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Abstract

The COVID-19 pandemic has had a major impact
worldwide and the health care systems have had to adapt
to a new challenging and alarming situation. In this
paper, a compartment model that adjusts the hospital
dynamics during COVID-19 is presented, with the main
objective of making short-term predictions and help
inform the ongoing and future response to COVID-19.
The fitting of this model has been carried out with France
and Belgium data, and it has been analyzed in the time
period from 17th of March until June 16th.

I. INTRODUCTION

COVID-19 has meant a new public health crises
threatening the world. This virus was originated in bats
and was transmitted to humans through yet unknown
intermediary animals in Wuhan, Hubei province, China
in December 2019. [6] The disease is highly transmitted
by inhalation or contact with infected droplets and
the incubation period ranges from 2 to 14 days.
The symptoms are usually fever, cough, sore throat,
breathlessness, fatigue, malaise among others. The
disease is mild in most people, and many people is
asymptomatic, but in some cases (usually the elderly
and people with previous pathologies), it may progress
to pneumonia, acute respiratory distress syndrome and
multi organ dysfunction. [6]

This new virus outbreak has challenged the medical
and public health infrastructure, collapsing the system
in many countries. Health care organizations are
facing challenges in efficiently accommodating increased
patient demand with limited resources and capacity and
in consequence they have had to take extraordinary
measures to be able to tackle the issue.

Mathematical methods are a powerful tool that
can help to face this problem by making future
predictions and providing information on patient demand
and hospital capacity. Compartmental models are a
technique used to simplify the mathematical modelling
of infectious diseases where the population is divided into
compartments, assuming that each individual in the same
compartment has the same characteristics.[5]

In this project, we have designed a compartmental
model with the objective of modelling the hospital
dynamics during this pandemic and make short-term

predictions in the number of hospital patients, people
in ICUs, recoveries and deaths. In this compartment
model, a fitting of the cumulative cases of COVID-19 is
done, and from there, different hospital compartments
have been created to simulate the dynamics of the health
care system.

To describe the cumulative cases of COVID-19 we
employ the Gompertz growing function. This function
enables us to analyze the dynamics of the spreading of
COVID-19 to make short-time predictions of the new
cases for the successive days. The Gompertz equation
reads:

N(t) = Ke−log( K
N0

)e−at

(1)

where the parameter K corresponds to the final number
of cases, N0 is the initial number of cases for the definition
of the origin of time, and parameter a is the rate of
decrease in the initially exponential growth. [4]

Once the cumulative cases are correctly fitted, the
different compartments in the model allow us to make
a representation of the hospitalization dynamics of the
infected people.

II. COMPARTMENTAL MODEL

A. Model Description

In the attempt of obtaining a compartment model that
fits correctly to real data, we have designed and tested
out several models, some of them more successfully than
others. Nonetheless, we have finally met a compartment
model which seems to reproduce fairly well the real
behaviour and will be described below.

The model is based on four general compartments.
The first one would be new infected (NI), which
represent the total cumulative number of infected people
by COVID-19 considering asymptomatic cases, mild
cases and cases with severe symptoms. The second
compartment is hospitalized patients (H1,H2, ICU),
in which both people in intensive care units and people
in hospitalization units are taken into account. The
third is recovered patients (RR), in which we
consider infected people who have been hospitalized and
overcome the disease (in this compartment, mild cases
of infected people that are not hospitalized are not
taken into account). The fourth and last compartment
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is the deaths (DD), where we consider the cases
of hospitalized patients that die in hospital. This
compartments are related between them by different
parameters and rates that regulate the global dynamics
of the system. Figure 1 describes the basic scheme of the
compartment model.

FIG. 1: Model description. The yellow square represents
new infected, white squares represent hospitalized
patients, green squares are recovered patients and the red
one is the deaths. Arrows are used to mark the different
transition rates between compartments (ai)

The differential equations describing the dynamics of
hospitalizations, deaths and recoveries are:

dH1

dt
= a1NI − (a2 + a3 + a8)H1 (2)

dH2

dt
= a3H1 + a4ICU − (a6 + a7)H2 (3)

dICU

dt
= a2H1 − (a4 + a5)ICU (4)

dRR

dt
= a8H1 + a7H2 (5)

dDD

dt
= a5ICU + a6H2 (6)

The model starts with the daily total number of
infected, which is adjusted with the Gompertz function
based on data from each country. From the total infected,
only a percentage suffer from severe symptoms and need
hospitalization. Within the general compartment of the
hospital, we distinguish 3 sub-compartments:

1. First stage of hospitalization (H1): this first
sub- compartment that acts as a distributor: all
infected people who need hospitalization go to H1,

and from there, depending on how the disease
progresses in each case, patients either recover with
rate a8 or are sent to H2 or ICU with rates a2 and
a3.

