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Abstract: In this work, we present a nonlinear model re-
duction approach for reducing two commonly used non-
linear dynamical models of power grids: the effective net-
work (EN) model and the synchronous motor (SM) model.
Such models are essential in real-time security assess-
ments of power grids. However, as power grids are often
large-scale, it is necessary to reduce the models in order
to utilize them in real-time. We reformulate the nonlin-
ear power grid models as quadratic systems and reduce
them using balanced truncation based on approximations
of the reachability and observability Gramians. Finally, we
present examples involving numerical simulation of re-
duced EN and SM models of the IEEE 57 bus and IEEE 118
bus systems.

Keywords: nonlinear model reduction, balanced trunca-
tion, dynamical power grid models, quadratic systems

Zusammenfassung:DieserArtikel beschreibt einenAnsatz
zur nichtlinearenModellordnungsreduktion zweier häufig
benutzter Modelle zur Beschreibung dynamischer Strom-
netze, das Effektive Netzwerk (EN) Model und das Syn-
chroner Motor (SM) Model. Solche Modelle sind essentiell
in der Sicherheitsanalyse von Stromnetzen. Zur Echtzeit-
analyse benötigt man für große Netze allerdings Reduk-
tionsmethoden. Wir schreiben das nichtlineare System in
ein quadratisches um, welches dann mit Hilfe von balan-
ciertem Abschneiden, basierend auf der Steuerbarkeits-
und Beobachtbarkeitsgramschen, durchgeführt wird. Im
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Anschluss werden numerische Simulationen der reduzier-
ten EN und SM Modelle am IEEE 57 und IEEE 118 Bus Bei-
spiel gezeigt.
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1 Introduction

Given a dynamical model, the purpose of model order re-
duction (MOR) is to identify another model which 1) can
be analyzedmore efficiently and 2) accurately captures the
relevant dynamics and properties of the original model [3,
43]. Common analysis tasks include transient stability
analysis, predictive simulation, uncertainty quantifica-
tion, state estimation, and the solution of optimal control
problems.

Power grids facilitate the delivery of electricity from
producers to consumers. Modern power grids consist of
1) power plants, 2) transmission grids, 3) distribution
grids, and 4) consumers (either industrial or residential).
In recent years, emerging technologies such as renewable
energy production, charging of electric vehicles, and pro-
sumershave decreased the predictability of the power gen-
eration and consumption in power grids. Therefore, there
is an increasing need to perform real-time grid security as-
sessments. However, power grid networks are often large-
scale, and the commonly used dynamical power gridmod-
els are nonlinear [32]. Consequently, they are nontrivial
to analyze in real-time. Therefore, model reduction (also
called equivalencing [19, 30]) has long been used to re-
duce both static and dynamical models of power systems
[11, 40, 55].

Balanced truncation is a model reduction technique
that involves projecting the state variables and the dy-
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namical equations such that the states that are least af-
fected by the inputs are also the states that affect the out-
puts the least. These states do not significantly affect the
input-output behavior of the system and can, thus, be re-
moved.

In fact, most model reduction techniques involve pro-
jection and truncation [3], and for linear systems, the re-
duced systemmatrices can be computed offline. However,
for general nonlinear systems, the evaluation of the re-
duced right-hand side function will also involve the eval-
uation of the original right-hand side function. If this is
not addressed, the reduced nonlinear model cannot be
analyzed significantly more efficiently than the original
model.

Therefore,most research onmodel reduction of power
grid models involves reduction of a linearized system or
subsystem. Researchers have used, e. g., balanced trun-
cation [1, 2, 10, 26, 39, 41, 45, 46, 47, 48, 49, 59], bal-
anced residualization [36], Krylov methods [8, 42, 51, 52],
SVD-Krylovmethods [20], proper orthogonal decomposition
(POD) [53], singular perturbation theory [12, 29, 35], vari-
ants of clustering [9, 17, 54], and sparse approximations
[27] to reduce such linearized models.

