
Rethinking Cycle Accurate DRAM Simulation
Shang Li

shangli@umd.edu
University of Maryland, College Park

Rommel Sánchez Verdejo
rommel.sanchez@bsc.es

Barcelona Supercomputing Center (BSC)
Universitat Politécnica de Catalunya (UPC)

Spain

Petar Radojković
Barcelona Supercomputing Center (BSC)

Barcelona, Spain

Bruce Jacob
blj@umd.edu

University of Maryland, College Park

ABSTRACT
Cycle accurate DRAM simulations have been the dominating ar-
chitecture simulation model for DRAM for a long time. Although
accurate, its poor simulation speed has not improved for years
while a lot of other architecture simulators such as CPU and cache
simulators have moved away from cycle-accurate models for better
performance. In this paper, we discuss limitations of cycle-accurate
DRAM models, through simulation experiments, we show that
cycle-accurate DRAM simulator is becoming a dominant part of
overall simulation time when paired with modern CPU simulators.
We also demonstrate the inherent inflexibility of cycle-accurate
models becomes the roadblock for faster simulation speed and in-
tegration with other non-cycle-accurate simulation frameworks.
Finally, we discuss alternative modeling techniques for DRAM sim-
ulation and point out potential pathways to further DRAM simula-
tion technique.

CCS CONCEPTS
•Computingmethodologies→Modelingmethodologies;Mas-
sively parallel and high-performance simulations; Simulation evalua-
tion.

KEYWORDS
DRAM Modeling, Cycle Accurate Simulation, Architecture Simula-
tion

ACM Reference Format:
Shang Li, Rommel Sánchez Verdejo, Petar Radojković, and Bruce Jacob. 2019.
Rethinking Cycle Accurate DRAM Simulation. In Proceedings of the In-
ternational Symposium on Memory Systems (MEMSYS ’19), September 30-
October 3, 2019, Washington, DC, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3357526.3357539

© 2019 Association for Computing Machinery.
“The final publication is available at ACM via https://doi.org/10.1145/3357526.3357539

1 INTRODUCTION
Architecture simulation is an essential method for researching and
developing new architectures and systems. Cycle-accurate simula-
tion has been seen as the necessity for simulation accuracy. In recent
years, however, the proliferation of many-core systems changed
the landscape of simulations: On one hand, the simulation time to
simulate a multi-core CPU grows linearly, or even superlinearly.
On the other hand, many-core systems can potentially speed up
simulations substantially if simulators are designed to be running
in parallel. With the drive of both forces, CPU simulators have
moved away from cycle-accurate simulation models in pursuit of
simulation speed and scalability. We will talk more about these
non-cycle accurate techniques in Section 2.

Long been the prevalent main memory media, the accuracy of
DRAM simulation is crucial to the overall accuracy of the simu-
lated system. Like CPU simulators used to be, DRAM simulators
are dominantly cycle-accurate models. Often times cycle-accurate
DRAM simulators are integrated with CPU simulators to provide
accurate memory timings. With the CPU simulators moving away
from cycle-accurate models so that they can runmuch faster, DRAM
simulation speed starts to bottleneck the overall simulation speed.
To demonstrate how much time is spent in the DRAM simulators,
we run a set of benchmarks with two types of CPU models using
the same DRAM simulator, and breakdown the simulation time
based on the wall timers we planted in our code. Detailed simu-
lation configuration will be described in Section 3. As shown in
Figure 1, with cycle-accurate out-of-order (O3) CPU model, the
DRAM simulator only accounts for 10% to 30% of the overall sim-
ulation time. But as we switch to a faster CPU model, the DRAM
simulation time bloats to 70% to 80% of overall simulation time.
Note that the DRAM simulator we use here is already the fastest
cycle-accurate DRAM simulator available, which signifies this is
a fundamental issue of the cycle-accurate model rather than an
implementation issue. Also, these results are not limited to specific
CPU simulator implementations, because CPU simulator running
at a similar speed will produce similar amount of memory requests
in the same time frame, and therefore the DRAM simulator will
be under the same amount of workload and cost the same amount
of time to run. Performance aside, some non-cycle-accurate CPU
simulators still manage a way to work with cycle-accurate DRAM
simulators. But the incompatibility causes accuracy issues, which
we will further discuss in Section 3.2.

https://doi.org/10.1145/3357526.3357539
https://doi.org/10.1145/3357526.3357539


Shang Li, Rommel Sánchez Verdejo, Petar Radojković, and Bruce Jacob

bw
av

es_
r_0

cac
tuB

SS
N_r

de
ep

sje
ng

_r

fot
on

ik3
d_r

gcc
_r_

1
lbm

_r
mcf_

r
na

b_r

ram
_la

t

str
ea

m

x2
64

_r_
2

xa
lan

cbm
k_r

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e 

Si
m

ul
at

io
n 

Ti
m

e Cycle-accurate O3 CPU w/ cycle-accurate DRAM

DRAM Time
CPU Time

bw
av

es_
r_0

cac
tuB

SS
N_r

de
ep

sje
ng

_r

fot
on

ik3
d_r

gcc
_r_

1
lbm

_r
mcf_

r
na

b_r

ram
_la

t

str
ea

m

x2
64

_r_
2

xa
lan

cbm
k_r

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e 

Si
m

ul
at

io
n 

Ti
m

e Non-cycle-accurate CPU w/ cycle-accurate DRAM
DRAM Time
CPU Time

Figure 1: Simulation time breakdown, CPU vs DRAM. Upper
graph represents cycle-accurate out-of-order CPU model
with cycle-accurate DRAM model. Lower graph represents
modern non cycle-accurate CPU model. The DRAM simula-
tors are the same in both graph.

