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ABSTRACT

This paper presents the OmpSs approach to deal with hetero-
geneous programming on GPU and FPGA accelerators. The
OmpSs programming model is based on the Mercurium com-
piler and the Nanos++ runtime. Applications are annotated
with compiler directives specifying task-based parallelism.
The Mercurium compiler transforms the code to exploit the
parallelism in the SMP host cores, and also to spawn work
on CUDA/OpenCL devices, and FPGA accelerators. For
the CUDA/OpenCL devices, the programmer needs only to
insert the annotations and provide the kernel function to
be compiled by the native CUDA/OpenCL compiler. In the
case of the FPGAs, OmpSs uses the High-Level Synthesis
tools from FPGA vendors to generate the IP configurations
for the FPGA. In this paper we present the performance ob-
tained on the matrix multiply benchmark in the Xilinx Zynq
Ultrascale+, as a result of using OmpSs on this benchmark.
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1 INTRODUCTION

Current trends in computer architecture go in the direction of
providing heterogeneous execution environments. Heterogene-
ity comes in many different flavors. In plain shared memory
platforms, big/LITTLE cores provide some kind of hetero-
geneity, where the runtime scheduling policy should deal with
the different performance of the cores.

More complex environments incorporate accelerators. Tipi-
cally, those provide specialized hardware to better execute
specific algorithms. Probably the most common are GPGPUs
(General-Purpose Graphics-Processing Units). Along with
them, two main approaches for programming (among oth-
ers) have been developed. OpenCL is the low-level standard
specified by the Khronos group, supported by most of the
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GPGPUs currently available. CUDA is the approach pushed
by NVIDIA on their GPGPUs.

Unfortunately, both models incorporate many details from
the architecture of the accelerators onto the programming
model. For example, given that the GPGPUs have their
own memory address space, the models provide the means
to implement the data transfers between where the data is
(usually the main host memory), to and from where the data
needs to be (for computation onto the GPGPU hardware).
The additional memory space is needed in order to achieve
performance when running code on the accelerators, and
data movements are a must for them to work. Although
GPGPUs can be implemented in a discrete way, using a PCle
bus connection, or integrated on the same die as the host
cores, their behaviour is pretty similar, and both CUDA and
OpenCL support such approaches.

More recently, FPGA (Field-Programmable Gate Array)
devices have started reaching the same level of architec-
tural support. FPGA devices are programmed by means
of bitstreams, usually generated by vendor-propietary tools,
following an specification provided in the VHDL or Verilog
hardware description languages.

Discrete FPGA devices can be programmed over PCle,
providing additional acceleration functions to the main host
cores. Usually, the FPGA device incorporates the implemen-
tation of the bus protocol as part of its programming. The
programmer needs to be aware of it, as he/she should incor-
porate it in the bitstream generation process.

In the case of the FPGASs, there is an additional character-
istic to be taken into account. Vendor compilation tools to
generate the place and route to configure the FPGA usually
take from minutes to hours. This causes that the porting of
new code onto these platforms is usually a slower process
than with GPGPUs.

Vendors also provide FPGAs integrated with a few cores,
that can be used as the host cores. In this case, the FPGA
shares the physical memory with the cores, as it was the case
in the GPGPUs.

With the advent of the accelerators, the runtime execution
environments provided on top of the operating system started
to leak. There was the need to provide the programmer with
new API interfaces that were not part of the common system
libraries (C, PThreads), and in some cases, the user is granted
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direct access to the hardware resources of the accelerator.
For example, the user can directly allocate memory on the
accelerator (global memory), or on the registers of the running
threads (shared memory).

In our work, we try to make the programmers life easy, by
providing higher-level abstractions that could help him/her
to generate the proper high performance code on them. For
exemple:

e Providing SIMD code generation based on directives,
instead of having to use the low-level SIMD intrinsics.

e Making the memory allocation and data copies auto-
matic, based on directives.

e Generating the code to run on the accelerator automat-
ically, provided the C/C++ implementation, if C/C++
tools to generate CPU or FPGA code are available.

e Allowing the use of parallelism based on tasking (in-
stead of kernel invocations).

e Providing support for data dependent tasks, and imple-
menting the execution based on such data dependences.

This makes the programming environment to (hopefully)
completelly hide the target architectures, providing a clean,
high-level, abstract interface to the programmers, and incor-
porating all the intelligence on management and scheduling
onto the runtime system.

