
1

COLLECTIVE SELF-LEARNING BY
EXCHANGING ML MODELS

Marc Ruiz1, Fabien Boitier2, Patricia Layec2, and Luis Velasco1*

1 Universitat Politècnica de Catalunya, Barcelona, Spain
2 Nokia Bell Labs, Nozay, France

* lvelasco@ac.upc.edu

Keywords: SELF-LEARNING, MACHINE LEARNING, AUTONOMIC TRANSMISSION

Abstract

Collective self-learning based on Machine Learning (ML) model sharing and combination is proposed to accelerate ML-based
algorithm deployment. The considered architecture is presented, together with different alternatives for combining ML models.
Performance analysis is carried out on an illustrative use case for autonomic optical transmission.

1. Introduction

Autonomic operation of optical transmission and networking
requires from algorithms relying on Machine Learning (ML)
models [1]. Those ML models have to be trained with datasets
covering the whole features space to produce accurate ML
models. However, the availability of enough data is rarely
ensured, and ML training could be carried out with datasets
partially covering the features space, hence reducing ML
models accuracy. To facilitate ML deployment, in our
previous paper in [2], we proposed to initially populate
datasets for ML training and, once ML models are generated,
ML retraining can be carried out to improve their precision
once inaccuracies are detected. In this regard, the concept of
collective self-learning was introduced, where agents running
on top of every transmission and networking device, spread
knowledge among them to speed-up the learning curve. ML
models are initially trained with reduced datasets; data samples
not yet considered (detected as model inaccuracies by the
agents) are used to augment training datasets to consider those
patterns. Those data samples are shared by the detecting agent
for either centralized or distributed ML retraining thus,
improving ML model accuracy. It was demonstrated that
collaborative self-learning outperforms individual strategies.
However, because the size of training dataset might be large to
reach high-accuracy and robustness, collaborative self-
learning increases both data to be exchanged among agents, as
well as those stored in the nodes.
Aiming at improving data-based collective self-learning, in
this paper, we present an alternative strategy based on sharing
and combining ML models instead of data; as ML models
consist of a set of parameters of moderate size compared to the
size of training datasets and capture knowledge behind them,
the amount of data to be shared/exchanged can be remarkably
reduced. Note that this might be at the cost of adding
complexity in the subsequent ML model combination process.

2. Collective Self-Learning

We propose the architecture in Fig. 1 to enable model-based
collective self-learning based on model sharing and

combination. This architecture allows a wide range of ML
model combination alternatives commonly used in computer
science [3].
We assume that the devices are able to measure several
performance parameters and generate monitoring data [4].
Then, ML algorithms can be trained using such data; we can
consider that the ML model training process can be executed
either in the node agent or in the controller and once trained,
ML models can be deployed to the device agents. Under some
specific conditions, ML models can be shared with other
agents and those models can be used together with the initial
ML models aiming at increasing their accuracy; alternative
approaches on how ML models are combined are presented in
Section 3. ML models are key components of self-
configuration processes. In particular, we can assume that such
autonomous process might consist of a set of ML problems
generating different outputs to a decision maker module that
finds the best configuration for the underlying device. Any ML
problem might require a specific procedure to combine several
ML models and being able to generate their outputs. We can
assume that the combination process can take place either in
the node agent/controller or inside the device agent, as part of
the algorithm capabilities [5].

problem n

ML Training

Single device
Data repo

Device Agent

problem 1

ML models
for specific
problems

Algori
thm

Decision
Maker

Algori
thm

Output
(e.g., prediction)

M
L m

od
el

s

Device

Config

Node Agent /
Controller

Monitoring
data

ML Model
Sharing

Fig. 1 Architecture for model-based collective self-learning

 F1-4457538-[ECOC]_Collective_Self-Learning_by_Exchanging_ML_Models

This paper is a postprint of a paper submitted to and accepted for publication in ECOC 2019: 45th European Conference on Optical
Communications: proceedings: Dublin, Ireland: 23-26 September, 2019 and is subject to Institution of Engineering and Technology
Copyright. The copy of record is available at the IET Digital Library. DOI 10.1049/cp.2019.0985

