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THE RESTRICTION MAP FOR COHOMOLOGY AND SYLOW THEORY 

IN SOLUBLE LOCALLY FINITE GROUPS. 

 

BY ANDREW RAE 

 

Dedicated to Bertram Huppert on his 75'th birthday. 

 

In extending the Schur Zassenhaus theorem to infinite groups one needs to extend         
derivations from a subgroups of a soluble locally finite group G; necessary and sufficient 
conditions are given for this extension to be possible in all cases, provided that the mod-            
ule is a countable kG module where the characteristic of k does not divide the order of any 
element of G. 

 

 

1. 1 . Introduction 

In "Theorems like Sylow's" (1) Phillip Hall distinguishes three types of Sylow Theo-

rems: 

(i) Eπ   theorems which state the existence of at least one Hall π-subgroup. 

(ii) Dπ theorems which state that every π –subgroup is contained in a Hall π -subgroup. 

(iii) Cπ theorems which state that any two Hall π -subgroups are conjugate. 

Here π denotes a set of primes and a Hall π -subgroup is a π -subgroup whose index is a 

π ′ -number 

Following Hall we shall refer to Eπ , Dπ and Cπ theory collectively as Sylow theory. 

For π = 1 these are just the first three parts of Sylow's theorem. 

For finite soluble groups Hall deduced Eπ and Cπ (from which Dπ follows) from a result      

of Schur which states that if V is a kG module where /G/ is finite and prime to the char-

acteristic of k then H2(G,V) and H1(G,V) are trivial. 

Note that Dπ in effect states that the maximal π -subgroups are the Hall π -subgroups;        

and Hall's theorem states that all maximal             roups are con- 

W9198914 
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Jugate and have index coprime to π.. 

 

In this paper we are concerned with the extension of these results to infinite, but locally     

Finite groups (a group is locally finite if every finite subset generates a finite subgroup).  

Hartley (2), (3), (4) has successfully characterised the very restricted class of such             

groups for which the full force of Hall's theorem holds. 

A Hall π-subgroup of a locally finite group is one which reduces into some local system 

consisting of finite subgroups in the sense that it's intersection with every member X of          

the local system is a Hall π -subgroup of X. 

For finite soluble groups both Cπ and Dπ always hold, but there is a wide class of infinite  

soluble groups which satisfy Dπ without satisfying Cπ; all direct products of finite              

groups for example, and the class L of groups having a subnormal local system which is 

important in Passman's theory of group rings (see (7)). 

 

Here, then, we consider those groups which satisfy Dπ but not necessarily Cπ so that   

maximal π -subgroups are Hall subgroups but are not necessarily conjugate. 

 

This involves a characterisation of those modules for which restriction always gives an 

epimorphism of cohomology, and we hope that this may have independant interest in  

homological algebra. 

 

As the groups we are studying are direct limits of finite groups the problem is one of 

cohomology commuting with direct limits - in general, of course cohomology commutes        

with inverse limits, but not with direct limits. 

 

We now state our principal results. 

 

THEOREM A. Let G be a soluble locally finite n-group, let k be afield whose character-    

istic is a π' -number and V be a countable kG module. Then the following conditions are 

equivalent: 
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(i) res: H1(G,V)—>H1(G1,V)  is an epimorphism for every subgroup G1 of G  

(ii) H1( G1 , (V, x]G)  =0  for every subgroup G1 of G and element xofG 

 

Note: that V must be countable is shown by example 2.6 below while example 2.8 shows   

that solubility is necessary. 

 

We can restate theorem A in group theoretic terms as 

 

THEOREM B. Let G be a soluble locally finite π -group, let k be a field whose character-

istic is a π ′ -number and V be a countable kG module. Then the following conditions are 

equivalent: 

(i) If Γdenotes the split extension of (V,+) by (G,.) then Γ satisfies Dπ. 

(ii) For every element x the G closure [V, x]G of the submodule [V, x] =  { v(1-x)| v∈  V} 

satisfies the minimal condition for centralisers of finite subgroups of G. 

(iii) For every element x the group generated by G and [V, x]G satisfies  and so does πC

all its subgroups. 

