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The aim of this project is to carry out a series of simulations of a Paul ion trap, also referred to as
quadrupole ion trap, which takes advantage of the sinusoidal potential created by hyperbolic elec-
trodes to confine charged particles. The current report includes the description of the discretization
technique used to work with the main integral equations, known as Method of Moments (MoM);
and the head steps made to get the final results, starting from the calculation of capacitances, the
design of the hyperbolic electrodes and the calculation of the potential and electric field, and ending
up with the representation of the trajectory of an ion inside the 3D trap, in addition to showing the
relation between charge/mass of the particle with the characteristics of the potential.
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I. INTRODUCTION

The Paul ion trap was named after the physi-
cist Wolfgang Paul’s invention, work for which
he was rewarded with the Nobel prize in 1989.
The trap consists in two hyperbolic electrodes
facing each other, and a third one shaped as
a hyperbolic ring, halfway between the other
two. In those electrodes a sinusoidal potential
is applied, such that it prevents ions from es-
caping.

In this work, we realize a series of compu-
tations using Matlab in order to represent the
final result consisting of a simulation of a con-
fined ion inside the structure.

We start converting the Poisson’s equation
for the potential into an integral equation that
can be solved numerically. After that, we per-
form a discretization process using the MoM,
that works with lineal operators, to get finally
a linear system expressed in matrix form.

Later on, we test our program obtaining the
capacitance of two infinite cylinders and of a
parallel plate capacitor from the charge calcu-
lated. Once checked, we proceed to get the
hyperbolic geometry by Delaunay’s triangula-
tion, and we compute the charge distribution
that allows to get the potential in all space and
consequently, the electric field.

Lastly, using classical kinematic formulas
and an adequate value of the amplitude and
frequency of the AC voltage, we get the con-
fined trajectory, in addition to the relation be-
tween the ion’s charge and mass, and the har-
monic potential.
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II. PHYSICAL APPROACH

First of all, we define the problem and the
set of equations to be solved. In our case, we
are interested in knowing the potential, so we
start with Poisson’s equation:

∇2φ(~r) = −q(~r)
ε

(1)

where φ(~r) is a scalar potential. Using the ap-
propriate Green’s function:

G(~r) =
1

4πε|~r|
(2)

one ends up with the integral equation

φ(~r) =

∫
S

q(~r′)
1

4πε|~r − ~r′|
d~r′ (3)

and applying the boundary condition φ(~r)|s =
Vo, that is, we know the potential at the surface
of the electrodes, the final equation to be solved
is

Vo =

∫
S

q(~r′)
1

4πε(~r − ~r′)
d~r′
∣∣∣
s

(4)

Hence, by employing the Green’s function we
have limited the problem of finding the poten-
tial in all space to finding the charge in the
surface.

A. Method of Moments

In order to solve (4), we turned to numerical
methods, in particular the MoM, which allows
to calculate integrals for a discrete set of points.

The aim of this method in our case is to con-
vert

Lq(~r) = Vo(~r) (5)
where L is a linear integral operator and q(~r)
the unknown, into a linear system

[Zmn][qn] = [Vo(~rm)] (6)
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This is done by expanding the charge into
a linear combination of pulse basis functions
xn(~r):

qN (~r) =

N∑
n=1

qnxn(~r) (7)

so that the residual error at the electrodes sur-
face is

R(~r) = LqN (~r)−Vo(~r) =
N∑

n=1

qnLxn(~r)−Vo(~r)

(8)
and forcing R(~r) = 0 at N points ~rm we find
(6), where

Zmn = Lxn(~r)
∣∣∣
~r=~rm

(9)

III. PROCEDURE

A. Capacitors

The first step carried out was checking if the
linear system works by computing the capaci-
tance of two infinite cylinders and comparing it
with the analytical result. But in this case, (4)
cannot be used since the 2D Green’s function
changes and the whole equation becomes

Vo =

∫
C

q(~s′)
− ln |~s− ~s′|

2πε
dl′
∣∣∣
C

(10)

expressed in cylindrical coordinates and to be
evaluated over the contour C.

Having set two circumferences, of the same
radius and at distance 2d between their cen-
ters, at a potential (Vo/2) equal in magnitude,
but with opposite sign; with the algorithm de-
scribed in Section IIA, the charge of a discrete
set of points conforming the mentioned circum-
ferences has been calculated.

With the value of the charge known, the nu-
meric capacitance can be calculated usnig the
formula:

C =
1

V

N∑
n=1

hnqn (11)

where hn is the separation between two consec-
utive points. In this case hn is constant for all
the values of n.
For the given capacitor, the capacitance can be
analytically obtained as

C =
πε

arccosh( d
R )

(12)

With a distance d=2, a radius R=1, a volt-
age Vo=1V, a spaced hn=0.0628 and a total
number of points N=100, one obtains:

Canalytical = 2.1088e− 11
Cnumerical = 2.1108e− 11

The error made in the calculation of the ca-
pacitance, and therefore of the charge, is of
0.0963%. This acceptable result validates the
method implemented .

Figure 1: Potential and electric field created by
two infinite cylinders at the cross section.