2

Receiver
Configuration
∈ {‘low’,’med’,

‘high’}

θi, πi θj, π j
ML

Training

θ1, π 1

θn, π n

θj, π j

…

Node Agent / Controller

Device Agent

E
n
s
e
m
b
l
e

y1, π1

yn, πn

yj, πj

y

a) Model Ensemble

X

P(BER thr
violation)

[t, t+δ]
∈ [0,1]

θi, π i θj, π j
ML

Training

Node Agent / Controller

Device Agent

y

b) Model Merge

X
θ

θ

SOP,
BER

evolution
[t-w, t-1]

∈ ℝ

BER [t+δ]
∈ ℝ

θi, π i θj, π j
ML

Training

Node Agent / Controller

Device Agent

y

c) Retraining with re-synthesis

X
θ

θ

SOP,
BER

evolution
[t-w, t-1]

∈ ℝ

Data
Re-synthesis

ML
Training

Merge Data

SOP,
BER

evolution
[t-w, t-1]

∈ ℝ

Fig. 2 ML model combination options: a) model ensemble, b) model merge, and c) model retraining.
To illustrate the co-existence of several ML algorithms
working together, let us focus on a use case derived from our
previous work presented in [2] under scenarios where low-
resolution Analog-to-Digital converters are used [6].
Specifically, the evolution of the State-of-Polarization (SOP)
(the Stoke parameters) and the pre- Forward Error Correction
(FEC) Bit Error Rate (BER) in the last w time units are used
for both dynamic receiver configuration and pre-FEC BER
degradation anticipation in the next δ time units; three different
ML-based problems need to be continuously solved:
1) a regression model that estimates future pre-FEC BER;
2) a probabilistic estimator of the chance of violating a given

pre-FEC BER threshold;
3) a classifier to determine the proper configuration of the

receiver based on the predicted class, e.g., the number of
iterations of soft-decision FEC [7] to run.

3. Model combination

In this section, we will focus on three different options for
model combination (see Fig. 2) that can be applied depending
on the ML technique used; we consider three ML techniques
Artificial Neural Networks (ANN), Support Vector Machines
(SVM), and Decision Trees (DT).
For generalization purposes, let us assume that a ML model is
characterized by a set of parameters ϑ (including the
coefficients of the trained model, e.g., weights of an ANN).
The model receives a set of input features X (SOP, pre-FEC
BER evolution [t-w, t-1]) and returns the estimation of the
response variable y, which can be either numerical (regression
model) or categorical (classification model). Each trained ML
model is shared along with additional meta-data π, which
contains some relevant inputs required for model combination.
The first combination option, called model ensemble (Fig. 2a),
consists in combining the prediction of several individual ML
models by means of a procedure that returns one single output.
Several alternatives can be considered for this procedure, e.g.,
a weighted average of the individual responses. The meta-data
of a ML model can include the weight that need to be applied
to its predictions and/or the features range observed during
model training, just to mention a few.
Model ensemble is the option requiring less computational
effort to apply collective self-learning, while only small
additional storage capacity is required in the device for
individual ML model’s persistency. Moreover, it can be

applied to any ML technique and even different type of ML
models could be combined. On the other hand, the definition
of the ensemble procedure and the weights are crucial for the
sake of producing good quality predictions. In our use case, we
will apply this methodology for the local receiver
configuration classifier; note that in this problem, the
individual ML models can be seen as weak classifiers that are
combined into a strong (accurate) classifier.
The second model combination option consists in merging
individual ML models with the aim of obtaining a single
enhanced model that is used in the device agent as a single
predictor (Fig. 2b). Parameters of the enhanced model are
modified by the merging procedure as soon as a new individual
model is available. This methodology can provide potential
benefits for those cases where model parameters can be
partially updated without affecting the robustness and
accuracy of the non-updated part. In our case, we will use
model merging in the probabilistic pre-FEC BER threshold
violation estimator that it is based on a DT. In the event of a
new individual model capturing a previously un-observed
pattern, the merging procedure can enhance the ML model in
several ways, e.g., updating probabilities of leaf nodes and/or
extending a new sub-tree (branching) from a leaf node.
Finally, the third model combination option consists in
generating the response from the shared individual ML models
in the given features range to obtain a synthetic training dataset
from which a new ML model is trained (Fig. 2c). The local
data re-synthesis from ML models avoids exchanging large
amounts of monitored data among nodes and/or to the
controller. Note that some of the shared models and/or part of
the synthetic data could need to be kept for future retraining
cycles. In our case, we will use retraining with data re-
synthesis for the ANN-based pre-FEC BER estimator.

