum, and
(c) the number of the highest-fidelity evaluations versus the sampling procedure iterations.

It is worth noting that for N = 3 the NRMSE decreases faster than for N = 2 and N = 1,
achieving an NRMSE = 0.01% with the lowest computational cost (see Fig.6a). Similarly, for
N = 3 the minimum of the objective function is achieved with the lowest computational cost (see
Fig. 6b). Finally, Fig. 6c shows the number of highest-fidelity evaluations versus the sampling
iteration number. It is worth noting that adding intermediate-fidelity levels decreases the need
for highest-fidelity samples.

6.2 NACA hydrofoil shape optimization

Figure 7 shows the training sets at the last iteration of the MF metamodel training for N = 1,
2, and 3. For N = 1 the training points are evenly distributed. For N = 2 the low-fidelity
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Figure 7: NACA hydrofoil: N -fidelity metamodel prediction and associated uncertainty, with N = 1, 2,
and 3 from left to right. Black squares, red circles, and green stars are the i = 1, 2, and 3 fidelity training
sets. Yellow triangles is the minimum position.

evaluations are clustered in three corners. Furthermore, in the latter case the uncertainty of the
prediction is significantly higher than for the N = 1 case, suggesting the presence of numerical
noise. Finally, for N = 3 the contour plot of the drag coefficient and the uncertainty look
smoother than for N = 2. This suggests a regularization effect stemming from the use of a mid-
level fidelity. At each iteration the predicted minimum is verified through an highest-fidelity
simulation. Fig. 8 shows the convergence of the verified objective function. It is worth noting
that the NF metamodel converges faster for both N = 2 and 3. Table 2 summarizes, the training
sets size, the normalized cost, the maximum uncertainty of the prediction, the coordinates of
the predicted minimum of the CD, the predicted minimum, its verification, the prediction error,
and the improvement with respect to the original configuration. It is worth noting that for
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Figure 8: NACA hydrofoil: verified optimum convergence versus the normalized computational cost.
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Table 2: Summary of the adaptive NF metamodel performance on the NACA hydrofoil SBDO problem.

Normalized minimum position minimum value

N |T1| |T2| |T3| cost max(Uf̂ )% t [−] m [−] ĈD [−] CD [−] E% ΔCD%

1 22 22.0 3.70 6.743E-2 0.000E-2 7.209E-3 7.206E-3 0.1 9.23
2 8 46 21.8 23.7 5.515E-2 0.000E-2 7.064E-3 7.209E-3 2.0 9.19
3 5 9 55 20.8 8.78 5.367E-2 0.000E-2 7.094E-3 7.219E-3 1.7 9.07

N = 3 the number of highest-fidelity evaluations decreases compared to N = 1 and 2. Similar
improvements are achieved using N = 1, 2, and 3.

6.3 RoPax uncertainty quantification

The NF metamodel for UQ is assessed through statistical estimation of the expected value
(EV) and standard deviation (SD) of the total resistance, RT . The training of the NF metamodel
is performed considering at most 4 high-fidelity evaluations. The results are compared to the
available highest-fidelity CFD data. Figure 9 shows the MF prediction of the total resistance
versus the Froude number, with N =1, 2, and 3. It is worth noting that the increase of N
improves the MF prediction. Table 3 summarizes the training sets size, the expected value,
standard deviation, and associate errors (E) for N = 1, 2, and 3. It is worth noting that the
MF metamodel with N = 3 achieves better results than using N = 1 and 2. Furthermore, for
N = 3 only three evaluations of the highest-fidelity are performed.
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Figure 9: RoPax ferry: model-scale total resistance versus operational uncertainty (Froude number).
N = 1, 2, and 3 fidelity metamodels.

Table 3: Summary of the adaptive NF metamodel performance on the RoPax UQ problem.

N |T1| |T2| |T3| Normalized cost EV E(EV)% SD E(SD)%

1 4 4.0000 48.7053 1.8649 1.3904 -38.1179
2 4 5 4.2500 47.7304 -0.1739 2.1106 -6.0643
3 3 4 6 3.8125 47.7411 -0.1514 2.1953 -2.2977
Reference 9 9 47.8136 - 2.2469 -
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7 CONCLUSIONS AND FUTURE WORK

The extension of a two-fidelity metamodel [8] to N -fidelity has been presented for the
reduction of the computational cost in solving complex problems by numerical simulations. The
method has been tested for an analytical test problem, the simulation-based shape-optimization
of a NACA hydrofoil, and the operational-uncertainty quantification of the total resistance of a
RoPax ferry at variable advancing speed. The methodology has demonstrated its effectiveness
in reducing the computational cost in the problems proposed. For the analytical test problem,
the NF method with N = 3 has achieved a greater reduction of the highest-fidelity evaluations
than with N = 2. For the NACA shape-optimization, the NF method with N = 3 has achieved
comparable solutions to a single-fidelity metamodel, at reduced computational cost. For the
operational-uncertainty quantification, the NF method with N = 3 has achieved better results
than with N = 1 and 2, at reduced computational cost. The NACA shape-optimization is likely
affected by non-negligible numerical noise for the coarser grids. Therefore, future work will
address the presence of numerical noise [16].
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