After having tested the code in 2D, we moved
to the 3D space and began to work with tri-
angle meshes, starting by a simple parallel
plate capacitor. Matlab has its own function
that carries out Delaunay triangulation, allow-
ing the discretization of surfaces into triangles,
that will play the role of the point charges used
previously. Again, we want to compare the an-
alytical capacitance and the approximated one:

Canalytical =
εA

d
= 3.1824e− 09

Cnumerical =
1

V

∑N/2
n=1 anqn = 3.3118e− 09

Having used the plate’s surface A=36, the
separation between plates (setted at ±Vo/2)
d=0.1, an the surface of each triangle (com-
puted in the program) and N/2=81 the posi-
tive half of the charge vector qn; the error found
was of 4.0660%. However, it can be reduced in-
creasing N to the detriment of the computing
time.

B. Quadrupole

The limiting condition when it comes to the
potential is the Laplace equation:

∇2φ(~r) = 0 (13)
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implying that the potential cannot have max-
ima or minima but only saddle points. How-
ever, with an adequate selection of the elec-
trodes one could get a small variation of the
potential around those saddle points, making
them able to confine different ions, both an-
ions and cations, since they would not get high
accelerations. With the hyperbolic electrodes
simulated in Figure 2, setting at negative po-
tential −Vo the ring and at positive potential
+Vo the upper and lower surfaces, one gets the
quadrupole potential shown in Figure 3, calcu-
lated using (6), once the charge (Figure 2) is
known. The central area is our region of inter-
est.

Figure 2: Quadrupole geometry disctretized in
a triangle mesh (left). Quadrupole charge for a
voltage of 1V in the upper and lower electrodes,
and -1V in the middle one (rigth).

Figure 3: Potential created by the quadrupole
in a longitudinal section, showing the saddle
point at the center.

One has to be careful when discretizing the
surface into a triangular mesh not to create any
zero surface triangle. Otherwise it will cause
the Z matrix to be singular, and therefore the
linear system will not be possible to solve.

C. Trajectory

Once the charge in the electrodes is calcu-
lated, using a dense grid of points and interpo-
lation, the potential at any point can be com-
puted, and the electric field is obtained as

~E = −~∇V (14)
Then the force is computed as

~F = q ~E (15)

and the trajectory is calculated using classic
expressions:

~F = m~a→ ~a =
~
q ~E

m
(16)

hence,
~v = vo + ~a · δt (17)

and finally

~r = ro + ~v · δt+ 0.5 · ~a · δt2 (18)

As said before, the hyperbolic geometry of
the electrodes gives an almost constant poten-
tial at the center (Figure 4), making the ions
move slowly. However, this condition is not
enough to confine them, since at a given mo-
ment they would approach the regions with
increasing potential and they would escape
speeding up. To solve this problem, a harmonic
potential V (t) = Vocos(ωt) can be used. The
potential frequency f has to be sufficient so the
ion cannot escape but not too high so the ion
would not be able to move. In other words,
we need T = 1/f >> δt (in our particular
case, T = 20δt). Another aspect to take into
account is the amplitude Vo, responsible of giv-
ing the ion acceleration. Therefore there is a
compromise in the selection of both the value
of Vo and f when designing the trap.

Figure 4: Potential created by the quadrupole
in a longitudinal section.
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IV. RESULTS

All in all, the trajectory followed by an ion
is similar to the one illustrated in Figure 5, for
Fe2+ with Vo = 10V and f = 900Hz.

Figure 5: Trajectory of an ion inside the Paul
trap computed using a random starting point
in the region x, y, z ∈ (-1,1).

For different ions, hence, for different masses
and charges, the frequency and the Vo required
vary. When it comes to the mass, increasing
mass means less acceleration (16), thus less fre-
quency or more amplitude Vo is needed. How-
ever, increasing charge means more accelera-
tion, so one needs more frequency or less volt-
age. Therefore the ratio q/m is an interesting
characteristic to take into account when de-
signing the trap, and as such, Figure 6 shows
how Vo and f behave for different values of
q/m. One can observe that the minimum f re-
quired increases as a function of m/q following
the law fmin = a

√
m/q + b, while the voltage

goes like Vmax =
a

m/q
+ b. The values repre-

sented in Figure 6 are for cations; nonetheless,
the same tendency can be deduced for anions,
but with higher frequencies and lower voltages
for the same mass; since given the geometry
of the trap, there is less route in the vertical
axis, and for the first semi-period the upper
and lower electrodes are set up to positive po-
tential, meaning that it is easier for negative

charges to gain acceleration and escape.

Figure 6: Voltage and frequency required to
confine ions with different q/m ratios.

V. CONCLUSIONS

Apart from the satisfactorily results of the
simulations showing the trapped particles, this
project is a first approach to numerical tech-
niques used in physics and engineering in or-
der to solve electrostatic problems. The work
offered to us the opportunity not only to learn
about the same Paul ion trap and its function-
ing, but to discover useful tools to solve sys-
tems of differential and integral equations nu-
merically, and to discretize three dimentional
surfaces into triangle meshes, process that is
often used in such kind of problems.
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