 

As subgroup closure plays a vital role in the theory it may be worth mentioning the fol-

lowing corollary. 

 

COROLLARY B1 . Let G be a soluble locally finiteπt-group let k be a field whose char-

acteristic is a π'-number and V be a countable kG module . Then if  denotes the split Γ

extension of(V,+) by (G,.) the following conditions are equivalent: 

(i)  Γ satisfies Dπ . 

(ii) every subgroup of Г satisfies Dπ . 

 

In a forthcoming paper we will use this to develope a Dπ theory for soluble locally finite 

groups. 
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1.2 The connection between Sylow theory and cohomology. 

We start with a word of warning concerning difficulties inherent in the Sylow theory of 

infinite groups 

It is an elementary conseqence of Zom's Lemma that maximal π-subgroups always          

exist in locally finite groups (see (6) page 160), but it is not obvious how to define a         

Hall subgroup for an infinite group; for locally finite groups these are generally taken to     

be those known as Sπ subgroups in (7) which have the property of covering any 
quotient 

HIK where H and K are normal subgroups of G and HIK is a π-subgroup. They are      

defined by the property that they "reduce" into some local system of G. 

Unfortunately it is easy to construct groups all of whose Hall π-subgroups in this sense      

are conjugate but such that "almost all" maximal π-subgroups fail to be Hall subgroups    

(see Example 2.7; this is a countable metabelian group of exponent 6 made by adjoining   

one element to the direct power of∑3
) . 

To get an interesting theory one needs to consider properties which hold for all subgroups    

of G - as Hartley does in his Cπ theory; our results suggest that the class of countable  

soluble groups satisfying Dπ  is subgroup closed. 

 

For the rest of this paper we assume, unless otherwise stated, that G,V, Г and k satisfy        

the following: 

G is a soluble locally finite π-group, k a field whose characteristic is a π'-        

number, V is a countable faithfull kG module and Г is the split extension                   

of (V,+) by (G,.) 

 

The connection between the Sylow theory of Г and the cohomology of G on V is well  

known - see (6) chapter XII for example - the main link being that the set: 

    { }Gggd g ε/   Vd gε  

is a subgroup of Г iff 

g→dg

            satisfies        ggg
g

g ddd ′′
′ =
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so that it is a derivation; moreover this subgrup is conjugate to G in Γ iff this deriva-                 

tion is a coboundary. Thus 

H1 (G.V) =0  

iff all complements to V in Γ are conjugate, and 

 

Γ satisfies CΠ  iff H1(G,V) =0. 

 

It is of course necessarily the case that all complements to V in Γ are conjugate if G is             

finite and V is finite dimensional, but taking Γ to be the direct power of countably many       

copies of Σ3 shows that this need not happen on general (for this is a countable group           

having uncountably many Hall 2 subgroups). 

 

To get at the  theory of Γ we observe   that an arbitrary πD π -subgroup of Γ corre-              

sponds to a derivation from a subgroup of G and that this subgroup is contained in a Hall            

π -subgroup iff the derivation extends to G. 

Thus G 

  everyformepimorphisanisVGzVGzresiffDsatisfies ),().(: 1
11 →Γ ∏

  Subgroup G1 of G 

 

Now since restriction of 1-coboundaries is necessarily surjective - for they are the        

coboundaries of constant functions it follows that 

 

Γ satisfies DΠ iff res:H1(G1,V)→H1(G1,V) is an epimorphism for every            

 Subgroup G1of G 

  

This completes the proof of the equivalence of theorems A and B. 

 

 

 

1.3 Discussion of results.  

 

Hartley, in (2), (3), (4), developes a theory of modules V having 

 

H1(G1,V) = 0 

  

for all subgroups G1 of G. 
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he shows that these are just the modules satisfying the minimal condition for centralisers             

of finite subgroups of G (the min-c condition) and completely characterises the very ret-       

ricted class ℜ  of groups which can act faithfully on a min-c module; these results lead to             

a reasonably complete CΠ theory for locally soluble groups. 