However, nonlinear model reduction of power grid
models has also been considered. Parrilo et al. [37] use
POD and Lan et al. [25] and Zhao et al. [58, 57] use bal-
anced truncation based on empirical Gramians to reduce
nonlinearmodels of power grids. However, they do not de-
scribe how to efficiently evaluate the reduced right-hand
side function. Malik et al. [28] use POD together with tra-
jectory piecewise linearization (TPWL) to reduce a nonlin-
ear power grid model, and Purvine et al. [38] use a cluster-
ing approach where each cluster is represented by a single
generator. Osipov and Sun [33] and Osipov et al. [34] use a
hybrid approach where only a subset of the original right-
hand side functions are linearized. Finally, Mlinarić et al.
[31] use concepts of synchronicity to derive exact nonlin-
ear reduced power grid models.

In this work, we use lifting [23, 22] to reformulate the
effective network (EN) model and the synchronous motor
(SM) model [32] as quadratic models. We use a balanced
truncation approach, based on approximations of the
reachability and observability Gramians of the quadratic
systems [7, 56], to reduce the quadratized models. Since
the systems are quadratic, we can compute the reduced
systemmatrices offline. Consequently, the right-hand side
functions of the reduced models can be evaluated more
efficiently than those of the original models. Finally, we
present numerical examples which demonstrate the ac-
curacy of the reduced models with numerical simulations

of the IEEE 57 bus and the IEEE 118 bus systems. We use
pg_sync_models [32] to obtain dynamical models of these
systems.

The remainder of this paper is organized as follows. In
Section 2, we describe the quadratization of the EN and SM
models. In Section 3, we describe the balanced truncation
approach for reducing the quadratized EN and SM mod-
els, and in Section 4, we present the numerical examples.
Finally, conclusions are given in Section 5.

2 Power system models
The three commonly used dynamical models of power
grid networks are the EN model, the SM model, and the
structure-preserving (SP) model [32]. All three models rep-
resent the generators and the loads (i. e., the consumers)
in the power grid network as a set of coupled oscillators.
The phase angle δi of the i’th oscillator (i. e., the i’th state
variable) is described by

2Ji
ωR

δ̈i +
Di
ωR

δ̇i = Fi + fi(δ), (1)

for i = 1, . . . , no where no is the number of oscillators. Here,
ωR is a reference frequency, Ji is the inertia constant, and
Di is the damping constant of the i’th oscillator. Further-
more, Fi is constant, and

fi(δ) = −
no
∑
j=1
j≠i

Kij sin (δi − δj − γij) (2)

is a nonlinear coupling term. The constant parameters
Fi, Kij, and γij depend on the steady state power flow in
the network, i. e., on the solution to the power flow equa-
tions [32].

Remark 1. For the EN and SMmodels, Ji ̸= 0 for all i. How-
ever, for the SP model, Ji = 0 for indices i representing
load nodes. Consequently, the transformations described
in this section would result in a quadratic differential-
algebraic system. Alternatively, it can be formulated as a
cubic model by not introducing the frequencies ωi for the
load nodes. However, it is not possible to formulate it as a
set of quadratic ordinary differential equations. Therefore,
we consider only the EN and the SM models.

2.1 Transformation to first-order system

In order to compute the Gramians in Section 3, it is nec-
essary to transform the second-order system (1) to a first-
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order system by augmenting the state variables with the
frequencies ω := δ̇:

δ̇i = ωi, (3a)

ω̇i = −
Di
2Ji

ωi +
ωR
2Ji

Fi +
ωR
2Ji

fi(δ), (3b)

for i = 1, . . . , no.