So, we believe it is time to review cycle accurate DRAM simula-
tion, discuss its limitatiosn, and explore the alternative modeling
techniques.

2 BACKGROUND & RELATED WORK
2.1 DRAMModeling
Each DRAM cell operates like a capacitor: it can be charged, dis-
charged and needs to be periodically refreshed to retain its value.
DRAM cells form rows and columns in a bank that is a basic semi-
independent operational unit, each bank has its sense amplifiers
that amplify signals of DRAM cells for transmission on the external
bus. Like capacitors, these operations on DRAM cells take time to
finish, and thus imposing mandatory timing constraints on DRAM
operations. For example, a READ/WRITE command needs to be
at least tRCD cycles apart from previous row activation command
ACT. Banks share a command and data bus, leading to another layer
of constraints. The DRAM controller has the sole responsibility of
bookkeeping these commands and the constraints to ensure timing
correctness and no bus conflicts. On top of this, to maximize the
performance and fairness, the controller also has the responsibility
of scheduling the requests efficiently. Studies have shown prop-
erly designed scheduling algorithms can lead to huge performance
gain[14]. Therefore, an accurate modeling of a DRAM controller

should take into account of both correctness and scheduling per-
formance.

Before cycle accurate simulators were adopted en masse, re-
searchers used very simplistic models for DRAM simulations. For
example, fixed-latency model assumes all DRAM requests take the
same amount of time to finish, which completely ignores scheduling
and queuing contentions thatmay cause significantly longer latency.
There is also queued models that account for the queuing delay,
but they fail to comply with various DRAM timing constraints and
ignore the scheduling mechanisims that present in real controller
designs. Previous study[18] has shown that such simplistic mod-
els suffer from low accuracy comparing to cycle-accurate DRAM
models.

Then came along cycle accurate DRAM models, such as [3, 6, 8,
16, 21] and DRAMsim3[10]. These cycle-accurate DRAM simulators
usually have validated DRAM timings, and provide non-trivial
scheduling. But as we have shown, they start to negatively impact
the simulation performance.

Other than cycle accurate models, there are also event based
models such as[5, 7]. Event based model is more efficient than cycle-
accurate model when the event or state updates are less frequent
than a cycle-by-cycle basis. To get as much event sparsity as possi-
ble, event based models typically does not enforce all DRAM timing
constraints, or simplify scheduling, which may result in accuracy
or scheduling performance loss. Just as [7] point out, when memory
workloads gets more intensive, the simulation performance of event
based models will eventually come close to cycle-accurate models.
In this study we also tested one event-based DRAM model and its
accuracy is less than ideal comparing to cycle-accurate models.

Finally, there are analytic DRAM models such as [4, 22]. [4]
presents a DRAM timing parameter analysis but does not provide a
simulation model. The model in [22] provides predictions on DRAM
efficiency instead of per-access timing information. These analytic
models provide insights on the timing parameters and high-level
interpretations, but have limited usage comparing to cycle-accurate
models.

2.2 CPU Simulation Techniques
While this work primarily focuses on DRAM simulation and mod-
eling, it is also very important to know about how CPU simulators
have improved over time. Because CPU simulators are usually the
“driver” for DRAM simulators, and DRAM simulators can certainly
take lessons from CPU simulators on how to balance accuracy and
simulation speed.

Traditionally, to achieve simulation fidelity, CPU simulators are
designed to be cycle-accurate, meaning that just like real processors,
the simulator states change cycle by cycle, and during each cycle,
the microarchitecture of CPU (and cache) is faithfully simulated.
Other simulation components such as DRAM simulators or storage
simulators also synchronize with the CPU simulator every cycle.
While simulating all the microarchitecture details achieves good
accuracy, the The downside of this approach is the simulation
speed is very slow, especially when CPUs are getting more and
more cores and deeper cache hierarchy. Simulations can easily take
days sometimes even weeks to finish.

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA



Rethinking Cycle Accurate DRAM Simulation MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

A lot of techniques are explored to accelerate cycle-accurate
simulations, for instance, checkpointing, which saves the simulator
and program state at certain point to a file and allows the simulator
to recover from that checkpoint later with the exact same state.
This is mostly used to skip the warmup period and make sure sim-
ulations start at the same state. Similarly, some CPU simulators use
a simpler, non-cycle-accurate model to fastforward the simulation
to a warmed-up state and then switch to cycle-accurate model for
further simulation.

Some researchers such as [13] take a statistic approach, which
instruments and sample the simulated workload, uses statistic meth-
ods to identify distinctive program segments, and then extract these
distinctive segments for future simulation. The extracted segments,
which are typically called simulation points, can be then simulated
with a cycle-accurate simulator. This way, the simulation time is
cut short by simulating fewer instructions, instead of improving
the simulator itself.