 

If we combine these results with Theorems A and B we see that if Γ satisfies DΠ this                 

has dramatic consequences for the structure of G 

. 

Thus if Γ satisfies DΠ Theorem B shows that [x,V]G satisfies the minimal condition for 

centralisers of finite subgroups of G. This implies that the quotient 

 

 

G/CG( [x,V]G) 

is a min-c head in Hartley's terminology and consequently has a very restricted struc-              

ture. It must belong to the class  (see (4) Theorem 6.2 and Lemma 3.4) ℜ

 

DEFINITION G belongs to  if it is a soluble group of finite (special) rank which is the        ℜ

finite extension of a subdirect product of finitely many "pinched" groups.  

Here a group is "pinched" if 

(a) it has a normal locally cyclic subgroup containing its derived group and all elements             

of square free order and 

(b) all its 2-subgroups are Abelian. 

 

 

A group has special rank "n" if every finitely generated subgroup can be generated by n 

elements. 

 

 

If G belongs to the class  then it satisfies min p ( the minimal condition for p sub-          ℜ

groups) for every prime p and its p subgroups are Cemikov groups of uniformly bounded      

rank. 

 

Thus ℜ  groups are, in a sense, not far from being finite. 
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In addition Theorem B implies (see section 2 for a proof): 

COROLLARY B2 . Let G be a soluble locally finite n-group, k be afield whose charac--

teristic is a π ′  -number, V be a countable, faithfull kG module and Γ denote the split 

extension of(V,+) by (G, .) . Then if Γsatisfles DΠ the normal closure of each element x          

of G in G must be an ℜ  group. 

 

Thus G may be regarded as a generalisation of a an f.c. group (a group is f.c. if every ele-

ment has only finitely many conjugates). This is an important point as even finite exten- 

sions of f.c. groups can fail to have a DΠ theory (see example 2.7). 

On the other hand the same example shows that Γ may be the union of normal CΠ sub-     

groups without satisfying DΠ . 
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2. Preliminary results. 

In this section we recall some facts about min-c modules and reduce the proof of Theorems               

A and B to a key result, Theorem C, which will be proved in section 3. We will also deduce            

the two corollaries from Theorem B.  

Recall our standard hypotheses: 

 

 

G is a soluble locally finite π-group, k a field whose characteristic is a π ′ -number,                      

V is a countable faithfull kG module and Г is the split extension of (V,+) by (G,.) 

 

The first result colects up some usefull (and well known) results about min-c modules. 

 

 

PROPOSITION 2.1. 

(a) If V is the extension of a min-c module V1 by another min-c module V/V1   then V is 

itself     min-c. 

(b) Any submodule or quotient module of a min-c module is min-c. 

(c) The sum of finitely many min-c modules is min-c. 

(d) Let K be a subgroup of finite index in G. Then if V satisfies min-c as a K module, it follows      

that V satisfies min-c as a G module. 

(e) If [V,G] satisfies min-c then G  and, in particular G satisfies min p for all primes p.          ℜ∈

Proof. 

For (a) to (d) we use the fact that V satisfies min-c if and only if every subgroup H of G has 

a finite subgroup F with 

Cv(F) =   CvH) 

and the following simple, well known, result. 

 

LEMMA 2.2.  V is completely reducible if G is finite; in particular if x∈G then 

 

[V,x,x] = [V,x]. 
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Proof. Suppose that G is finite. Then V is the direct limit of finite dimensional G submodules  

which are competely reducible by Maschke's theorem. It follows that V is completely reduce- 

ble. 

In particular if x ∈  G we can apply this to V as an < x > module to get 

    )(],[ xCxVV V⊕=

from which it follows that [V, x, x] = [V, x]. 

 

 

 

We now return to the proof of Proposition 2.1. 

(a) Let V1 and V2 = V 1 V1 be min-c modules. Let H be any subgroup of G. Then there are     

finite subgroups F1 and F2 of G with the centraliser in Vi of H equal to that of F1 for each i           

It follows that if F is any finite subgroup containing both F1 and F2 then 

 

CV(H) = CV(F) 

 

so that V satisfies min-c as required. 