2.2 Quadratization

We further augment the state variables by introducing s :=
sin(δ) and c := cos(δ) and use trigonometric identities to
rewrite the nonlinear function (2):

fi(s, c) = −
no
∑
j=1
j ̸=i

Kij((sicj − cisj)γ
c
ij − (cicj + sisj)γ

s
ij). (4)

Here, γsij := sin(γij) and γ
c
ij := cos(γij). The nonlinear func-

tion (4) is quadratic in s and c. Furthermore, we use the
chain rule to derive dynamical equations for s and c (which
are also quadratic). The resulting lifted quadratic system
is

δ̇i = ωi, (5a)

ω̇i = −
Di
2Ji

ωi +
ωR
2Ji

Fi +
ωR
2Ji

fi(s, c), (5b)

̇si = ciωi, (5c)

ċi = −siωi, (5d)

for i = 1, . . . , no.

Remark 2. The right-hand sides of the lifted quadratic sys-
tem (5) are independent of the phase angles δ.

2.2.1 Matrix form

The quadratic system (5) is in the form

ẋ = Ax + H(x ⊗ x) + Bu, (6)

where x := [δT ,ωT , sT , cT]
T
∈ ℝ4no are the state variables,

u ∈ ℝ is the scalar manipulated input, and ⊗ denotes
the Kronecker product [13, 18, 50]. We use the last term
in (6) to represent the constant terms in (5). Consequently,
the (constant) manipulated inputs u = 1 do not represent
physically manipulable quantities.

The system matrices in (6) have block structure:

A =
[[[

[

A11 ⋅ ⋅ ⋅ A14
...

. . .
...

A41 ⋅ ⋅ ⋅ A44

]]]

]

∈ ℝ4no×4no , (7a)

H =
[[[

[

H11 ⋅ ⋅ ⋅ H14
...

. . .
...

H41 ⋅ ⋅ ⋅ H44

]]]

]

∈ ℝ4no×(4no)
2
, (7b)

B =
[[[

[

B1
...
B4

]]]

]

∈ ℝ4no×1. (7c)

In (7), Aij ∈ ℝno×no , Hij ∈ ℝ
no×4n2o , and Bi ∈ ℝno×1.

The nonzero blocks of A are

A12 = I, (8a)

A22 = −
1
2
J−1D, (8b)

where I is the identity matrix, J = diag{Ji}
no
i=1, and D =

diag{Di}
no
i=1. All other blocks of A are zero.

The nonzero blocksHij ∈ ℝ
no×4n2o of theHessianmatrix

H are block-diagonalwhere each block is a row vectorwith
4no elements:

H23 = blkdiag {[0 0 ωR
2Ji
hsi −

ωR
2Ji
hci ]}

no
i=1
, (9a)

H24 = blkdiag {[0 0 ωR
2Ji
hci

ωR
2Ji
hsi ]}

no
i=1
, (9b)

H34 = blkdiag {[0 ei 0 0]}
no
i=1 , (9c)

H43 = blkdiag {[0 −ei 0 0]}
no
i=1 . (9d)

The i’th element of the row vector ei ∈ ℝno is one, and all
other elements are zero. The elements of the row vectors
hsi , h

c
i ∈ ℝ

no are

hsij = {
Kijγsij, j ̸= i,
0, j = i,

(10a)

hcij = {
Kijγcij, j ̸= i,
0, j = i.

(10b)

Finally, the nonzero block of B is

B2 = F. (11)

Remark 3. Thematrix A in (7a) has zero eigenvalues. Con-
sequently, it is not stable (i. e., the real parts of the eigen-
values of A are not all strictly negative).