2. Second stage of hospitalization (H2): In this
sub-compartment there are patients that don’t
recover in their first days of hospitalization but who
don’t develop severe enough symptoms to go to the
ICU and they are in the process of recovery. There
are also patients who have entered the ICU but
have overcome the complications of the disease and
no longer need intensive care. The rate of leaving
ICU and entering H2 is a4.

3. ICU: In this sub-compartment there are the
fraction of patients in H1 who need intensive care
in order to overcome the disease.

Regarding the recoveries, patients in the hospital can
recover in both H1 and H2 sub-compartments. In the
initial state of hospitalization, there is a probability that
symptoms subside and the patient can be discharged
quickly, so patients in H1 recover with rate a8. If this
is not the case, the patient either goes to ICU or to the
second state of hospitalization. In H2 patients recover
with rate a7.

Finally, regarding the deaths compartment, the model
considers the possibility of dying in H2 and in the ICU
with rates a5 and a6.

B. Model Adjustment

When implementing this model, we seek to get the best
adjustment to the real data. Firstly, we do the fitting on
the cumulative cases, and then we find the parameters
described previously in the compartment model that
provide a better fitting of the number of hospitalizations,
recoveries and deaths to the real data.

Code was implemented in MATLAB. Some of the
details are highlighted below.

First of all, we carry out the fitting of the reported
cases to obtain the best adjust of Gompertz function,
which will be used to predict the infected cases later
on. Real data is acquired from official sources from
France and Belgium [2] [1], updated every day. It should
be noted that real data is smoothed by calculating the
average of seven days (three days before, three days after,
plus the concerning one) for the purpose of avoiding
the effects of possible head count unbalances, such as
disproportionate increases over the weekend.

To find the parameters that provide the best fitting
to real data, we performed the following mathematical
optimization technique. The goal was to make a good
selection of the best parameter combination from some
set of available alternatives.

Optimization problems arise in many quantitative
disciplines and the development of solution methods
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has a huge variety range. In our case, to get the set
of available alternatives of parameter combination we
performed the latin hypercube sampling (LHS), that
is a statistical method for generating a near-random
sample of parameter values from a multidimensional
distribution. This method is directly implemented from
a MATLAB function [3] which allows us to choose how
many combinations of a group of desired parameters
(eight in our case) are going to be calculated, so that
we can finally select the most accurate set.

Therefore, an objective function is required as a way
to attain the so called optimal solution. Our objective
function is a quadratic error function of the form:

E2 =
(Xreal −Xaprox)2

Xrealmax
(7)

So starting from real and known initial conditions,
we test 20.000 LHS possible parameters combinations
in our compartment model settled on round numbers,
and compare the results obtained with the real values
using the objective function described above and finally
we choose the distribution that gives the lowest error and
best fits reality.

III. RESULTS

A. Parameters value adjustment

In this section we will focus on the application of the
model in France and Belgium, as well as comparing the
different parameters obtained in each case. Figure 2
and 3 show the real temporal evolution in the number
of hospitalizations, ICUs, recoveries and deaths and
predictions made with the compartment model for France
and Belgium.

FIG. 2: Daily hospitalizations, ICUs, cumulative
discharges and deaths are represented from 17/03/2020
to 15/06/2020 for France.

FIG. 3: Daily hospitalizations, ICUs, cumulative
discharges and deaths are represented from 17/03/2020
to 15/06/2020 for Belgium.

In the following table, the results of the obtained values
for the parameters describing the dynamics of the model
(ai) are collected:

France Belguim

a1 0.70 0.56
a2 0.37 0.32
a3 0.41 0.48
a4 0.067 0.094
a5 0.06 0.068
a6 0.001 0.032
a7 0.03 0.074
a8 0.24 0.07

Regarding France, we find that the rate of hospitalization
of infected individuals is of 0.70.

Once hospitalized, the rate of patients entering ICU
is of 0.37 and the rate of patients going to the
second stage of hospitalization is 0.41. So we can see
that there is a higher probability of going to second
hospitalization stage than entering ICU. In the first stage
of hospitalization (H1), the rate of recovery is 0.24 and
no death possibility is considered.

For patients in ICU, the rate of overcoming
complications and entering the second state of
hospitalization is 0.067 and the rate of dying is 0.060.
So it is observed that in general the stay in the ICU is
quite long and the likelihood of dying or improving are
quite the same.

Once in the second stage of hospitalization (H2), the
rate of recovery is of 0.031 and the rate of dying is 0.0011,
which means that few people are on edge of life in this
compartment and the probability of obtaining discharge
is higher.