 

 

(b) This is Lemma 2.4 (i) of (4) 

(c) This follows from (a) and (b) 

(d) See Lemma2.7 of (4). 

(e) If [V, G] is min-c then by (a) V is also, since V| [V, G] is trivially min-c. 

Thus G acts faithfully on a min-c module and so is an ℜ  group (see subsectionl.3) As men- 

tioned in 1.3 an ℜ  group satisfies min p for all primes p. 

 

 

We now prove the sufficiency of the conditions in Theorems A and B. We do not need 

to   assume that G is soluble or that V is countable. 

NOTATION 

We write  if a derivation from a subgroup GGV Ψ∈ 1 of G to V always extends to the whole 

of G. 
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PROPOSITION 2.3 . Suppose [x, V] G is min-c as a G module for all Gx∈ . Then  GV Ψ∈

 

Proof 

Let H be a subgroup of G and 

δ : H→ V 

be a derivation. We show that if x is any element of G and X denotes its normal closure in                  

G then δ extends to 

K = HX 

The conclusion then follows by transfinite induction. 

 

   

Let  W = [X, V]. 

 

 

We show first that δ extends to K modulo W. 

 

 

Let  H1 = {h δ(h)/h∈H} 

 

 

Then X is a normal subgroup of Γ modulo W so that 

 

 

K1 =   H1X W 

 

is a   π group modulo W. It follows that 

K1 ∩  V = W. 

 

Now W is min-c as a G module and so it is min-c as a K1 module. 

Thus K1 | C(W) supports a min-c module and so is an ℜ  group. In particular it is countable               

so that K1 splits over W (see for example (5)) and we can apply the methods of subsection               

1.2 to K1 
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The proposition now follows from: 

 

 

LEMMA 2.4. If V satisfies min-c as a G module then GV Ψ∈  

This follows from Hartley's result, quoted above, that if V satisfies min-c then 

 

 

 H1 (G, V) = 0 

 

For V is min-c for all subgroups of G so that all have trivial cohomology group. Thus res       

must be a surjection. 

 

 

NOTE. In the proof of Proposition 2.3 we do not need to assume that Γ splits over V; in fact     

the proof shows that if Γ satisfies the other hypotheses of 2.3 then it must split over V. We        

use this in the deduction of Corolary B1. 

 

We next deduce the corollaries from Theorem B. 

 

COROLLARY B1 . Let G be a soluble locally finite n-group let k be a field whose charac- 

teristic is a π ′ -number and V be a countable kG module. Then if  Γ denotes the split exten-    

sion of(V,+) by (G,.) the following conditions are equivalent: 

(i )  Γsatisfies DΠ . 

(ii) every subgroup of Γsatisfies Dπ 

 

Proof. 

Note first that Theorem A shows that the submodules of countable ψG modules are ψG             

modules. 

Let satisfy Dπ and Γ1 be a subgroup of Γ. 

Suppose first that   Γ1 .V⊇  
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Then  Γ = V G1   where G1=G T∩ 1

Now clearly Γ1 satisfies condition(ii) of Theorem B and so, by that result, satisfies Dπ            

 

 

Now consider the general case; then if Г0= Г1 V the about shows that Г0 satisfies Dπ             

Thus we may assume that   Γ1V = Г 

 

Now V1 = V  Γ∩ 1 is a Hall π ′  subgroup of Γ1 and so, by Theorem B, we have, for every π ′   

element x of Γ1, that [V, x]G satisfies min- c as a G module. 

Now it follows from the proof of Proposition 2.3, as we remarked above, that Γ1 splits over              

V1 and Theorem B shows that Γ1 satisfies Dπ as required. 

 

NOTE. Example 2.6 below shows that the hypothesis that V be countable is essential here.  

 

 

COROLLARY B2 . Let G be a soluble locally finite π-group, k be a field whose character- istic is 

a n'-number, V be a countable kG module and Гdenote the split extension of (V,+)                   

by (G,.). Then if Γsatisfies DΠ the normal closure of each element x of G in G must be an                

ℜgroup. 