Remark 4. The HessianmatrixH is not unique. Therefore,
we transform H in (7b) such that it is symmetric [6], i. e.,
such that H(u ⊗ v) = H(v ⊗ u) for all u, v.
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2.3 Nonzero initial condition

In Section 3, we use expressions for the Gramians of
quadratic systems which require that the initial condi-
tion is zero [7]. However, the state variables in the lifted
quadratic model contain both sines and cosines of the
phase angles. These cannot simultaneously be zero. There-
fore, we introduce the shifted state variables x̄ := x − x0
and the augmentedmanipulated inputs ū := [uT , 1]

T where
x0 is a given initial condition for the lifted quadratic sys-
tem [4]. Using properties of the Kronecker product [18],
we derive a quadratic model for the shifted state variables
(which are zero at the initial time):

̇x̄ = Āx̄ + H(x̄ ⊗ x̄) + B̄ū, x̄(0) = 0. (12)

In (12), Ā = A + A0 and B̄ = [B B0] where

A0 = H ((I ⊗ x0) + (x0 ⊗ I)) , (13a)
B0 = Ax0 + H(x0 ⊗ x0). (13b)

The matrix Ā in the shifted system (12) (as well as the ma-
trixA in the original system (6)) is not stable because it has
zero eigenvalues.

Remark 5. For linear systems, there exist several alterna-
tives to shifting the system to have a zero initial condition
[5, 14, 44]. However, these methods have not yet been ex-
tended to quadratic-bilinear systems.

3 Model reduction
In this section, we describe a balanced truncation ap-
proach, based on that described by Benner and Goyal [7],
for reducing the quadratic system

ẋ = Ax + H(x ⊗ x) + Bu, x(0) = 0, (14a)
y = Cx, (14b)

where x ∈ ℝn, u ∈ ℝm, y ∈ ℝp, A ∈ ℝn×n, H ∈ ℝn×n
2
,

B ∈ ℝn×m, and C ∈ ℝp×n. The shifted dynamical power
system model described in Section 2 is in the form (14a),
and (14b) relates the outputs y to the state variables x.

In order to reduce (14), we use the matrices W ,V ∈
ℝn×nr (WTV = I) to project and truncate the state variables
(x ≈ V x̂) and the dynamical equations (left multiply by
WT ). We denote by nr the number of states in the reduced
model. The resulting quadratic reduced order model is

̇x̂ = Ar x̂ + Hr(x̂ ⊗ x̂) + Bru, (15a)
ŷ = Cr x̂, (15b)

where x̂ ∈ ℝnr and ŷ ∈ ℝp are the reduced state variables
and outputs, and Ar ∈ ℝnr×nr , Hr ∈ ℝ

nr×n2r , Br ∈ ℝnr×m, and
Cr ∈ ℝp×nr are the reduced system matrices given by the
projections

Ar =W
TAV , (16a)

Hr =W
TH(V ⊗ V), (16b)

Br =W
TB, (16c)

Cr = CV . (16d)

Remark 6. The Kronecker product V ⊗ V ∈ ℝn
2×n2r is pro-

hibitively large in terms of memory requirements, even for
moderately sized power grids.

3.1 Gramians of quadratic systems

Provided that the sums converge, the reachabilityGramian
P and the observability Gramian Q of the quadratic sys-
tem (14) (with zero initial condition) are [7]

P =
∞
∑
i=1

Pi, (17a)

Q =
∞
∑
i=1

Qi, (17b)

where P1 and Q1 satisfy the Lyapunov equations

AP1 + P1A
T + BBT = 0, (18a)

ATQ1 + Q1A + C
TC = 0, (18b)

and Pi and Qi satisfy the Lyapunov equations

APi + PiA
T + H (

i−2
∑
k=1

Pk ⊗ Pi−(k+1))H
T = 0, (19a)

ATQi + QiA +H
(2) (

i−2
∑
k=1

Pk ⊗ Qi−(k+1)) (H
(2))T = 0, (19b)

for i ≥ 2. In (19b),H(2) denotes the mode-2matricization of
the tensorH ∈ ℝn×n×n for which the mode-1 matricization
H(1) is the Hessian matrix H. Essentially, H(2) is obtained
by reordering the elements of H (see Appendix A).

Remark 7. For even values of i, the solution to (19) is Pi =
Qi = 0.