4. Illustrative results

For performance evaluation purposes, we configured a four-
node setup where optical nodes consist of one single optical
receiver. Both the node agent and the device agent were
implemented in Python 3.0 and multiple configurations were
enabled to reproduce different collective self-learning options.
For comparison purposes, individual self-learning, where
generated knowledge is used for training and updating only the
ML models of the local device, was also implemented.
Emulated receivers generate synthetic monitoring samples at a

 F1-4457538-[ECOC]_Collective_Self-Learning_by_Exchanging_ML_Models

 F1-4457538-[ECOC]_Collective_Self-Learning_by_Exchanging_ML_Models

3

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Individual
Model-based Collective
Data-based Collective

N
or

m
al

iz
ed

 E
rr

or

Normalized Time Normalized Time Normalized Time

a) Model Ensemble b) Model Merge c) Retraining with
re-synthesis

Fig. 3 Normalized prediction error vs time

rate of 278 µs (3600 samples/s). Each sample consists of: i)
time stamp, ii) the values of the three Stokes parameters, and
iii) a pre-FEC BER measurement. Based on the experimental
measurements carried out in [2], realistic fiber stressing events
causing correlated SOP and pre-FEC BER fluctuations were
randomly generated. Regardless of the model combination
option and ML problem, each ML model in the device was
initially trained with 5000 samples collected from the same
device. Once initial models were available, operation was
emulated by sequentially generating samples, comparing the
predicted response with the real one observed and, in the case
of detecting inaccuracies, storing the meaningful data for
further model improvement. With a given periodicity, e.g.,
every hour, detected inaccuracies are used to train one or more
specific ML models, which are shared for model combination.
For the receiver configuration classifier, we considered SVMs
with 5th-degree polynomial kernels. Here, the high
misclassification cost leads to consider diverse ML models and
use the model ensemble option, where the number of training
samples is used for weighting the combined response. For the
probabilistic BER threshold violation anticipation, we
considered a DT where the topology of the trees was pre-
defined. Here, the merge option consisted in updating all the
numerical parameters in the tree nodes by weighted averaging
based on node size. Finally, for pre-FEC BER forecasting,
ANNs were considered and configured with 90 inputs (i.e., last
30 values of each Stokes parameter) and 45 hidden neurons.
Here, data re-synthesis was adopted, where every model was
used for data re-synthesis only in the observed range of the
input features; such information is shared as meta-data.
Fig. 3 shows the evolution of prediction error against the
emulated operation time. For convenience, prediction error
was normalized to the error of the initial trained models of the
individual self-learning approach, whereas time was
normalized to the time where the most accurate approach
reached negligible error (<0.5%). As it can be observed,
model-based collective self-learning provides an excellent
performance in terms of convergence time as it clearly over-
performs the individual approach and gets noticeably close to
that of the data-based collective one for all the considered
problems. The exception is during the early stage of operation
in the case of data re-synthesis; note that as models were
trained with a small data set, data synthetized from them would
easily diverge from the real data, even though they are
generated in the observed range. In view of this, we suggest
start sharing ML models for data re-synthesis once they
provide moderated accuracy.
We have demonstrated that collective self-learning performs

