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1 Introduction and Motivation

Being able to understand the environment and inferring a 3D arrangement of the world
is an essential ingredient for developing autonomous robots. In particular, if we want to
design robots that can interact with humans, or move safely in human environments, we
need to develop algorithms that can reconstruct the 3D position and shape of the visible
people and are able to predict their motion in the near future. These systems need to
be robust to occlusions, to the number of visible people and to the variability of the
human pose. 3D pose/shape estimation and motion prediction algorithms also have a
huge potential in other fields, with possible applications in virtual and augmented reality,
cloth virtual try-on, games or entertainment. Moreover, if 3D understanding improves
enough, robots can learn to perform new actions without explicit orders or commands,
by imitating humans.

In this thesis, we want to investigate methods for human perception while taking
context into account. The environment conditions human actions and motion and our
actions are also designed to have an effect on the scene. In particular, we will use deep
neural networks to build new algorithms that exploit geometric and semantic priors, cur-
rently not integrated within most state-of-the-art models. Semantic information can be
explicitly given to the model during training, but ground truth human-object interaction
data is scarce and, ideally, it should be learnt without any supervision. Moreover, this
will allow to understand what contextual cues are learnt by the model to achieve a given
task. For this, we will study the use of unsupervised training methods such as Variational
Autoencoders or Generative Adversarial Networks. Geometric priors, in contrast, can be
integrated via loss functions or other architectural designs that exploit how the 3D world
is structured.

This work is developed under the National project "HuMoUR: Markerless 3D hu-
man motion understanding for adaptive robot behavior" TIN2017-90086-R. The thesis
is aligned with the goal of the project, which first aims to develop computer vision al-
gorithms for pose estimation and motion prediction. These algorithms will be used to
implement new service robots that can perform complex manipulation for assisting tasks.
In particular, the project plans to demonstrate our developments on the three scenarios
of (a) Feeding a person, (b) brushing a persons hair and (c) help dressing a person. In
all cases, the perception algorithms need to tackle strong body occlusions and be robust
to pose/cloth diversity.
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2 Objectives

The main goal of this doctoral thesis is to investigate contextual human perception in
a variety of tasks, such as human pose/shape estimation and human motion prediction.
We believe that current state-of-art methods for human perception tasks, such as pose
and shape reconstruction or motion prediction, do not take contextual information into
account. However, human actions are significantly conditioned by our context, mainly
from relations with other people or objects we want to interact with. For this reason, we
aim to incorporate geometric or semantic priors to improve on state-of-the-art methods.
The specific research objectives of this thesis are:

• Designing algorithms that model human pose/shape, motion from a single input
image.

• Developing context-aware architectures that can reason about human-object inter-
actions. In this work, we plan to combine this line of work with unsupervised or
semi-supervised learning methods, which few papers have proposed so far.

• Building solutions for human perception that work on in-the-wild input images,
without any requirement of calibration step.

This topic presents a great research opportunity for the impact that 3D reconstruction
and motion prediction can have in fields such as robotics, AR/VR, games or entertain-
ment. We believe that we are in good position to pursue these challenges, given recent
work done by the research group along this topic, and plan to perform some particular
research collaborations with other experts on the field.
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3 State of the Art

This section reviews the most relevant literature for the tasks we want to tackle in this
thesis. The first subsection will review general deep learning research, then we will
summarise the related work on human pose estimation and shape reconstruction, and
finally review the most recent works on human motion estimation.

3.1 General Deep Learning Research

Over the past decade, deep learning has grown in popularity thanks to its breakthroughs
in performance in a wide range of applications, specially in the fields of computer vision,
natural language processing and robotics, amongst other fields where it is applied.

Although the theoretical concepts behind deep neural networks date back to the pre-
vious century [1, 2, 3], it was not until 2012 where they got popularised, when Krizhevsky
et al. [4] won the ImageNet challenge [5] using a convolutional network architecture with
critical recent improvements [6, 7]. Since then, the performance of deep learning algo-
rithms in computer vision has continuously improved in a range of tasks.

For the current project we will also take advantage of general deep learning tools
such as recurrent neural networks [8], transformers [9] and generative models, specially
VAEs [10] and GANs [11]:

• Recurrent neural networks (RNNs) are a general architecture for neural networks
that create a recursion between consecutive observations, using an internal rep-
resentation state that contains the information about the sequence. These are
commonly used in the task of processing data for multiple steps, as in the task of
motion prediction.