More recently, CPU researchers are moving away from the
strictly cycle-accurate model due to its scalability issues. For exam-
ple, SST, Graphite[11, 15] and Gem5[1] Timing CPU Model employ
One-IPC model, meaning that every instruction is one cycle in the
pipeline. Sniper[2] and ZSim[17] use approximation models for IPC
which allows them to simulate out-of-order pipeline with relatively
faster speed. Another benefit of applying this approximation model
is that CPU cores and caches can be efficiently simulated in parallel,
which allowsmulti-core evenmany-core CPU simulation applicable
with decent scaling efficiency.

3 EMPIRICAL STUDY
In this section we setup our simulation framework to quantitatively
evaluate DRAM models on simulation speed and accuracy. Table 1
shows our simulation setup.

Table 1: Simulation Setup

Core Models Gem5 Timing CPU (IPC=1) 4GHz
Gem5 O3 CPU, 4GHz 8-issue

L1 I-Cache private, 32KB, 4-way associative,
64 Byte cache line, LRU

L1 D-Cache private, 64KB, 4-way associative,
64 Byte cache line, LRU

L2 Cache private, 256KB, 8-way associative,
64 Byte cache line, LRU

L3 Cache shared, MOESI protocol, 2MB,
16-way associative, 64 Byte cache line, LRU

Main Memory DRAMsim3: DDR4-2400, HBM
Event based Model: DDR4-2400, HBM

Benchmarks
A representative subset of SPEC CPU2017
STREAM
LMBench-like latency benchmark (ram_lat )

We choose Gem5 not only because of its reputation in accuracy,
but also because it supports multiple CPU models and DRAM mod-
els and can be easily swapped. This allows us to directly compare
two different models, whether they’re CPU models or DRAM mod-
els, while keeping all other components of the simulation the same.
And therefore we can fairly compare and evaluate different models.

We have two CPU model choices here. First is out-of-order (O3,
or DerivO3) CPU, that faithfully simulate the details of the core
architecture, but only simulate at the rate of tens of thousands
instructions per seconds on the host machine. The other is Timing
CPUmodel, this is an One-IPC coremodel, which does not offer core
microarchitecture simulation, but runs more than 10 times faster
than O3 CPU model. Note we only use this Timing CPU model for
simulation speed experiments, in which case it represents other
CPU simulators runs at similar rate. For all accuracy evaluations,
we use O3 CPU as it is the most accurate and reliable choice we
have.

For DRAM models, we use DRAMsim3 as the representative
of cycle-accurate simulator, because it offers the best simulation
speed, and it is also hardware validated. For event based model,
we choose [5], because it is conveniently integrated into Gem5
and offers similar DRAM protocols to DRAMsim3 that allows us to
directly compare against. The DDR4 configuration in both models
are single channel, dual rank, and has the same timing parameters.
The HBM configuration in both models are 8 channel and 128 bits
wide each.

To test a wide range of memory characteristics, we use a subset of
SPEC CPU2017 benchmarks that are most representative according
to [12]. We also include STREAM , which is very bandwidth sen-
sitive, and ram_lat , an LMBench-like memory benchmark that is
latency sensitive. These benchmarks will show us the full spectrum
of memory characteristics and behaviors.

3.1 Cycle-accurate DRAM Simulation Time
First we experiment how much simulation time is spent in DRAM
simulator versus CPU simulator. The two subgraphs in Figure 1
was obtained by using O3 CPU model and Timing CPU model
respectively and have the same DRAMsim3 HBM backend.

Note that because HBM has 8 channels, and each channel has
an independent DRAM controller, and therefore it takes more time
to simulate HBM than a regular 1 channel DRAM. To quantify how
number of channels affects simulation time, we sweep 1, 2, 4 chan-
nels of DDR4 with Timing CPU and show the absolute simulation
time in Figure 2.

It can be seen that even with only one channel of DDR4, the
cycle-accurate DRAM simulator still accounts for an average 40%
of overall simulation time with a minimum of 30% and a maximum
of 56%. For two channel DDR4, DRAM simulation time ranges from
46% to 69% with an average of 53%. For 4 channels, the min, max
and average number are 62%, 81% and 68% respectively. While these
numbers are produced with a single simulated core, modern CPU
simulators such as [2, 11, 15, 17] can utilize multiple host cores to
simulate multiple simulated cores, making the core simulation time
scalable, therefore we can still conclude that DRAM cycle-accurate
simulation does not scale with regards to number of channels, and
it takes a significant proportion of simulation time even with only
1 DRAM channel.