1E-1

1E+0

1E+1

1E+2

0.0 0.2 0.4 0.6 0.8 1.0

Ensemble
Merge
Re-synthesis

Ensemble Merge Re-synthesis
Data-based 0.22 MB 0.20 MB 1.51 MB

Model-based 2.3 KB 5.5 KB 21 KB

D
at

a
ex

ch
an

ge
 ra

tio

Normalized Time
Fig. 4 Data exchanged comparison.

similarly regardless of sharing data or ML models. The main
benefit of model-based collective self-learning compared to
the data-based one is presented in Fig. 4, where the data
exchange ratio is plotted in logarithmic scale as a function of
time; the ratio is computed as the amount of data exchanged
under the data-based approach (i.e., ML training data) over the
amount of data exchanged under the model-based one (i.e.,
model parameters and meta-data). As it can be observed, the
model-based approach requires far less data exchange during
the operation time needed to converge to accurate models
(normalized error <1%). Once reached such accuracy, the
data-based approach can be used to reduce even more
exchanged data. The embedded table provides absolute
numbers of the estimated size of an example data exchange
during the very first stage of operation of a single device. By
scaling these figures to a deployment with hundreds of devices
exchanging data, one can realize that the model-based
collective self-learning approach reduces the requirements of
the control plane communication network.

5. Conclusions

Collective self-learning based on ML model sharing have been
proposed and different model combination options have been
explored (ensemble, merge, and re-training with data re-
synthesis). A use case for autonomic transmission have been
used for evaluation purposes, showing that they reach similar
performance with much better scalability than a collective
approach based on training data sharing.

6. Acknowledgements
The research leading to these results has received funding from
the AEI/FEDER TWINS project (TEC2017-90097-R), from
the EC METRO-HAUL project (G.A. nº 761727), and from
the Catalan ICREA Institution.

 F1-4457538-[ECOC]_Collective_Self-Learning_by_Exchanging_ML_Models

 F1-4457538-[ECOC]_Collective_Self-Learning_by_Exchanging_ML_Models

4

7. References
[1] D. Rafique and L. Velasco: ‘Machine Learning for

Network Automation: Overview, Architecture, and
Applications,’ IEEE/OSA Journal of Optical
Communications and Networking (JOCN), 2018, 10,
(10), pp. D126-D143.

[2] L. Velasco, B. Shariati, F. Boitier, P. Layec, and M. Ruiz:
‘A Learning Life-Cycle to Speed-up Autonomic Optical
Transmission and Networking Adoption,’ IEEE/OSA
Journal of Optical Communications and Networking
(JOCN), 2019, 11, (5), pp. 226-237.

[3] Bishop, C.: ‘Combining Models’, in Bishop, C.: ‘Pattern
Recognition and Machine Learning’ (Springer Verlag,
2006, 1st edn.), pp. 653-676.

[4] N. Sambo, A. Giorgetti, F. Cugini, P. Castoldi: ‘Sliceable
transponders: pre-programmed OAM, control, and
management,’ IEEE/OSA Journal of Lightwave
Technology (JLT), 2018, 36, (7), pp. 1403-1410.

[5] L. Velasco et al: ‘"Building Autonomic Optical Whitebox-
Based Networks,’ IEEE/OSA Journal of Lightwave
Technology (JLT), 2018, 36, (15), pp. 3097-3104.

[6] X. Chen, S. Chandrasekhar, S. Randel, W. Gu, and P.
Winzer: ‘Experimental Quantification of Implementation
Penalties from Limited ADC Resolution for Nyquist
Shaped Higher-Order QAM,’ Proc. Optical Fiber
Communications Conference (OFC), Anaheim, CA,
2016.

[7] C. Dorize, O. Rival, and C. Costantini: ‘Power scaling of
LDPC decoder stage in long haul networks,’ Proc.
International Conference on Photonics in Switching (PS),
Ajaccio, France, 2012.

 F1-4457538-[ECOC]_Collective_Self-Learning_by_Exchanging_ML_Models

 F1-4457538-[ECOC]_Collective_Self-Learning_by_Exchanging_ML_Models