• Recently, RNNs have been superseded in many tasks by transformers, which takes
a set of pieces of information, such as words, and first encodes them to a more
useful representation. Then, each representation weights the other ones in a so-
called attention mechanism, that is much more interpretable and is being used in
more and more deep learning areas.

• Generative models have recently allowed the generation of very realistic distribution
of data, such as faces or bodies. A particular key architecture are VAEs, which are
formed by an encoder and a decoder. The encoder maps the target data distribution
to an encoding distribution z and the decoder does the opposite. By ensuring that
z follows a Gaussian distribution during of both encoder and decoder, we can then
sample from z to obtain a realistic target data distribution. These models are also
used to make latent space more robust and regularise more complex processes.

• Generative Adversarial Networks (GANs) are a very successful kind of generative
models, based on two networks where, a generator maps a distribution z to a
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target distribution x, while a discriminator aims to identify whether x is real or
was created by the generator. Both networks are jointly trained using a minimax
game that allows the generator to learn a very good mapping from z to x.

3.2 Human Pose Estimation

Since the release of large-scale MoCap datasets [12, 13, 14], there has been a growing
interest in the problem of estimating 3D human pose from single images [15, 12, 16, 17,
18, 19, 20, 21].

Single-person pose estimation methods follow two different lines of work. In the
first one, a single-stage algorithm predicts 3D body joints position directly [22]. One of
the first deep-learning-based works [23] proposed a joint model for body part detectors
and pose regression. Pavlakos et al. [16] propose a U-Net architecture to recover joint-
wise 3D heatmaps. Sun et al. [24] propose a regression approach using a bone-based
representation that exploits human pose structure. In [25], they propose a differentiable
soft-argmax operation that allows to train an hourglass network more efficiently. In the
second line of work, algorithms learn a mapping from 2D estimated joint detections to
3D [26] Moreno-Noguer [26] propose to infer 3D pose via distance matrix regression.
Yang et al. [27] propose to use an adversarial approach that ensures that estimated poses
are antropomorphic.

When considering the task of 2D or 3D multi-person pose estimation, there are two
opposite main approaches to structure model architectures, top-down [28, 29, 30, 31] or
bottom-up models [32] . On the former, a human detector first estimates the bounding
boxes of humans. Each detected human area is cropped and fed into the pose estimation
network. The latest also follows a two-stage pipeline, where a model first localizes all
human body keypoints in an input image first, and then groups them into each person
using particular clustering techniques.

Mehta et al. [32] follow a bottom-up approach where they estimate three occlusion-
robust location-maps [33]. They model the association between body keypoints using
Part Affinity Fields [34], to allow predictions on multiple people.

However, most recent methods use a top-down architecture. For instance, Rogez et
al. [35, 29] proposed an approach for 2D/3D Multi-Person pose estimation, where for
each detected person, they classify the pose to one of the anchor clustered poses. They
follow a coarse-to-fine approach by further regressing each anchor pose. More recently,
Moon et al. [30] proposes an architecture where, on one side predicts the 3D absolute
position of the root joint, and in a second branch reconstructs the relative pose.

3.3 Human 3D Reconstruction

After the tremendous improvement in 2D and 3D pose estimation from single images,
many works have focused on reconstructing the 3D shape of humans. One of the major

4



works on this topic is the one from Loper et al. [36], where they introduce the SMPL
model. This is a parametric human body representation that can be used to recover
the full body shape and joints using a set of 10 body shape parameters and 72 pose
parameters. The shape parameters were found by using PCA on a number of T-posed
human 3D scans, and encode different shape aspects of the human body. The pose
parameters are used to find the position of each joint, and they use a learned skinning
process to change the body shape from T-pose to the final body pose. Due to simplicity
and robustness of this model, several works [37, 38, 39] have used it for reconstruction
of human bodies from single images.

At the end of the day, however, the SMPL model can only reconstruct unclothed
people, but modelling clothing [40, 41] still represents a very challenging task for human
reconstruction. Even though SMPL estimations can provide rough human shape recon-
struction, several methods have tried to complement the parametric model via voxel-
based [42] or implicit function [43] reconstructions. Deephuman [42] uses the SMPL
template as the basis on which they train a 3D Auto-encoder that fills clothing details.
To make predictions look realistic, they add wrinkles by modifying the vertices location
via predicted normal maps. Implicit functions models [44, 45] were initially proposed
for object reconstruction [46, 47, 45], and have already been used to complement with
SMPL [43]. These methods can represent a much higher resolution density than voxel-
based models, by classifying each 3D point as being in or outside the human mesh.