3.2 ZSim: A Case Study
Besides the poor simulation speed, cycle accurate DRAM simulation
also poses compatibility issues when integrated with modern CPU
simulators or frameworks, especially those that rely on parallel



MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA Shang Li, Rommel Sánchez Verdejo, Petar Radojković, and Bruce Jacob

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4
0

1000

2000

3000

4000

5000

6000

Si
m

ul
at

io
n 

Ti
m

e(
s)

Channels

bw
av

es_
r_0

cac
tuB

SS
N_r

de
ep

sje
ng

_r

fot
on

ik3
d_r

gcc
_r_

1

mcf_
r

na
b_r

ram
_la

t

str
ea

m
x2

64
_r_

2

xa
lan

cbm
k_r

DRAM Time
CPU Time

Figure 2: Absolute simulation time breakdown of Timing
CPU with 1, 2, and 4 channels of cycle-accurate DDR4. The
bottom component of each bar represents the CPU simula-
tion time and the top component is the DRAM simulation
time.

simulation for speed, as cycle accurate model requires synchro-
nization every cycle, which will create huge overhead for parallel
performance. For example, [2, 11] do not include a cycle accurate
main memory backend at all. [17] supports cycle accurate memory
backend, but as we will see soon, it has its issues when integrating
a cycle accurate memory backend.

The problem was first discovered by [20], who observed a mem-
ory latency error of about 20ns when they tested a memory latency
benchmark. But [20] did not answer where this 20nsmissing latency
comes from as was suspecting the error came from the cycle accu-
rate DRAM simulator or the NoC latency that was not modeled. We
will analyze this problem and provide a conclusive answer to this
question. We will also illustrate other “side effects” we discovered
along the way, such as the model incompatibility issue.

To replicate the issue independently, we developed a simplified
version of LMBench(ram_lat we referred in Table 1) that randomly
traverse a huge array, and measure the average latency of each
access. When the array is too large to fit in the cache and most
accesses go to DRAM, the average access latency will include the
DRAM latency. The benchmark inserts timestamps before and af-
ter the memory traversal, and uses them to determine the overall
latency of a certain number of memory requests, and divides the
number of requests to obtain average memory latency. This average
memory latency consists of cache latency and DRAM latency, and
thus we use the term overall latency in the following discussion.

Like [20], we ran this benchmark natively on our machine to
obtain “hardware measured” latency(72ns), then ran it in ZSim
along with DRAMSim2 as DRAM backend, and we were able to
reproduce similar results as [20]. That is, the overall latency (43ns)
is 29ns lower than hardware measurement (72ns). To determine
whether this is a ZSim specific issue or DRAM simulator issue, we
ran the same benchmark in Gem5 with the same cache and DRAM
parameters, and this time, the overall latency is 78ns, much closer to
our hardware measurement. So we conclude this is a ZSim specific
issue not a DRAM simulator issue. We then further looked into the
simulator statistics, and found that the DRAM latency reported by

the DRAM simulator in Gem5 is 55ns, which makes sense as the
overall latency (78ns) should be a combination of DRAM latency
(55ns) and cache latency (23ns). However, in ZSim, the DRAM
latency reported by the DRAM simulator is 73ns, much higher than
overall latency, which makes no sense. Figure 3a visualizes these
results. This again confirms the issue lies within the ZSim memory
model.

Theway ZSimmemorymodel works is, it has two phases of mem-
ory models, the first phase is an fixed latency model that assumes
a fixed “minimum latency” for all memory events. The purpose is
to simulate instructions as fast as possible, and generates a trace
of memory events. After the memory event trace is generated, the
second phase kicks in and that is when the cycle accurate DRAM
simulator actually works, the cycle accurate simulation uses the
event trace as input and update latency timings associated with
these events.

For instance, Figure 3b demonstrates how ZSim memory model
handles memory requests differently from hardware/cycle accurate
models. Suppose there are 3 back-to-back memory requests(each
relies on the completion of previous one). In real hardware or a
cycle accurate model, each memory request’s latency may vary and
next request cannot be issued until the previous request is returned.
In ZSim Phase 1, all requests are assumed to be finished with “min-
imum latency”, and therefore finish earlier than they should. Then
in ZSim Phase 2, cycle accurate simulation is performed, more ac-
curate latency timing is produced by cycle accurate simulator and
all 3 requests update their timings. But even if all memory requests
obtain correct timings in Phase 2, unfortunately, when the simu-
lated program, like our benchmark, has instrumenting instructions
such as reading system clock, it will obtain the timing numbers
during Phase 1, which can be substantially smaller. This is why the
overall latency is much smaller than DRAM latency.

So in other words, the “minimum latency” ZSim parameter will
dictate the latency observed by the simulated program. To verify
this claim, we run the same simulation with different “minimum
latency” parameters, and plot them against the benchmark reported
latency and DRAM simulator reported latency altogether, as in
Figure 4.

It can be seen in Figure 4 that, while we increase the “minimum
latency” parameter, the overall latency pronounced by benchmark
increases correspondingly, while the DRAM simulator reported
latency keeps steady.

The reason that ZSim has to use a two-phase memory model is
that it has to have a memorymodel that can give a latency upon first
sight so that it can generate an event trace during an interval. Only
model that is able to do so is fixed latency model but apparently it
is not accurate enough and cannot handle dynamic contention and
therefore ZSim requires a second, cycle accurate phase to correct the
timings. In addition to this self-instrumenting errors, the broader
issue is during the second phase, the memory requests received by
the memory controller will have an inaccurate inter-arrival timing
produced by Phase 1, which may alter the results of cycle accurate
simulation results. In other words, the inaccuracy in Phase 1 can
lead to further inaccuracy of Phase 2 memory simulation.