Remark 8. Benner andGoyal [7] showed that, if they exist,
the Gramians in (17) satisfy generalized Lyapunov equa-
tions and described a fixed-point iteration scheme for solv-
ing these equations. Furthermore, they derived conditions
(including A being stable) under which this scheme con-
verges. Additionally, if these conditions are satisfied, the
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infinite sums in (17) can be shown to converge. How-
ever, for very large-scale systems, it is computationally in-
tractable to verify that the conditions are satisfied, and
they are not satisfied for the examples of power grid mod-
els considered in this work. Therefore, we approximate
the Gramians by truncating the sums in (17) to the first
N terms. Benner and Goyal [7] showed that for N = 3, it
is possible to identify weakly controllable and weakly ob-
servable states (as is required in balanced truncation) us-
ing these approximate Gramians.

3.2 Approximation of the Gramians

We approximate the Gramians by truncating the sums
in (17) to the first N terms. Furthermore, we use low-
rank approximations to reduce the memory consumption,
which is a key computational bottleneck because of the
Kronecker products in (19). Finally, for the power sys-
tem models described in Section 2, some eigenvalues of
A are zero. However, the real parts of the eigenvalues of
A must be strictly negative in order to guarantee the exis-
tence and uniqueness of solutions to the Lyapunov equa-
tions (18)–(19). Therefore, when computing the approxi-
mate Gramians, we replace A by the shifted matrix

Aα = A − αI (20)

where α ∈ ℝ is small and positive.
We approximate the Gramians P and Q in (17) by

1) truncating the sums and 2) approximating the truncated
sums, i. e., we approximate P by PT ≈ ∑

N
i=1 Pi ≈ P and Q by

QT ≈ ∑
N
i=1 Qi ≈ Q. The approximations are

PT = X̃N X̃
T
N , (21a)

QT = Z̃N Z̃
T
N , (21b)

where X̃N and Z̃N are computed iteratively. Let X̃1 = R̃1 and
Z̃1 = S̃1 where R̃1 and S̃1 are approximate low-rank factors
of the solutions to (18). Then,

X̃i = Tτ ([X̃i−2 R̃i]) , (22a)

Z̃i = Tτ ([Z̃i−2 S̃i]) , (22b)

for i = 3, 5, . . . ,N, where R̃i and S̃i are approximate low-
rank factors of the solutions to (19), and Tτ(⋅) denotes low-
rank approximation (see Appendix B).

We obtain the approximate low-rank factors by

R̃i = Tτ(Ri), (23a)
S̃i = Tτ(Si), (23b)

whereRi and Si are approximations of the Cholesky factors
of the solutions to (18)–(19) satisfying

AαR1R
T
1 + R1R

T
1 A

T
α + BB

T = 0, (24a)

ATαS1S
T
1 + S1S

T
1 Aα + C

TC = 0, (24b)

and

AαRiR
T
i + RiR

T
i A

T
α + K̃i,i−2K̃

T
i,i−2 = 0, (25a)

ATαSiS
T
i + SiS

T
i Aα + L̃i,i−2L̃

T
i,i−2 = 0, (25b)

for i = 3, 5, . . . ,N .
The third terms in (25) are approximations of the third

terms in (19), and we compute K̃i,i−2 and L̃i,i−2 iteratively
starting with K̃i,1 = Tτ(ΔKi,1) and L̃i,1 = Tτ(ΔLi,1). Subse-
quently,

K̃i,k = Tτ ([K̃i,k−2 ΔKi,k]) , (26a)

L̃i,k = Tτ ([L̃i,k−2 ΔLi,k]) , (26b)

for k = 3, 5, . . . , i − 2, where

ΔKi,k = H (R̃k ⊗ R̃i−(k+1)) , (27a)

ΔLi,k = H
(2) (R̃k ⊗ S̃i−(k+1)) . (27b)

Here, the product ΔKi,kΔKT
i,k approximates H(Pk ⊗

Pi−(k+1))HT , and ΔLi,kΔLTi,k approximates H(2)(Pk ⊗
Qi−(k+1))(H

(2))T .
Finally, we use matricization to evaluate (27) effi-

ciently (see Appendix C). Additionally, it can be exploited
that, for the power grid models presented in Section 2, H
andH(2) contain many structural zeros.