2 PROGRAMMING WITH OMPSS

The OmpSs [2, 11] programming model allows to express
parallelism that will be executed in the available resources
among the host SMP cores, or integrated/discrete GPUs
and/or FPGAs. OmpSs is based on task parallelism, and very
similar to OpenMP tasking. It is being used as a forerunner
prototyping environment for future OpenMP features. On
GPUs, both CUDA and OpenCL kernels are supported. For
FPGAs, OmpSs uses the vendor IP generation tools (Xilinx
Vivado and Vivado HLS [5, 9], or Altera Quartus [1]), to
generate the hardware configuration from high-level code.
OmpSs can also leverage existing IP cores, provided they
adhere to the same interface with our software platform.

2.1 The OmpSs compilation environments

The compilation environment supporting OmpSs@QCUDA is
presented in Figure 1. In this environment, our Mercurium
compiler transforms calls annotated with target task direc-
tives onto a call to the Nanos++ runtime system to spawn a
task for the GPU CUDA helper threads. The runtime system
executes a stub function generated by the compiler to invoke
the CUDA kernel. An example of code annotation is shown
in the listing of Figure 2.

In a similar way, compilation of code with OpenCL is
shown in Figure 3. One difference between the OpenCL
environment and the CUDA one is that the CUDA kernels are
compiled during the compilation phase. Instead, when using
OpenCL, the kernel code is compiled at runtime, when the
OpenCL kernels are invoked. Compilation is done using the
OpenCL compiler infrastructure available from the OpenCL
runtime library. Nevertheless, OmpSs also works on OpenCL
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Figure 1: OmpSs compilation env. with CUDA sup-
port

#pragma omp target device(cuda) copy_deps ndrange( 1,n,128 )
#pragma omp task in([n]z) inout([n]y)
__global__ void saxpy(int n, float a,

float* x, float* y);

int main(int argc, char *argv[])

{
// OmpSs task

saxpy(N, a, x, y);

#pragma omp taskwait

}

Figure 2: Sample OmpSs@QCUDA kernel invocation
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Figure 3: OmpSs compilation env. with OpenCL sup-
port

for FPGA devices. In this case, the kernels are compiled
with the vendor tools (Xilinx SDAccel, Intel-Altera Quartus),
and the binary code for FPGA configuration is available
previously to the execution.

We have upgraded the OmpSs infrastructure to incorporate
the support for Xilinx FPGAs using the Vivado HLS tool. Fig-
ure 5 shows the toolchain flow. The OmpSs application is split
in two parts according to the OmpSs directives (see Figure 6).
All functions annotated with the target device(fpga) directive
are defined as tasks that will be transfered to the Vivado HLS
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#pragma omp target device(opencl) copy_deps ndrange( 1,n,128 )
#pragma omp task in([n]z) inout([n]y)
__kernel void saxpy(int n, float a,

__global float* x, __global float* y);

int main(int argc, char *argv([])

{
// OmpSs task

saxpy(N, a, x, y);

#pragma omp taskwait

}

Figure 4: Sample OmpSs@OpenCL kernel invocation
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Figure 5: OmpSs compilation env. with FPGA sup-
port

tool for compilation to IP cores. Additionally, the Mercurium
compiler generates the stub function used to invoke the IP
cores from our Nanos++ runtime system, adapting the pa-
rameter passing. Vivado HLS transforms the stub functions
and the FPGA-annotated functions onto VHDL, and the
Vivado tool generates the IP cores. In the code example, the
onto clause indicates to the compiler that the identification
number of this IP core is zero (0). This information is used to
generate a configuration file our of the compilation of the ap-
plication, with the list of accelerators available in the FPGA.
Additionally, the num_instances clause is used to express how
many instances of the given IP core the programmer decides
to generate to potentially run simultaneously this type of
tasks. If the programmer uses a number larger than one,
the runtime system will now through the configuration file
that it will have as many instances available as the number
indicated.

There is a further step to encapsulate the IP cores onto the
bitstream that will be used for configuring the target FPGA.
This step is left to the Petalinux tool from Xilinx, currently
targeting the Zynq 7000 and Zynq Ultrascale+ chips.

Tasks can be annotated with the implements(funcname)
clause, indicating that such task is a different version of the
same algorithm that funcname implements. This allows the
runtime system to select the best version to run at any given
point in time. This is done by applying a scheduling policy
that takes these alternative implementations into account.