The root cause for the convoluted memory model of ZSim, and
other fast simulator that do not support cycle accurate DRAM sim-
ulator is, cycle accurate DRAM simulator is no longer compatible



Rethinking Cycle Accurate DRAM Simulation MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

DRAM Overall DRAM Overall
0

10

20

30

40

50

60

70

80

M
em

or
y 

La
te

nc
y 

(n
s)

55

78
73

43

Gem5 ZSim

Hardware Measured Latency

(a) DRAM latency and overall latency reported by
Gem5 and ZSim.

(Program timing 
instrumented here)Min Latency Min Latency Min Latency

Request 0 Request 1

Request 0
Returned

Request 1
Returned

Request 2
Returned

Request 2

Request 0 Request 1

Request 0
Returned

Request 1
Returned

Request 2
Returned

Request 2

Request 0 Request 1

Request 0
Returned

Request 1
Returned

Request 2
Returned

Request 2

Hardware &
Cycle Accurate

ZSim Phase 1

ZSim Phase 2

Request 0 Latency

Request 1 Latency

Request 2 Latency

CPU to Mem

Mem to CPU

Timeline

(b) ZSim 2-phase memory model timeline diagram compared with real hard-
ware/cycle accurate model. Three back-to-back memory requests (0, 1, 2) are issued
to the memory model.

Figure 3: Simulator memory latency analysis

16 18 20 22 24 26 28
Min Latency (ns)

0

10

20

30

40

50

60

70

M
em

or
y 

La
te

nc
y 

(n
s)

15
20

25 28

39.4 40.5 43.0 45.6

73 73 73 73

Min Latency Overall Latency DRAM Latency

Figure 4: Varying ZSim “minimum latency” parameter
changes the benchmark reported latency, but has little to
none effect on DRAM simulator.

with these fast abstract simulation model, and there are yet no good
alternatives that works with these abstract models.

3.3 Synchronization Overhead
With increasing channel-level parallelism of modern DRAM proto-
cols and the logic independence of each channel, one would natu-
rally think about using multi-threading to simulate these channels
in parallel to speed up the simulation.

We optimize DRAMsim3 for parallel simulation so that there is
no shared writable data structure among each channel simulated
in parallel. We also use no more threads than number of channels
simulated, and use low overhead thread scheduling to minimize
the threading overhead. In our simulations, we use 8-channel HBM

to hopefully have enough channel-level parallelism to start with.
We run the simulation with single thread, 8 threads and 4 threads
and then compare the overall simulation time. The results can be
found in Figure 5.

bw
av

es_
r_0

cac
tuB

SS
N_r

de
ep

sje
ng

_r

fot
on

ik3
d_r

gcc
_r_

1
lbm

_r
mcf_

r
na

b_r

ram
_la

t

str
ea

m

x2
64

_r_
2

xa
lan

cbm
k_r

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Re
la

tiv
e 

Si
m

ul
at

io
n 

Ti
m

e

8T 4T

Figure 5: Relative simulation time for 8-channel multi-
threaded HBM simulation with 8 threads and 4 threads nor-
malized to single thread simulation time.

It can be seen that the multi-thread setups are, in all cases, slower
than single thread version, in some cases it’s even 1.6x slower. The
reason is that the parallel region of the DRAM simulation only
exists in each DRAM cycle, which has a such small granularity the
overhead of doing thread synchronization weighs much more than
the acceleration that can be brought by multi-threading.



MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA Shang Li, Rommel Sánchez Verdejo, Petar Radojković, and Bruce Jacob

Other than the limitation to multi-threading, another aspect of
synchronization problem presents in cycle accurate model is the
integration into other parallel simulation framework such as SST.
As a simulation framework, SST can integrate individual component
simulators (e.g. DRAMSim2) and provide an interface for each
component to communicate with each other. Doing so allows SST
to distribute simulated components to different cores or machines
and simulate them in parallel. The implementation of the wrapper
interface for DRAMSim2, for instance, treats each cycle of DRAM
as an event. This means the simulation framework, when a cycle
accurate DRAM simulator is present, has to synchronize with the
DRAM simulator every single cycle, even if the synchronization
event could be a costly MPI call over the wire. At this point it is
hard to justify running the DRAM simulator in a separate thread
or process in such simulation framework.

4 ALTERNATIVE MODELING TECHNIQUE
In Section 3, we quantitatively signified how cycle accurate models
are holding back simulation performance, and becoming roadblocks
to fit into modern simulation frameworks. In this section, we talk
about alternative modeling techniques to cycle accurate DRAM
simulation and how they may avoid these limitations.