However, some template-free reconstruction methods have also been recently pro-
posed. For instance, PIFu [48, 49] propose a pixel-based implicit function architecture
that obtains very accurate reconstructions from single views, in experiments with simple
body poses and front-parallel camera views. By using geometric cues, other works have
tried to reconstruct 3D body shape in more in-the-wild setups. Pumarola et al. [12]
propose a mesh-to-image mapping and back, to train the model via 2D convolutions, and
Gabeour et al. [50] propose to predict a double depth map of a person. These contain the
visible depth map and the depth map obtained when tracing each pixel to the furthest
point of the person, and then combine them to create a 3D mesh.

3.4 Hand 3D Reconstruction

Most literature on 3D hand analysis is focused on estimating hand pose, represented by
a skeleton with up to 21 joints. This problem has been studied for years, either taking
as input RGB-D [51, 52, 53, 54, 55, 56] or RGB images [57, 58, 59, 60, 61, 62, 63, 64, 65].
As in the full-body pose estimation field, the community is also recently shifting to
estimating hand 3D shape from RGB inputs [64, 62, 65, 66].

The SMPL parametric model has been extended for hand modelling, with the MANO
layer [67], to be able to accurately represent hand pose and shape diversity. As shown in
recent works et al. [62, 65, 66], the parametric model can also be used to estimate hand
pose and shape, even in the case of hand-object interactions [65, 66].
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3.5 Human Motion Prediction

Since the release of large-scale MoCap datasets [13, 14] and improvements on human pose
representations [25, 36], there has been a growing interest in the task of human motion
prediction problem.

Most approaches build upon RNNs [68, 69, 70, 71, 72, 73] that encode historical
motion of the human and predict the future configuration that minimizes different sort
of losses. One of the main works in this topic is the one from Martinez et al. [69],
which model the velocity of the human body. They also introduce a model-free baseline,
which yields very reasonable results under the L2 metric, and proves the difficulty of
predicting realistic human motion. This phenomenon has been recently discussed by
Ruiz et al. [74], that argue that L2 distance is not an appropriate metric to capture the
actual distribution of human motion, and that a network trained using only this metric
is prone to converge to a mean body pose. To better capture real distributions of human
movement, some recent approaches use adversarial networks [11, 75] in combination with
geometric losses [71, 70, 74, 76]. Apart from RNN-based models, Jain et al. [77] consider
a hand-crafted spatial-temporal graph adapted to the skeleton shape, and Li et al. [78]
use Convolutional Neural Networks to encode and decode skeleton sequences instead of
RNNs.

This field closely follows the improvements on the field of human pose and shape
estimation. Since recent works on human 3D reconstruction have improved significantly,
motion prediction works also start considering full body shapes instead of skeleton repre-
sentations. For instance, the work from Zhang et al. [79] uses the SMPL representation
to both reconstruct shape from video and extend motion into the future.
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4 Expected contributions beyond state of the art

In this chapter, we will discuss in more detail the topics that we want to tackle in this
thesis, and describe the goal contributions.

4.1 Methodology

This subsection will review the methodology that we will follow in the thesis, for the
target topics we want to tackle.

Human Pose and Shape Estimation There has been a huge amount of work in 2D
and 3D human pose estimation in the past recent years, with state-of-the-art algorithms
achieving good performances in on-the-wild datasets. For this reason, in this thesis we
will mainly focus on 3D shape reconstruction from single images. The community has
already been working on this field for a few years and some works obtained impressive
results in particular instances. However, we find that there are a few challenges ahead
that we think are key to enhance current methods:

• There are no in-the-wild datasets with clothed human shape annotations. Due
to the difficulty of getting such dataset with accurate labelling, some works have
proposed the use of physics engines for generating large-scale synthetic datasets.
The most recent ones that contain clothed people are the 3DPeople dataset [12],
released by this research group, and the CLOTH3D [80]. Even though both works
try to solve this challenge, we believe there is a big margin of improvement. Both
contain just a single piece of clothing which does not deform according to the
motion of the human and, in the latter work, people do not contain hair or shoes
either.

• Even though the SMPL model allows to predict a rough estimate of the human
shape, it can only represent naked people. Many works have used this parametric
model as a first estimation, due to its robustness, and have later exploited voxel-
based [42] or implicit function [48, 43] representations to fill the missing cloth
sections. But these approaches also have drawbacks, both require high computa-
tional resources and are far from working in real time. Also, they arguably lack
the robustness of parametric models to ie predict realistic shape structures in not
visible parts, for which some works have also used normal maps.