#pragma omp target device(fpga) copy_deps \
onto(0) num_instances (1)

#pragma omp task in( vec_a[0:CONST_BS-1],

vec_b[0:CONST_BS-1])

out (vec_c[0:CONST_BS-1])

void vector_mult(int* vec_a, int* vec_b, int* vec_c)
{

int i;

#pragma HLS ARRAY_PARTITION wvariable=vec_a complete

#pragma HLS ARRAY_PARTITION wariable=vec_b complete

#pragma HLS ARRAY_PARTITION variable=vec_c complete

for (i=0; i < CONST_BS; i++) {
#pragma HLS PIPELINE II=1
vec_c[i] = vec_a[i] * vec_bl[i];
}
}

Figure 6: Vector multiply function targeting the
FPGA

#pragma omp target device(smp) copy_deps \
imp lements (vector_mult)
#pragma omp task in( vec_al[0:CONST_BS-1], \
vec_b[0:CONST_BS-1]) \
out (vec_c[0:CONST_BS-1])
void vector_mult_smp(int* vec_a, int* vec_b, int* vec_c)
{

int i;

for (i=0; i < CONST_BS; i++) {
vec_c[i] = vec_al[il * vec_bl[il;
}
}

Figure 7: Vector multiply function targeting the
SMP cores

The vector_mult example can be completed with the SMP
version of the task, to be executed on the SMP cores, as
represented in Figure 7. Observe as, in the case of the FPGA
devices, the SMP code can be the same as the target de-
vice(fpga) code, as the FPGA vendor tools understand the
same type of code. In this case, the difference is that in the
FPGA code we had the HLS directives passed to Vivado HLS
for IP core generation, while in the SMP version there is no
need of such directives. Potentially, the SMP version can be
annotated with additional OmpSs directives, for example to
distribute the iterations of the loop among the SMP cores,
with an inner level of tasking.

In the case of targeting CUDA or OpenCL GPU devices,
the kernel code to be executed on them has to be expressed in
CUDA or OpenCL, as we do not have an OmpSs translator
from C/C++ onto CUDA/OpenCL code.

Finally, Figure 8 shows how a normal procedure call from
the program towards the vect_mult function gets invoked as
a new task. This task is presented to the OmpSs runtime
as being able to execute in both the SMP cores and the
FPGA device. Then, the runtime system may apply a specific
scheduling policy to decide which of the environments is more
suitable to execute each particular instance of the task.
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Figure 9: High-level representation of the Nanos++
execution environment

2.2 The OmpSs runtime system

Nanos++ is the OmpSs runtime system. It takes care of
executing the tasks annotated by the programmer in the
available resources. The high-level view of the execution
environment is presented in Figure 9.

The Nanos++ environment has a thread team created by
default, the dependence graph used to organize the tasks
that still have pending data dependences to be resolved, and
the task pool representing the task ready queue. Executing
threads create tasks and insert them into the dependence
graph. When data dependences have been fulfilled, the thread
detecting this situation moves the tasks now free of depen-
dences to the task pool. When a thread finishes the execution
of a task, it becomes idle, and it searches for work in the task
pool.

On the heterogeneous environments described in sub-
section 2.1, Nanos++ has a specific subset of threads that
represent each of the heterogenous devices. We call these
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| Characteristic | ZC706 | AXIOM Board
Architecture 32-bit 64-bit
SMP Cores 2x ARM Cortex A9 | 4x ARM Cortex A53
SMP Freq. 666 MHz 1.5 GHz
Total memory 1 GByte 4 GBytes
FPGA XCT77Z045 ZU9EG

Table 1: Characteristics of the execution environ-
ments

threads helper threads. The purple thread (thread number 4,
on the right-hand side of the Global thread team) in the figure
is one of those helper threads. In this particular example, it
may represent one of a GPU using CUDA or OpenCL code,
or an IP core in an FPGA.

Tasks annotated with the implements clause can be exe-
cuted on an SMP core or on one ore more devices. This means
that when the runtime system finds one of these tasks in the
ready queue, it can be grabbed by a regular worker thread,
that will execute the SMP version of the task in an SMP
core. Or the task can be grabbed by one of the helper threads,
and then the device version of that task will be executed in
the device represented by the thread.

3 EVALUATION

This section presents the evaluation of the OmpSs execu-
tion environment on Xilinx Zynq devices, with the Matrix
Multiply benchmark.