Remark 9. We approximate the Gramians P and Q using
the low-rankmatricesPT andQT . However, it remains to be
proven that these Gramians can actually be approximated
accurately using low-rank matrices.

3.3 Balanced truncation

Based on numerical experiments, we project and truncate
δ̄, ω̄, ̄s, and c̄ (the variables shifted to have zero initial
condition), and their corresponding dynamical equations,
separately. This corresponds to choosing block-diagonal
matrices V and W. Furthermore, we use the same matri-
ces Vω andWω for all four variables:

V = blkdiag{Vω,Vω,Vω,Vω}, (28a)
W = blkdiag{Wω,Wω,Wω,Wω}. (28b)

Although the theoretical implications are not always well-
understood (e. g., for the present approach, no error
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bounds exist), it is common practice to reduce different
variables separately as it 1) often improves the accuracy
of the reducedmodels in practice and 2) preserves more of
the structure of the original system.

We compute Vω and Wω using the square-root algo-
rithm [3] based on the second no × no diagonal blocks Pω,T
and Qω,T of PT and QT given by (21):

Vω = R
T
ωUrΣ
−1/2
r , (29a)

Wω = S
T
ωVrΣ
−1/2
r . (29b)

Here, Rω and Sω are the Cholesky factors of Pω,T and Qω,T ,
and Ur and Vr consist of the first nr/4 columns of U and
V , respectively, where RωSTω = UΣV

T is the singular value
decomposition, and Σr is a diagonal matrix with the nr/4
largest singular values on the diagonal.

Remark 10. Due to numerical errors, Pω,T and Qω,T may
not be positive definite. In that case, we 1) use the polar
decomposition [15] to compute the nearest symmetric pos-
itive semidefinitematrix [16] and 2) add a smallmultiple of
the identity matrix to ensure strict positive definiteness.

3.4 Steady state adjustment

Asmentioned in Remark 2, the right-hand sides of the orig-
inal nonlinear first-order EN and SM models (3) are inde-
pendent of the phase angles δ. Consequently, ω, s, and c
may reach steady state regardless of the dynamics of δ.
Since δ̇ = ω, δ only reaches steady state if the frequencies
ω are zero in steady state. This is the case for the original
model. Otherwise, (5c) and (5d) could not simultaneously
be in steady state, as si and ci cannot both be zero.

These aspects lead to issues in the reduced model. We
explain them and their solution assuming that the initial
frequencies are ω0 = 0. In that case, the reduced phase
angles are given by

̇δ̂ = ω̂. (30)

Analogous to the original model, the right-hand sides of
the reduced model are independent of δ̂. However, the
reduced frequencies ω̂ are not necessarily zero in steady
state. Consequently, δ̂ will not reach steady state. There-
fore, we shift the right-hand side of (30) by the steady state
of the reduced frequencies ω̂s:

̇δ̂ = ω̂ − ω̂s. (31)

Consequently,when ω̂ reaches steady state, the right-hand
side of (31) is zero, and δ̂ is also in steady state. The issues

and the solution are similar if ω0 ̸= 0 is used in the re-
duction, and we stress that we only shift the system once
offline.

4 Numerical examples
In this section, we use numerical simulation to test the
accuracy of reduced EN and SM models of the IEEE 57
bus system for different choices of parameters in the bal-
anced truncation approach, initial conditions, andmanip-
ulated inputs. Furthermore, we demonstrate that we can
effectively reduce the IEEE 118 bus system. Table 1 shows
the number of coupled oscillators in the EN and SM mod-
els, i. e., the number of states in the original second-order
model (1). We use the Matlab toolboxes MATPOWER 6.0
[60, 61] and pg_sync_models [32] to compute the param-
eters in the original model equations (1)–(2).