We have already worked on the topic for the initial case of hand pose and shape
estimation from a single image [65]. In particular, we developed a method that predicts
how the hand mesh should be placed to grasp a set of particular objects. The algorithm
also looks at the context scenario to avoid interpenetration with other objects nor with
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the table. We tackle the mentioned lack of realistic datasets by annotating our own set of
realistic grasps for everyday objects, following a distribution of human grasp types [81].

To overcome the mentioned challenges in the case of full body reconstruction, we
first want to design and extend a recent work on cloth parametric models [82]. Again,
this assumes only one piece of clothing, although it provides a useful case example on
how we can work towards cloth parametric models. Our vision is that a human can be
represented first by the pose and shape SMPL parameters, and by each of the clothing
parameters. In practice, we would have a few parameters for each garment type, and a
binary encoding to represent what garment is the human actually wearing. This is fast,
does not require expensive computation, and the forward process from representation to
full body and garment meshes is fully differentiable.

For this, we need a significant amount of 3D human people wearing diverse clothing
in a diverse range of poses. So we are planning to create and release a dataset of realistic
clothed humans, dressed with multiple clothing that moves realistically according to the
motion of the human. The dataset would be oriented to have very diverse types of
clothing, realistic dressed people in single or in multiple-person scenarios.

Human Motion Prediction The ability to predict motion is directly linked to the ca-
pacity of understanding present human pose and shape. Typically, some works have used
similar representation as in skeleton pose estimation, to process a group of observations
that allow to project predictions into the future.

This topic generally draws much less attention to other topics related to human
pose understanding. Therefore, in the first stages of the thesis, we have worked on
this field to also gain insights of the current state-of-the-art in human 2D/3D pose and
shape estimation. The work developed during this period [83] improves human motion
prediction by considering other objects and people that the target person might interact
with.

We plan to revisit this topic in the later stages of the doctoral thesis, after working
on more pure human and cloth representations for 3D shape estimation. We hope we
can apply the knowledge to represent clothed people and, similarly to recent work that
only uses the SMPL model [79], process and project them into future predictions.

Human-Object Interaction We believe that Human-Object Interactions can provide
a significant amount of information for improving human pose and shape estimation state-
of-the-art. We plan to design models that exploit semantic cues to better understand the
context around people motion and actions, along with their environment.

This field contains few datasets with manually annotated Human-Object interactions.
Although the majority of the progress in the field has arrived via supervised learning,
we believe we can provide very useful insights for Human-Object interactions learned via
semi-supervised or unsupervised learning. In the two works developed so far [83, 65], we
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have successfully exploited contextual information without any supervision. For instance
in GanHand [65], where we study how humans should grasp objects depending on the
setup of the scene, aiming for a reasonable variety of grasps types [81].

4.2 Expected Contributions

The long term goal of this work is to research on algorithms for human pose and shape
estimation, motion prediction and scene understanding that would allow robots to be
more autonomous and safe in human environments.

The short term goal is to investigate contextual human perception in a variety of
tasks, such as human pose/shape estimation and human motion prediction. We next
summarize the specific goals of our proposed research:

• Explore novel geometric and semantic priors that can integrate with deep learning
models, and improve their performance

• Develop algorithms to push state-of-the-art in 3D reconstruction and human motion
prediction

• Propose a model for garment representation that can help to represent clothed
human meshes

• Study semi-supervised and unsupervised methods that allow to reason about Human-
Object interactions

• Build solutions applicable to images “on the wild” which do not require any kind
of calibration step.
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5 Preliminary Results

The work performed in the first year of this PhD goes towards setting the base to build
upon following research. Apart from reviewing literature, the first work studied the
topic of human motion prediction, which allowed the student to review the literature
and understand the state of the art representations of the human body. The second work
was on hand reconstruction, and enabled the study of more complex 3D structures and
body parameterisations.

5.1 Context-Aware Human Motion Prediction

TABLE

HUMAN

CUP

(a) (b) (c) (d) (e) (f)

Figure 1: Context-aware human motion prediction. We propose a new work for motion prediction.
By seeing a group of observations of the recent past (b), we aim to predict how the person will move in the
following two seconds (c). In comparison with previous state-of-the-art works that do not take advantage
of contextual information (d), we devise a context-aware approach that considers all objects and people
in the scene to provide a more accurate prediction (e). The model is trained with no supervision on the
interactions, which are autonomously predicted by the network (f).