Proof.  This follows once we can show that if X denotes the normal closure of x in G then X           

acts faithfully on a min-c module. 

Now Lemma 2.2 shows that X acts faithfully on [V, X] so the result follows. 

 

 

 

 

 

 

We now reduce the proof of theorems A and B to 

THEOREM C.  Let G be countable and soluble and suppose GV Ψ∈  Then [V,x]G 

satisfies 
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min-c for all x∈G. 

 

  

First we show 

  

LEMMA 2.5. Theorem C suffices to prove Theorems A and B. 

 

Proof. Proposition 2.3 proves the sufficiency of the condition and Theorem C the necessity 

when G and V are countable. 

Now suppose that G is soluble, but not necessarily countable, and that  GV Ψ∈

Let x∈G, and suppose if possible that 

 

W = [x ,V]G 

 

does not satisfy min-c as a G module.  

Then there is a chain of finite subgroups 

 

..............10 iFFFI ⊆⊆=   

of G with                   for i=0,1,2,3 ..…..)()( 1+≠ iwiw FCFC

   
 

Let G1 be the union of all the subgroups Fi, for i=0,l,2….. 

Then G1 is countable; adjoin to G1 a countable number of elements so as to make 

 

 

W = [x,V]GI 

 

which is possible since V is countable.  

Now G1 and V contradict Theorem C. 

 

 

We now give some examples to show that the restrictions placed on G and V are necessary. 
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The first example shows that V must be countable and that a submodule of a ψG module         

need not be a ψG module. 

 

EXAMPLE 2.6.  We construct Γas a subdirect power of countably many copies of ∑ 3  the 

symmetric group of degree 3. 

Let A be the complete (unrestricted) power of countably many copies of A3 the alternat-           

ing group of degree 3 and let Γ0 be the direct (restricted) power of countably many copies          

of ,  consisting of those members having finite support. Finally let α be the element of ∑3

the complete power having every component (12).  

 

Put Γ = < A Γ0 .α > 

 

Then maximal 2 subgroups of Γ all complement A and are even conjugate. Thus if we take                

V to be (A,+) and G  to be a Sylow 2 subgroup of Γ0 containing  a we have that V GΨ∈                    

but  [α, V]  = V is infinite dimensional and G acts faithfully on it. Since G does not satisfy              

min p it is clear that V does not satisfy min-c so that Theorem B does not hold here. 

 

 

This example also shows that the class of GΨ  modules is not submodule 

closed. 

 

Put                                                         AA ∩Γ= 00  

 

 Then the countable submodule  ),(V  00 += A  

 

 has   [α,V0]=V0 

 

 

 so that it cannot be a member of.  .GΨ
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EXAMPLE 2.7. Let G be the same group as in Example 2.6 and let V be the module  

denoted by V0 there. Then we claim that all complements to V in VG are conjugate – they     

must all contain a conjugate of α - but that almost all maximal 2 subgroups are contained in     

Γ0 and so fail to be complements. 

Note that this group is the finite extension of the f.c. group Γ0 and that it is even the union of     

an ascending chain of normal Cπ subgroups - finite extensions of V containing a for example. 

 

 

EXAMPLE 2.8. Example 6.1 in (7) shows that solubility is necessary if we take the first    

layer to be V and G to be the second and higher layers. 

 

In this group evey finite subgroup is contained in a two step subnormal subgroup and this 

implies, as is shown there, that Dπ holds. 

 

On the other hand, G acts faithfully on V and the normal closure of any element of G con-              

tains an infinite elementary abelian subgroup so that it cannot be satisfy min p. This shows     

that the conclusion of Theorem B cannot hold. 
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3. Proof of the main result. 

We assume throughout this section that G is countable and soluble. 

Our method is to assume that for some x∈G we have that 

W = [x, V] G 

does not satisfy min-c, and to use this to construct a π-subgroup H of which is                 Γ

not consonant with any V-conjugate of x (π elements are said to be consonant if they  

generate a π subgroup). 

This then shows that some derivation from 

G1 = H V ∩ G 

into V does not extend to the subgroup <x, G1> generatesd by x and G1. 