On the other hand, in the case of Belgium we find that the
rate of hospitalization of infected individuals is of 0.56,



4

a much lower value than the one obtained for France,
which means that less new infected individuals require
hospitalization.

Once hospitalized, the rate of patients entering ICU
is of 0.32 and the rate of patients going to the second
stage of hospitalization is 0.48. In the first stage of
hospitalization (H1), the rate of recovery is 0.07. From
this values we can conclude that the behaviour of first
stage hospitalization are similar to the one in France with
the difference in recovery rate: in Belgium less people will
recover from H1.

For patients in the ICU, the rate of overcoming
complications and entering the second state of
hospitalization is 0.094 and the rate of dying is 0.068,
so it is observed that in general the stay in the ICU is
quite less long than the one in France, with a second
difference concerning that in Belgium, patients will last
longer in ICU before dying than recovering.

Once in the second stage of hospitalization (H2), the
rate of recovery is of 0.074 and the rate of dying is 0.032.
In this case, individuals in Belgium have more chance
to die in H2 than in France but also exists a higher
probability of recovery.

On the whole, we could say that the implemented
compartment model can be successful for different
countries, each one of them with their own optimum
parameters that will denote some differences in the
hospitalization dynamics. So, by analyzing the rates, we
should be able to learn how the dynamics evolve and
identify limits and restrictions.

B. Predictions

The final step in this study is the prediction part.
Once the proper behaviour of the compartment model
have been proved, we could carry out some short-term
predictions using previous known data.

We have performed a set of 5 day predictions from
the 30th of May until the 15th of June. Predictions
are performed taking the real data until a determined
day and from it we run the Matlab model to obtain the
predicted results for the 5 following days. This has been
done for several intervals of days.

The obtained results of the predictions are compared
to real data and the quadratic error for each of
the 5 days is calculated. The errors obtained from
the diferent predictions are represented in a Boxplot
graphic. A boxplot is a method for graphically depicting
groups of numerical data through their quartiles,
which are position measurements used to quantify how
concentrated the numerical variable is thet order the
numeric variable from least to greatest and divide into
groups with the same number of observations. This plot
provides the information of the minimum and maximum
values of the quartiles, its median, and of the extreme
values in the range of typical observations, and of the

atypical data. With this data, it is enough to see at
a glance important aspects of the distribution. Box
plots may also have lines extending from the boxes
(whiskers) indicating variability outside the upper and
lower quartiles.

The use of Boxplot allows us to get an idea of how
accurate our predictions are. In Figures 4 and 5 the
Boxplot of the errors obtained from the predictions for
France and Belgium are represented.

FIG. 4: France prediction errors for ICU, recovered,
deaths and hospitalizations of 1, 2, 3, 4 and 5 days ahead.

FIG. 5: Belgium prediction errors for ICU, recovered,
deaths and hospitalizations of 1, 2, 3, 4 and 5 days ahead.

In the case of France it is observed that the predictions
in the numer of hospitalizations, deaths and recoveries is
nearly 0 and its variation is also very small. In the case
of hospitalizations, the mean error is also near to 0 bus
its variation is a little bit higher, and finally in the case
of the ICUs the value of the error is between 0.05 and 0.1
depending on the prediction day and its variation is also
arround 0.05.
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In the case of Belgium, deaths and recoveries also have
very small error and variation. Hospitalizations have
slightly higher error ans variation than in the case of
Belgium, but it harldy gets to 0.05. Finally, as in the
case of France, ICUs have a higher error variation but in
this case the mean value of the erros is slightly lower (its
higher value is near 0.04 while for France it is 0.1).

IV. CONCLUSIONS AND DISCUSSION

In light of the above, it can be said that the designed
compartment model enables us to get valid information
about the dynamics of the hospitalizations during the
COVID-19 pandemic. This compartment model enables
us to gain insight of the evolution of the health system
during this pandemic in different countries, as it allows
to find the optimal values of the parameters that fit
best in each country. The knowledge of the parameters
that describe the model provides useful information
about the hospitalization rate, the demand for ICU
beds, and the rate of mortality and recovery and also
information on the near future, and therefore, challenges
such improving hospital efficiency and giving attention
to everyone needing it can be met.

However, the model has some limitations: as we have
seen the fitting in general is good enough but the ICUs
do not adjust as well as the other compartments. In
the study of other models we tested the possibility of
separating in the ICUs into two subcompartiments, so
that one had a faster mortality and the other a slower

one, but we failed to reduce the error.

Therefore, in general we can say that although more
variations of the model could be tested to try to minimize
the error, this model allows to obtain good enough results
that fit well to the real data.
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