3.1 Execution environments

The OmpSs execution environment for Xilinx Zynq FPGAs
has been evaluated on two different Zynq platforms. The
environment was first developed for the 32-bit Zedboard [3],
and the Xilinx ZC702 [6] and ZC706 [7] evaluation kits. In
this paper, we present results of Matrix Multiply on the
ZC706 board.

We also ported OmpSs to the Zynq Ultrascale+ chip [§],
and specifically to the AXIOM board [4]. Table 1 shows the
main characteristics and differences of the two execution
environments.

The matrix multiply benchmark implements the common
sgemm [10] algorithm, to multiply input matrices A and B,
accumulating the results on the in/out matrix C. Matrix size
is set to 1024x1024 single precision floating point values, and
the block size in which it is split is 128x128 elements. The
matrices are represented as hypermatrices of (8x8) pointers
to blocks of (128x128) consecutive elements. Having the
matrices represented in this way improves the performance
of the memory transfers to and from the FPGA device, and
also improves the locality on the execution on the SMP cores.

3.2 Results

Figure 10 shows the results obtained. It shows the number
of GFlops achieved by matrix multiplication in the various
environments. On the left side of the graph, we have the
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Figure 10: Evaluation of Matrix Multiply on the dif-
ferent OmpSs environments

results obtained in the ZC706 board. Overall, the performance
obtained is 1 GFlop per ARM Cortex A9 core, and 4 GFlops
on the FPGA. In this environment, the reduced number of
cores does not allow to achieve additional advantage of using
the implements feature to distribute the work among the
FPGA and the cores. When doing so, the results are varying
so much, and the performance is not better than that of the
FPGA.

On the right-hand side, the results obtained in the AXIOM
board (Zynq U+) are shown. In this case, we can observe
that the plain use of SMP cores offers good scalability. The
performance on a single core is already improving the perfor-
mance of the SMP cores on the ZC706, reaching 2.9 GFlops.
The SMP environment scales up to 10.3 GFlops obtained in
4 cores. The FPGA fabric behaves similarly to that of the
ZC706, reaching 4.2 GFlops.

In the AXIOM board, we can appreciate the benefit of
using the implements approach, in which each core added
to the execution of matrix multiply adds up to 2.5 Gflops.
The step from the execution on 3 cores to the execution on
4 cores is a little less (1.2 Gflops), because in this case the
OmpSs environment is running 5 threads on 4 cores: there is
the additional helper thread driving the FPGA, which causes
a light system oversubscription, reducing the performance
that the additional core is able to contribute into the results.
Nevertheless, we think that the fact that we can exploit the
heterogeneous resources of the Zynq Ultrascale+ to execute
parts of the same application, achieving this scalability, is a
very good result obtained from the OmpSs environment.

4 CONCLUSIONS AND FUTURE
WORK

In this paper we have shown the OmpSs approach to exploit
task-based parallelism in SMP cores and accelerator devices.
OmpSs has traditionally supported directive-based parallel
programming with GPU accelerators. Kernel codes for the
GPUs are compiled with the native CUDA or OpenCL com-
pilers. With the advent of the FPGAs, our approach is to
support general-purpose parallel programming by the same

technique. Configuration bitstreams for the FPGA are gen-
erated using the FPGA vendor tools, after our Mercurium
compiler outlines the annotated code. This process is now
automatic, without programmer intervention. We have evalu-
ated this approach on the Xilinx Zynq 7045, and the Xilinx
Zynq Ultrascale+ FPGAs. We have used a single-precision
matrix multiplication benchmark to show that it is possible
to obtain performance out of these FPGAs, by leveraging
the IP cores generated by the Xilinx Vivado HLS toolchain.
And, in addition, we have shown that it is possible to have
the SMP cores and the FPGA collaborating in the execution
of matrix multiplication, each contributing to increase perfor-
mance. This has been demonstrated in the Zynq Ultrascale+
platform, by obtaining 4.29 GFlops out of the FPGA, 2.9
GFlops out of a single ARM A-53 core, and a total of 13.2
GFlops out of the FPGA and the 4 ARM Cortex A53 cores.

Our current work goes in the direction of making the
OmpSs toolchain for FPGAs more stable, and covering a
wider spectrum of FPGA devices. Also, we are currently
working on incorporating additional benchmarks and appli-
cations exploiting the use of FPGAs, including Cholesky,
Kmeans, face detection and audio analysis.
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