For all tests, we use the initial conditions δ0 = ω0 = 0
(such that s0 = 0 and c0 = 1) and the manipulated inputs
u = [1, 1]

T when we reduce the models. Furthermore, the
(scalar) output y is the average of the phase angles.

Table 1: Numbers of coupled oscillators in the EN and SMmodels of
the IEEE 57 bus and IEEE 118 bus systems.

EN SM

IEEE 57 bus system 7 57
IEEE 118 bus system 54 118

4.1 Test of the shift and number of terms

Fig. 1 shows the L2-norms of the output errors for reduced
EN and SMmodels of the IEEE 57 bus system. The reduced
models are obtained using the balanced truncation ap-
proach with different 1) shifts α of the A matrix in (20),
2) numbers of states in the reduced model nr and 3) num-
bers of termsN in the approximate truncated sum (21). The
simulation interval is [0 s, 2 s].

For both the EN and the SMmodel, N has a limited ef-
fect on the accuracy of the reduced model. For a few com-
binations of α and nr, usingN = 1 leads to very high output
errors (or even simulator breakdown, indicated by a white
box). For the SM model, and for very small nr, using N = 1
or N = 3 leads to slightly lower output errors. For N = 3
or higher, α has almost no effect on the accuracy of the re-
duced EN models. For the SM model, α slightly affects the
accuracy, e. g., using α ≤ 0.1 improves the accuracy for all
tested N .
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Figure 1: The L2-norm of the output errors for reduced EN and SM models of the IEEE 57 bus system. The reduced models are obtained using
the balanced truncation approach with different 1) shifts α, 2) numbers of reduced states nr , and 3) numbers of terms N used in approximat-
ing the Gramians.
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Figure 2: The L2-norms of the output errors for reduced EN and SM models of the IEEE 57 bus system. In the numerical simulations, we in-
crease the initial phase angle of the first oscillator by 0.1 rad.

4.2 Comparison with POD

In Figs. 2 and 3, we compare the balanced truncation ap-
proach with a basic POD approach [3, Section 9.1], as de-
scribed by Kramer and Willcox [24], for reducing the EN
and SM models of the IEEE 57 bus system. We apply the
POD approach to the shifted quadratic system (12). There-
fore, as for the balanced truncation approach, the reduced
system matrices can be computed offline using (16). We
compare the L2-norms of 1) the output errors and 2) the
Pythagorean trigonometric identity (PTI) errors (i. e., the

violation of s2i + c
2
i = 1). As in Section 4.1, we consider

different numbers of terms N in the approximation of the
Gramians (denoted by BT(N)), and the simulation inter-
val is [0 s, 2 s]. The vertical black lines indicate the num-
bers of states in the first-order model (3), and missing
points on the graphs correspond to unsuccessful simula-
tions.

The reduced models must be able to approximate the
original system for different initial conditions and inputs
than those used in the reduction. Therefore, in the first
test, shown in Fig. 2, we increase the initial phase angle
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Figure 3: The L2-norms of the output errors for reduced EN and SM models of the IEEE 57 bus system. In the numerical simulations, we in-
crease the first manipulated input by 10%, i. e., from u = [1, 1]T to u = [1.1, 1]T .

of the first oscillator from 0 rad to 0.1 rad in the numeri-
cal simulations. Furthermore, in the second test, shown in
Fig. 3, we increase the manipulated inputs from u = [1, 1]

T

to u = [1.1, 1]
T .

In both tests, and for both the EN and the SM model,
the balanced truncation approach 1) performs equallywell
for all tested values of N, and 2) performs as well or
better than the POD approach. Furthermore, when using
the POD approach, some numerical simulations fail. This
is not the case when using the balanced truncation ap-
proach.