4.1 Event Based DRAMModel
As we stated earlier, even based DRAM models typically offers
better simulation performance than cycle-accurate models. But a
general concern is the accuracy implication. To obtain a comprehen-
sion of event based model accuracy, we compare the event based
DRAM model[5] included in Gem5 with DRAMsim3. Both simula-
tors are integrated into the same Gem5 build so that we can conduct
a fair comparison of same CPU, cache, and benchmark with only
the DRAM model being different. For both DRAM models, we run
all the benchmarks with a DDR4 profile and an HBM profile. The
DDR4/HBM timing parameters are configured to the same in both
DRAMsim3 and the event based model. The CPU model we use to
evaluate accuracy is the Gem5 O3 CPU model, which provides de-
terministic, reproducible results. We use the CPI numbers obtained
by DRAMsim3 backed simulations as baseline, and plot the relative
CPI of event based simulations in percentage, shown in Figure 6.

The CPI difference ranges from 3% to almost 60% across all bench-
marks. In general, less memory-intensive benchmarks tend to have
lower CPI differences. The DDR4 event based model averages a 15%
CPI difference and the HBM event based model averages a 28% CPI
difference from their cycle accurate counterparts. While we cannot
conclusively say the difference in CPI translates to inaccuracy as
the event based model implements different scheduling policy for
the controller, the CPI difference is way higher than those between
cycle accurate models. So even though event based model can be
several times faster than cycle accurate models, one has to make
sure the accuracy is acceptable for the kind of workload he or she
wants to simulate.

4.2 Separating Interface with Implementation
While cycle accurate model provides excellent accuracy, the in-
terface of a cycle accurate simulator does not have to be cycle by

bw
av

es_
r_0

cac
tuB

SS
N_r

de
ep

sje
ng

_r

fot
on

ik3
d_r

gcc
_r_

1
lbm

_r
mcf_

r
na

b_r

ram
_la

t

str
ea

m

x2
64

_r_
2

xa
lan

cbm
k_r

benchmark

0

10

20

30

40

50

60

CP
I D

iff

DDR4-EV HBM-EV

Figure 6: CPI differences of an event basedmodel in percent-
age comparing to its cycle-accurate counterpart. DDR4 and
HBM protocols are evaluated.

cycle based, and hence the concept of separating interface with
implementation.

Separating the interface with the cycle accurate core can address
a lot of the limitations discussed in Section 3. For example, when
running the DRAM simulator along with another CPU simulator,
wemay be able to afford to run the DRAM simulator with a different
thread on a different core because if the DRAM simulator does not
have to synchronize with the CPU simulator so frequently, then
running them concurrently can potentially be beneficial to the
simulation performance.

The challenge here is how to implement the non-cycle-accurate
interface. One simple but effective approach, as shown in [9], is to
use a relax synchronization mechanism, which is to synchronize the
CPU with DRAM simulator every few cycles instead of every cycle.
Essentially this provides the CPU simulator a slower interface than
the cycle accurate DRAM simulator. As shown in [9], synchronizing
every 8 DRAM cycles will only have an average of less than 1%
of accuracy loss in terms of CPI, but can speed up the simulation
by 40% on average when the cycle accurate backend is running in
parallel.

A more complicated approach would be an event based, or dy-
namic synchronization interface. That is, the DRAM and CPU sim-
ulator have to agree on the next synchronization point before they
resume their own simulation. The challenge here is to develop the
method that determines the next synchronization point: the next
synchronization point, ideally, should be far enough so that it com-
pensates the synchronization overhead, but not too far for either
simulator to enter a irreversible state that causes unacceptable in-
accuracy in simulations. For example, a irreversible state change
could mean DRAM opening or closing a page, and say if there is a
memory request from CPU that is supposed to be a page hit, but
because the DRAM and the CPU did not synchronize before the
DRAM controller decides to close that page, then that memory
request will become a page miss, and thus producing more latency



Rethinking Cycle Accurate DRAM Simulation MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

than it should be. It also means the implementation of the DRAM
simulator may need to be able to “fast forward” some requests to
compensate the the delay these requests suffered when they were
waiting for the synchronization on the CPU side.

4.3 Statistical Models
Different from analytic models that provide a high level analysis
we discussed in Section 2.1 the statistical models here means to
provide a on-the-fly DRAM timing per request based on a “trained”
statistical or machine learning model.

The foundation of why such a statistical model would work on
DRAM is that:

• DRAM banks only have a finite number of states.
• The timing of each DRAM request has already been largely
dictated by the DRAM states when it arrives at the controller.

• Our observation shows most DRAM request latency fall into
very few latency buckets, indicating it is likely the result of
previous two points.

And we will explain/verify each of the claim one by one as follow-
ing.

DRAM banks only have a finite number of states: a DRAM
bank can be modeled as a state machine, it can be in idle, open,
refreshing, or low power states. Although there are typically thou-
sands of rows that can be opened or closed, what matters to a
specific request to a bank is whether the row of that request is open
or not, so it will reduce to 2 states in this regard. Similarly while
there can be multiple banks in a rank and even multiple ranks in a
channel, but for each request there is only a subset of these states
that really matter to the timing of that request. Also, the queuing
status when a new request arrives can also be accounted as states.

The timing of eachDRAMrequest has already been largely
dictated by theDRAMstateswhen it arrives at the controller:
intuitively speaking, when a request arrives at the DRAM controller,
there are very limited actions for the controller can take. It either A)
process this request, whether it’s because it gets prioritized by the
scheduler, or just because there is no other requests to be processed
at the time, or B) hold the request whether it’s because there are con-
tention other events are happening such as the current rank/bank
is refreshing. Most of the scenarios here can be represented as a
“state” like we previously discussed.