The ability to predict and anticipate future human motion based on past observations
is essential for interacting with other people and the world around us. While this seems
a trivial task for a person, it is based on complex semantic understanding of the envi-
ronment and the relations between all objects in it. Modeling and transferring this kind
of knowledge to autonomous agents would have a major impact in many different fields,
mainly in human-robot interaction [84] and autonomous driving [85], but also in motion
generation for computer graphics animation [86] or image understanding [87].

In this work, we argue that current state-of-art algorithms [69, 72] lack to exploit the
influence of the rest of the environment on the movement of the person. For instance,
if a person is carrying a box, the configuration of the body arms and legs will be highly
constrained by the 3D position of that box. Discovering the interrelations between the
person and the object/s of the context, and how these interrelations constrain the body
motion, is the principal motivation of this paper.

The context-aware motion prediction architecture models the interactions between
all objects of the scene and the human using a directed semantic graph. The nodes of
this graph represent the state of the person and objects, and the edges their mutual
interactions. These interactions are iteratively learned with no ground truth supervision,
via an attention model.
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We evaluated our approach in the “Whole-Body Human Motion Database” [14] and
in the CMU MoCap database [88]. We propose variations of the context-aware models,
with different ways to process the context of the person, and with the additional capacity
to estimate the motion of rigid bodies. We demonstrate that all context-aware models
outperform previous baselines, both quantitatively and qualitatively. Also, we perform a
qualitative study and show that the interactions predicted by the model between objects
and people are coherent with the actions performed. We finally discuss the applicability
of state-of-art motion prediction methods, with an ablation study of our models and
baselines when considering noisy observations.

5.2 GanHand: Predicting Human Grasp Affordances in Multi-Object
Scenes

Figure 2: GanHand: Context-aware human hand reconstruction. In this work, we propose a
method that estimates the hand pose and shape that could grasp the objects in the scene, given a single
RGB image. The model reasons about the context, avoiding intersections with the table or other objects,
and tries to imitate human grasp types [81]. This figure shows predictions by our model, where we show
one grasp prediction for every object.

The problem of estimating 3D hand pose from monocular images has made major ad-
vances over the past few years [57, 60, 59, 89, 61, 90, 91]. Current approaches can estimate
not only the 3D pose of the hand, but also its shape [64], even when manipulating an
object [66].
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In this work, we propose a new problem of estimating where the hand might be
placed given the contextual information. In particular, we propose a new problem for
the community: given a single RGB image of a scene with an arbitrary number of objects,
we aim to predict human grasp affordances, such as predicting multiple plausible solutions
of how a human would grasp each one of the observed objects. This knowledge can have
an impact in several fields, such as human-robot interaction, virtual and augmented
reality, and robot imitation learning.

In order to predict feasible human grasps, we introduce GanHand, a GAN architecture
that takes one RGB image as input and estimates a distribution of grasps for each object
on the scene. It first estimates the 3D shape/pose of the objects and predicts the best
grasp type according to a taxonomy with 33 classes [81], for each object. It then refines
the hand configuration given by the grasping class, through an optimization of the 51
parameters of the MANO model [67]. The model is trained to maximize the number
of contact points between the object and the hand shape model while minimizing the
interpenetration.

As discussed in Section 4, one of the major challenges in the task of human and hand
shape estimation, is obtaining realistic datasets with accurate ground truth annotations.
So we also propose and release the YCB-Affordance dataset that we created to train our
network. This dataset is based on the 58 household objects of the YCB dataset [92], with
manually annotated plausible human grasps according again to the taxonomy in [81]. The
grasps of 21 objects are then transferred to 92 video sequences, depicting scenes with one
or several still objects captured by a moving camera. The total number of annotated
frames is 133,936, with more than 28M of realistic grasps, being the largest dataset of
human grasp affordances in real scenes built so far.

An extensive evaluation on synthetic and real data demonstrates the robustness of
GanHand [65] to predict realistic human grasps.
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5.3 Cloth parametric model

Figure 3: TailorNet [82] proposes the first cloth parametric model, extending SMPL. It can be used to
represent a variety of T-shirt topologies, in any human pose or shape. However, scaling this model to
new garments requires a significant amount of cloth samples, with enough variety on shape and pose.
We plan to generate a large-scale dataset of humans wearing diverse clothes, that allows getting a cloth
representation. The same dataset should allow training a model for clothed human shape reconstruction.