 
The basic idea is to produce a chain 
 
  1 =F0  .............1 iFF ⊆⊆
 
 
of finite subgroups of G with centralizers Ci = Cw (Fi) such that 
 

Ci ≠  Ci+1   for all i ≥  0, 
 
and elements yi ∈  Ci \ Ci+1
 
such that 

   H = ii yyyF .....21 ++∪   for i =1,2…… 
is not consonant with any V conjugate of x 
 
 

The first three lemmas show how to do this in certain special cases; in particular 

Lemma3.2 proves Theorem C for Abelian groups G. 

 
LEMMA 3.1 Let F be a finite subgroup of G and let x∈G Suppose that u and v are 

elements of V. 

Then if xu and Fv are consonant we have that 

u-v∈Cv (x) + Cv(F) 



section3 page 2 
 
 

Proof. Suppose first that 

< xu, Fv> = T 

where T is a π-subgroup. Since T is finite we have 

Tw  ⊆  G 

for some w ∈  V. We claim that 

    xu=xw  …….    (1) 

and    FV = FW …….     (2) 

For, if z = u-W then xz and x are consonant, while 

[x.z] ∈  V. 

Thus [x, z] = 1, and (1) is proved. 

The proof of (2) is similar. 

But now 

u-w ∈  Cv(x) 

and   V-W ∈  CV(F). 

Subtracting these, the result follows. 

 

LEMMA 3.2. Suppose that the normal closure < xG > of x in G is finite and that 

W = [x,V]G 

does not satisfy min-c. Then there exists a π-subgroup H of Γ  which is not consonant    

with any V-conjugate of x. 

Proof. Suppose first that x is in the centre of G. Then 

W = [V,x]. 

Since W does not satisfy min-c there is a chain 

                     1 = F0   .............. 11 FF ⊆⊆

of finite subgroups of G with centralizers Ci = Cw (Fi) such that

 Ci  C≠ i+1     for all i ≥  0. 

We construct H as a local conjugate (see (6)) of ∪  Fi
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Let 

          for all i≥1. [ iii FC ,1−∆ ]

Then ∆i ≠ 0 so 

1≠∆ i       ………….. (1) 

Now since V is completely reducible for fininite subgroups of G (Lemma 2.1) we have for  

i  1 that ≥

W = ii C⊕∆⊕⊕∆⊕∆ .......21 .  …………  (2) 

and, since W = [V, x] 

   Cw (x) = 0     ……….. (3) 

Now since W is countable we can enumerate the elements of W as {ui | i=l,2,3,....}. 

Pick yi  ∆∈ i such that yi. is not congruent to ui modulo ∆1⊕  ∆2⊕ ...........⊕∆i-1⊕C. This      

is possible by (1) above. 

Now, for i 1, put z≥ i = y1+y2+….+yi.

Since zi is congruent to zi+1 modulo C1 we have that 

   H =  iF z
i∪

is a π subgroup of Γ . 

We claim that xui is not consonant with . For, by choice of ziF z
i i we have 

  ui – zi = ui – y1-y2-… -yi 

           =ui – yi- ( y1+ y2+……+yi-1)

          …………. (4) iC∉

since  ui-yi ii C⊕∆⊕⊕∆⊕∆∉ − ...... 121  

and  y1+y2+....+yi-1 ∈  ...... 121 −∆⊕⊕∆⊕∆ i  

 

But by (3) above Cw(x) = 0 so (4) shows that 

ui.- zi ∉  Cw (x)+ Cw (Fi.) 
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Now Lemma 3.1 applies to the group W G to show that 

xui and are not consonant. iF z
i

This establishes Lemma 3.2 for the case that x is central. 

Now in general we have that the centralizer K of < xG > in G has finite index in G. Let T     

be a transversal to K in G. 

Then 

W = [x,V]G =   [ ]tVx
Tr

,∑
∈

 

Since T is finite, Proposition 2.1 (e) and (d) show that [x, V] t does not satisfy min-c as   

a G module for some t ∈  T. 