4.3 Reduction of the IEEE 118 bus system

Fig. 4 shows the outputs and the output errors (as func-
tions of time) for the original and the reduced EN and SM
models of the IEEE 118 bus system. Based on the results
in Section 4.1 and 4.2, we use a shift of α = 5 ⋅ 10−3 and
N = 3 terms in the approximation of the Gramians in the
balanced truncation approach.

Both of the reducedmodels contain 20 state variables,
corresponding to a reduction of 63% and 83% for the EN
and the SM model, respectively. Despite the large reduc-
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Figure 4: Top row: Outputs for the original and the reduced EN and SM models of the IEEE 118 bus system. Bottom row: The absolute differ-
ence between the output for the original and the reduced order models. The reduced models contain 20 oscillators, i. e., nr = 80.

tions, the outputs for the original and the reduced models
are almost indistinguishable, and the absolute output er-
rors do not exceed 10−3 for the EN model and 10−2 for the
SM model.

5 Conclusion

In this work, we describe a balanced truncation model re-
duction approach for reducing the nonlinear and dynam-
ical EN and SM power grid models. In this approach, we
1) reformulate themodels as quadratic systems, 2) approx-
imate the Gramians of these systems, and 3) use block-
diagonal matrices in the balanced truncation. We demon-
strate the efficacy of this balanced truncation approach by
reducing the IEEE 57 bus and IEEE 118 bus systems, and
we compare it with a basic POD approach.

In futurework,wewill further investigate the relations
between the choice of the matrices used in the balanced
truncation scheme and 1) the ability of the reduced EN and
SM models to satisfy the PTI sin2(δi) + cos2(δi) = 1 and
2) their steady states.

Funding: We acknowledge the financial support from the
German Federal Ministry of Education and Research in
the project KONSENS: Konsistente Optimierung und Sta-
bilisierung Elektrischer Netzwerksysteme (BMBF grant
05M18EVA).

Appendix A. Matricization
We illustrate the concept of matricization using an exam-
ple given by Kolda and Bader [21]. LetH ∈ ℝ3×4×2 be a ten-
sor whose mode-1 matricization is

H(1) = [[

[

1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24

]]

]

. (32)

Then, the mode-2 and mode-3 matricizations are

H(2) =
[[[[

[

1 2 3 13 14 15
4 5 6 16 17 18
7 8 9 19 20 21
10 11 12 22 23 24

]]]]

]

, (33a)

H(3) = [
1 2 3 ⋅ ⋅ ⋅ 10 11 12
13 14 15 ⋅ ⋅ ⋅ 22 23 24

] . (33b)

For more information about matricization and tensors, we
refer to [21] and to previous work on model reduction of
quadratic-bilinear systems [6, 7].

Appendix B. Low-rank
approximation
GivenP = RRT whereP,R ∈ ℝn×n,wedenote by R̃ = Tτ(R) ∈
ℝn×l a low-rank approximation for which R̃R̃T ≈ RRT = P,
i. e., the purpose is to approximate P. We compute R̃ using
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the singular value decomposition R = UΣV :

R̃ = UΣl. (34)

Here, Σl contains the first l columns of Σ, and l is chosen
such that

σ2i > τσ
2
1 , (35)

for i = 2, . . . , l. The singular values σi are the diago-
nal entries of Σ, and they are ordered, i. e., σi ≥ σj for
i < j.

In this work, we use the machine precision as the tol-
erance, i. e., τ = 1.1102 ⋅ 10−16, in order to limit the error of
the low-rank approximation.

Appendix C. Efficient evaluation of
the Kronecker products
We evaluate ΔKi,k in (27a) using matricization [21, 6, 7]:

ΔKi,k = K
(1)
K , (36a)

K(3)K = R̃
T
kY
(3)
K , (36b)

Y(2)K = R̃
T
i−(k+1)H

(2). (36c)

Similarly, we evaluate ΔLi,k in (27b) by

ΔLi,k = K
(2)
L , (37a)

K(3)L = R̃
T
kY
(3)
L , (37b)

Y(1)L = S̃
T
i−(k+1)H . (37c)
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