Our observation shows most DRAM request latency fall
into very few latency buckets, meaning that they are likely
to be predictable: we plot the memory latency distribution of the
12 benchmarks we tested as Figure 7. We clip each histogram at
the 99 percentile latency point for better visual. It can be seen that
although every benchmark has a long tail latency that stretches to
over 400 cycles (likely the results of having to wait for a refresh
which is 420 cycles in this case), the 90-percentile line and the
distribution itself indicates most of the memory latency are limited
to quite a few latency buckets. Note that we are not claiming these
few latency buckets translate to only a few unique latency values: in
most cases, each bucket represents 10 cycles; there are also requests
that are have low-count latency values, they are not obvious on the
plots but are certainly there.

This distribution fits into a statistical or machine learning model
very well: the majority of the cases are predictable while the corner

cases are there to optimize. With a statistical or machine learning
model, while we cannot handle 100% of the requests accurately
like a cycle accurate simulator, but if we can accurately predict,
say 90% of the requests at the cost of a fraction of simulation time,
then the trade-off may be worth the accuracy loss, especially for
CPU and cache researchers who only need a “accurate enough” but
preferably much faster memory model.

There are early efforts such as [19] that tries to build memory
controller models around the same idea. [19] treats the targeted
memory controller as a “black box”, and by observing and modeling
the distribution of the memory latency, a statistical model can be
built to simulate the targeted memory controller. However, [19]
is not designed as an architecture simulator, and is not evaluated
as such. We still need more concrete proof-of-concepts for the
statistical idea.

5 CONCLUSION
In this study we empirically discussed the limitations of cycle accu-
rate DRAM simulation models. We showed that while still being the
most accurate model, cycle accurate DRAM models cannot keep up
with the trend of architecture simulator development in terms of
simulation performance and model compatibility. We further com-
pared and explored other modeling techniques that are promising
alternatives to cycle accurate models.

REFERENCES
[1] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH Computer Architecture
News 39, 2 (2011), 1–7.

[2] Trevor E Carlson, Wim Heirmant, and Lieven Eeckhout. 2011. Sniper: Exploring
the level of abstraction for scalable and accurate parallel multi-core simulation.
In SC’11: Proceedings of 2011 International Conference for High Performance Com-
puting, Networking, Storage and Analysis. IEEE, 1–12.

[3] Niladrish Chatterjee, Rajeev Balasubramonian, Manjunath Shevgoor, Seth Pugs-
ley, Aniruddha Udipi, Ali Shafiee, Kshitij Sudan, Manu Awasthi, and Zeshan
Chishti. 2012. Usimm: the utah simulated memory module. University of Utah,
Tech. Rep (2012).

[4] Hyojin Choi, Jongbok Lee, and Wonyong Sung. 2011. Memory access pattern-
aware DRAM performance model for multi-core systems. In (IEEE ISPASS) IEEE
International Symposium on Performance Analysis of Systems and Software. IEEE,
66–75.

[5] Andreas Hansson, Neha Agarwal, Aasheesh Kolli, Thomas Wenisch, and Anirud-
dha N Udipi. 2014. Simulating DRAM controllers for future system architecture
exploration. In 2014 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 201–210.

[6] Min Kyu Jeong, Doe Hyun Yoon, and Mattan Erez. 2012. DrSim: A plat-
form for flexible DRAM system research. Accessed in: http://lph. ece. utexas.
edu/public/DrSim (2012).

[7] Matthias Jung, Christian Weis, Norbert Wehn, and Karthik Chandrasekar. 2013.
TLM modelling of 3D stacked wide I/O DRAM subsystems: a virtual platform for
memory controller design space exploration. In Proceedings of the 2013 Workshop
on Rapid Simulation and Performance Evaluation: Methods and Tools. ACM, 5.

[8] Yoongu Kim, Weikun Yang, and Onur Mutlu. 2015. Ramulator: A fast and exten-
sible DRAM simulator. IEEE Computer architecture letters 15, 1 (2015), 45–49.

[9] Shang Li. 2019. Scalable and Accurate Memory System Simulations. Ph.D. Disser-
tation. University of Maryland, College Park.

[10] Shang Li, Zhiyuan Yang, Dhiraj Reddy, Ankur Srivastava, and Bruce Jacob. 2019.
DRAMsim3: A Cycle-accurate, thermal capable memory system simulator. IEEE
Computer Architecture Letters (2019).

[11] Jason E Miller, Harshad Kasture, George Kurian, Charles Gruenwald, Nathan
Beckmann, Christopher Celio, Jonathan Eastep, and Anant Agarwal. 2010.
Graphite: A distributed parallel simulator for multicores. In HPCA-16 2010 The
Sixteenth International Symposium on High-Performance Computer Architecture.
IEEE, 1–12.

[12] Reena Panda, Shuang Song, Joseph Dean, and Lizy K John. 2018. Wait of a decade:
Did spec cpu 2017 broaden the performance horizon?. In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 271–282.



MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA Shang Li, Rommel Sánchez Verdejo, Petar Radojković, and Bruce Jacob

100 200 300
Cycles

0.00

0.01

0.02

0.03

0.04

De
ns

ity

bwaves_r_0
Average:46.0
90 Percentile:56.0

100 200 300 400
Cycles

0.00

0.01

0.02

0.03

0.04

0.05

0.06

De
ns

ity

cactuBSSN_r
Average:49.2
90 Percentile:56.0

0 100 200 300 400
Cycles

0.00

0.01

0.02

0.03

0.04

De
ns

ity

deepsjeng_r
Average:44.0
90 Percentile:39.0

100 200 300 400
Cycles

0.00

0.01

0.02

0.03

0.04

0.05

0.06

De
ns

ity

fotonik3d_r
Average:54.5
90 Percentile:39.0

100 200 300 400
Cycles

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

De
ns

ity

gcc_r_1
Average:45.7
90 Percentile:56.0

100 200 300 400
Cycles

0.00

0.01

0.02

0.03

0.04

De
ns

ity
lbm_r

Average:49.4
90 Percentile:56.0

0 100 200 300 400
Cycles

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

De
ns

ity

mcf_r
Average:34.0
90 Percentile:56.0

100 200 300 400
Cycles

0.00

0.01

0.02

0.03

0.04

0.05

0.06

De
ns

ity

nab_r
Average:34.4
90 Percentile:56.0

0 100 200 300 400
Cycles

0.00

0.01

0.02

0.03

0.04

0.05

De
ns

ity

ram_lat
Average:58.6
90 Percentile:56.0

100 200 300
Cycles

0.00

0.02

0.04

0.06

0.08

0.10

De
ns

ity

stream
Average:30.4
90 Percentile:22.0

0 100 200 300 400
Cycles

0.00

0.01

0.02

0.03

0.04

0.05

0.06

De
ns

ity

x264_r_2
Average:37.2
90 Percentile:56.0

100 200 300 400
Cycles

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035

De
ns

ity

xalancbmk_r
Average:43.0
90 Percentile:56.0

Figure 7: Latency density histogram for each benchmark obtained by Gem5 O3 CPU and 1-channel DDR4 DRAM. X-axis of
each graph is cut off at 99 percentile latency point, the average and 90-percentile point aremarked in each graph for reference.

[13] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood, and
Brad Calder. 2003. Using SimPoint for accurate and efficient simulation. In ACM
SIGMETRICS Performance Evaluation Review, Vol. 31. ACM, 318–319.

[14] Scott Rixner, William J Dally, Ujval J Kapasi, Peter Mattson, and John D Owens.
2000. Memory access scheduling. In ACM SIGARCH Computer Architecture News,
Vol. 28. ACM, 128–138.

[15] Arun F Rodrigues, K Scott Hemmert, Brian W Barrett, Chad Kersey, Ron Oldfield,
Marlo Weston, Rolf Risen, Jeanine Cook, Paul Rosenfeld, E CooperBalls, et al.
2011. The structural simulation toolkit. SIGMETRICS Performance Evaluation
Review 38, 4 (2011), 37–42.

[16] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. 2011. DRAMSim2: A cycle
accurate memory system simulator. IEEE Computer Architecture Letters 10, 1
(2011), 16–19.

[17] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and accurate microar-
chitectural simulation of thousand-core systems. In ACM SIGARCH Computer
architecture news, Vol. 41. ACM, 475–486.

[18] Sadagopan Srinivasan, Li Zhao, Brinda Ganesh, Bruce Jacob, Mike Espig, and Ravi
Iyer. 2009. CMP memory modeling: How much does accuracy matter? (2009).

[19] Vladimir Todorov, Daniel Mueller-Gritschneder, Helmut Reinig, and Ulf Schlicht-
mann. 2012. Automated construction of a cycle-approximate transaction level
model of a memory controller. In Proceedings of the Conference on Design, Au-
tomation and Test in Europe. EDA Consortium, 1066–1071.

[20] Rommel Sánchez Verdejo, Kazi Asifuzzaman, Milan Radulovic, Petar Radojković,
Eduard Ayguadé, and Bruce Jacob. 2018. Main memory latency simulation: the
missing link. In Proceedings of the International Symposium on Memory Systems.
ACM, 107–116.

[21] David Wang, Brinda Ganesh, Nuengwong Tuaycharoen, Kathleen Baynes, Aamer
Jaleel, and Bruce Jacob. 2005. DRAMsim: a memory system simulator. ACM
SIGARCH Computer Architecture News 33, 4 (2005), 100–107.

[22] George L Yuan, Tor M Aamodt, et al. 2009. A hybrid analytical DRAM perfor-
mance model. In Proc. 5th Workshop on Modeling, Benchmarking and Simulation.


	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 DRAM Modeling
	2.2 CPU Simulation Techniques

	3 Empirical Study
	3.1 Cycle-accurate DRAM Simulation Time
	3.2 ZSim: A Case Study
	3.3 Synchronization Overhead

	4 Alternative Modeling Technique
	4.1 Event Based DRAM Model
	4.2 Separating Interface with Implementation
	4.3 Statistical Models

	5 Conclusion
	References