Now  xt is in the centre of Kt

so the above argument shows that there is a π-subgroup H1 of Γ  which is not 

consonant with any V-conjugate of x'. 

Putting   s=t-1 and H = sH1

now gives the required result. 

 

Lemma 3.2 now establishes Theorem C for Abelian groups. Foe the soluble case we use 

an inductive argument based on a variant of Lemma 3.2. 

We need another simple Lemma to handle the case of a min-c module which is not 

completely reducible (see (3) for an examp f such a non completely reducible module). le o

 

LEMMA 3.3. If [V, G] satisfies min-c then V = [V,G]⊕Cv(G). 

 

Proof. Since [V, G] satisfies min-c there is a finite subgroup F of G with 

C[V,G](F)  = C[V,G](G) = 0. 

Since V is completely reducible for F by Lemma 2.2, we have that 
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V = [V,F] ⊕  Cv(F). 

Thus [V, F] = [V, G] . 

But this holds for all finite subgroups containg F, so clearly 

CV(F) = CVG) 

 

and V = [V, G]  C⊕ v (G) as required. 

 

We now come to the required extension of Lemma 3.2 

 

 

LEMMA 3.4. Let K be generated by normal subgroups F of G such that [V, F] satisfies 

min-c. Let  x ∈  G and put 

L = < xG > ∩  K 

and  W = [V, L]. 

Then if W fails to satisfy min-c as a G module there is a local conjugate of L which is not 

consonant with any conjugate of x; in particular V GΨ∉  

 

Proof. Assume that W does not satisfy min -c. 

Now L is a subgroup of K and so is generated by normal subgroups F such that [V, F] 

satisfies min-c. By Proposition 2.1(c) we can assume that 

L=∪ Fi 

where  1=F0 1F⊆ ……. iF⊆    ……   , 

Fi is G invariant and [V, Fi] satisfy min-c for all i 0. ≥

Now, by Lemma 3.3 applied to W as an Fi- module, 

   W = [W, Fi] ⊕Cw (Fi)   for all i = 1,2,3... 

Let 

Ci = Cw(Fi) 
and   ∆i = [Ci-1 , Fi]     for all i ≥  1. 

Then as in Lemma 3.2, 
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    W= ii C⊕∆⊕⊕∆⊕∆ .....21   ………….(1) 
and, since W = [V, L] 
 
   CW(L) = 0    …………..(2) 
 
 
Since W does not satisfy min -c we have that 
 

 [V,Fi] W ≠
 
Since  W= [V.F∪ i] 
 
we. may refine the chain Fi if necessary so that 
    
   0≠∆ i       all i 
 
Now, as in Lemma 3.2 we enumerate the elements of W as [ui |i=1,2,3,....}. 

We next choose elements  allowing for the fact that in general it may happen iiy ∆∈

that CW(x) is non zero. 

We may, however, assume that 

 
    [x,∆i] ≠  0 
 

for ∆i is G invariant and if centralized by x is also centralized by <x G > . But this would 

imply that it commutes with L which contradicts (2) above. 

Let Bi be the centralizer of x in ∆i and pick iiy ∆∉ such that 

  

)(............. 121121 xCCBCuy Wiiiiiii ⊕⊕∆⊕⊕∆⊕∆=⊕⊕∆⊕⊕∆⊕∆∉− −−  

 
 
We now claim that if 

zi = yi+y2+…..+yi 
and 

 
H1 =  iF z

i∪
then H1 is a π subgroup which is not consonant with any V-conjugate of x . For 

xui is not consonant with  since iF z
i

 

ui  - zi = ui  - yi –(y1+y2+….+yi-1)
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     ( )xCC Wi +∉

and we can apply Lemma3.1 to the group W G. This establishes Lemma3.4. 

We now come to a technical result which is needed for the induction step in the proof of 

Theorem C. 

 

From now on we assume that derivations from subgroups of G into V always extend to 

the whole of G; in the notation of section2, V GΨ∈ . 

 

LEMMA 3.5. Suppose V  and G has a normal subgroup A with G/A finite and GΨ∈

Abelian. Then if [V, x]A satisfies min-c as an A module for every x∈  A it follows that       

[V, x]G satisfies min-c as an G module for every x∈G; moreover G(i) is covered by finite 

characteristic subgroups modulo A(i) for each i = 1,2,3.... 