As discussed in Sec. 3, parametric models provide a significant amount of robustness and
simplicity for human and hand shape representation that is not existing in clothing. For
this reason, we are planning to create and release a dataset of realistic clothed humans,
dressed with multiple clothing (eg. Coat on top of jumper, both on top of T-shirt), that
can be used to find the parametric model of several clothing parts.

We plan to follow the contributions of [82], which are summarised in Fig. 3, to create
the parametric model using few parameters per cloth on the unposed human. They can
use the same SMPL skinning weights for moving the cloth into the desired person, and
model wrinkles and other high-frequency details.. This work is in the very early stages
and we have recently started to work on the dataset.
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6 Work Plan

In this chapter we will present the different tasks to be carried out for the accomplishment
of the objectives (see section 2) of this research plan, as well as an intended Gantt chart
for their execution, figure 4. All tasks related to methods include development, testing
on synthetic or real data, and, if possible, application on a real problem.

• Task 1 - State of the Art Review
This task aims to meticulously study the current state of the art regarding human
pose and shape estimation and motion prediction. Both literature and open source
code will be continuously reviewed across the entire PhD to keep updated with new
methods and identify future research lines.

• Task 2 - Motion Prediction
In this task, we aim to understand human motion from a series of past observations,
and be able to predict how the person is going to move in the following short-time
period.

Sub-task 2.1 - Context-aware Human Motion Prediction.

Within this subtask, we explore the skeleton representation of human bodies on
the task of human motion prediction. In particular, we design a model that can
take advantage of the context of the person to better understand future motion.
The context might include other people to whom the person is interacting with, or
other objects, susceptible from manipulation.

Sub-task 2.2 - Fully parametric body motion prediction.

We aim to predict the motion of the full clothed body shape. Drawing inspiration
from [79], we might represent the clothed human body as a group of body and cloth
parameters, that we can extend into future observations.

• Task 3 - Shape reconstruction

Our goal in this task is to be able to reconstruct human shape from a single image.
This is subdivided into hand and full-body shape estimation.

Sub-task 3.1 - Pose and Shape estimation of human hand

Within this task, we focus on estimating the 3D pose and shape from the human
hand for the task of grasping an object in a given context. The first part of this
task was completed while interning in Naver Labs Europe during Summer of 2019,
and we look forward to extend this work in a further work.

Sub-task 3.2 - Cloth parametric model

We aim to extend the standard SMPL representation to also consider different gar-
ments. We plan to use the clothing parametric model for full human reconstruction
from a single image.
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2019 2020 2021 2022

Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Literature review - 1

Human Motion Prediction - 2

Context-Aware Human Motion Prediction 2.1

Fully parametric body motion prediction 2.2

3D Human Reconstruction - 3

Pose and Shape estimation of human hand 3.1

Cloth parametric model 3.2

Full-body parametric model enhancement 3.3

Thesis Writing - 4

Figure 4: Intended work plan of the proposed thesis

Sub-task 3.3 - Full-body parametric model enhancement

After the previous work, the clothed SMPL parameterisation will still miss details
that are critical for human characterisation, such as facial elements or hair. This
subtask will focus in improving this representation.

• Task 4 - Thesis Writing
The last task of this research is dedicated to the elaboration of the dissertation and
the preparation of the public defense.
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7 Resources

This Phd thesis will be developed in the “Perception and Manipulation" group at the
Institut de Robòtica i Informàtica Industrial (IRI CSIC-UPC)1. This thesis is financed
by the HuMoUR project, which aims to develop computer vision tools to estimate and
understand human motion and pose. These algorithms will be used to implement new
service robots that can perform complex manipulation for assisting tasks.

To train deep learning models, the student will have access to the “Visen” and “Tro”
GPU servers at IRI. The GPU Servers operate with GPUs donated by NVIDIA™.

A research stay in an international center is also planned.

7.1 Publications

During the first year of the PhD, the two works described in 5.1 and 5.2 have been
accepted at the International Conference in Computer Vision and Pattern Recognition
(CVPR) 2020 [83, 65]. The latter [65] has been accepted as an Oral Paper and for a
patent application [93]. We also plan to extend the work in two directions. First, a follow
up journal version is in preparation and, second, we started a collaboration with Aalto
University to implement the proposed ideas into robotic grasping.

The very preliminary work described in 5.3 is in preparation to be submitted at
Computer Vision and Pattern Recognition (CVPR) 2021.

1www.iri.upc.edu
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