 

Proof. If x ∈  A then Proposition 2.1 (c) show that [V, x]G satisfies min-c as an A 

module; for G/A is finite so that [V, x]G is the join of finitely many translates of the minc-c 

module [V, x]A and Proposition 2.1 (d) shows that [V, x]G satisfies min-c as a G       

module. 

 Now [V, x]G = [V, <  xG >] 

so that A is generated by normal subgroups F of G such that [V, F] satisfies min-c, and  

so A satisfies the conditions on K in Lemma 3.4. 

 Now let y ∉  A. 

Then, since G/A is Abelian we have that 

Y=[y,G]  ∩⊆ A <  yG > 

Next we apply Lemma 3.4 to Y to deduce that [V, Y] satisfies min-c as a G module. 

Factoring out [V,Y], as we may since quotients of GΨ  modules clearly belong to the 

class , we have that y is central in G so that Lemma 3.2 applies to show that                  GΨ

[V, y] satisfies min-c modulo [V,Y] 
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Now, using Proposition 2.1 (a) we have that 

[V, y]G satisfies min-c as a G module. 

 

 

Finally, we must show that G(i) is covered by finite characteristic subgroups modulo A(i)  

for each i= 1,2,3.... 

We do this by showing that G(i) / A(i) is an Abelian section of an ℜ  group and so       

satisfies min p for all primes p. Such a group is the product of Cemikov p groups( for 

different primes p ) - see (6) for example, and so is covered by finite characteristic 

subgroups (those consisting of all elements of exponent n for any natural number n). 

Let T be a transversal to A in G. Then 
( ) ( )i

A
Gi TG >⊆<  

But, by Proposition2.1(c) we have 

[T, V]G satisfies min-c as a G module. 

Thus < TG > is an ℜ  group ; since G(i)/A(i) is Abelian and is a section of an ℜ  group it 

is an Abelian  group and the result follows from Proposition 2.1 (f). ℜ

 

Proof of Theorem C. 

Suppose that G has soluble length n and that V GΨ∈ ; we show by induction on n that 

[V, x]G satisfies min- c for all x ∈  G. 

If n=l this follows from Lemma 3.2 as we have already remarked. Suppose then that it 

holds for G having soluble length at most n-1. 

We divide the induction step into two parts: we first show that 

(1) G(i) is covered by finite normal subgroups modulo G(i+1) for all i 0. This is obvious   ≥

for i=0; for i >0 we use Lemma 3.5. Let F be any finite subgroup of G. Then 

D = F G' is a normal subgroup of G. 

By induction applied to G' we have that, for all x∈  G' 

[V, x]G' satisfies min-c as a G' module. 

 

 

Thus we can apply Lemma 3.5 to D to deduce that for i ≥  1 
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D(i)|G(i+1)

is generated by finite characteristic subgroups; since D is normal in G these are 

normalised by G. But G is generated modulo G(i+1) by subgroups D(i) as F ranges over 

the finite subgroups of G. 

This establishes (1). 

 

 

(2) We now use induction on i to prove that if x ( )inG −∈ then 

[V, x]G satisfies min-c as a G module. 

First let i = 1. Then by (1) above < xG > is finite, and so Lemma 3.2 applies. 

 

Now assume as inductive hypothesis that 

 for all x )∈G    we have that [V, x]G satisfies min-c   ……...      (α( 1+−in
i) 

Let y x . ( )inG −∈

Then, by Lemma 3.4 we have that 

[< y G> )  , V] satisfies min-c as a G module. ( 1+−∩ inG

Thus, as in the proof of Lemma 3.5, we may factor out 

(< y G> ) ) [< y ( 1+−∩ inG G> ( )1+−∩ inG  , V] 

We now find, using (1), that < yG> is finite; thus Lemma 3.2 shows that 

[V,y]G satisfies min-c 

as required. 

This proves (αi+1) and so completes the proof of Theorem C. 
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