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Abstract 

Collective self-learning based on Machine Learning (ML) model sharing and combination is proposed to accelerate ML-based 
algorithm deployment. The considered architecture is presented, together with different alternatives for combining ML models. 
Performance analysis is carried out on an illustrative use case for autonomic optical transmission. 

1. Introduction

Autonomic operation of optical transmission and networking 
requires from algorithms relying on Machine Learning (ML) 
models [1]. Those ML models have to be trained with datasets 
covering the whole features space to produce accurate ML 
models. However, the availability of enough data is rarely 
ensured, and ML training could be carried out with datasets 
partially covering the features space, hence reducing ML 
models accuracy. To facilitate ML deployment, in our 
previous paper in [2], we proposed to initially populate 
datasets for ML training and, once ML models are generated, 
ML retraining can be carried out to improve their precision 
once inaccuracies are detected. In this regard, the concept of 
collective self-learning was introduced, where agents running 
on top of every transmission and networking device, spread 
knowledge among them to speed-up the learning curve. ML 
models are initially trained with reduced datasets; data samples 
not yet considered (detected as model inaccuracies by the 
agents) are used to augment training datasets to consider those 
patterns. Those data samples are shared by the detecting agent 
for either centralized or distributed ML retraining thus, 
improving ML model accuracy. It was demonstrated that 
collaborative self-learning outperforms individual strategies. 
However, because the size of training dataset might be large to 
reach high-accuracy and robustness, collaborative self-
learning increases both data to be exchanged among agents, as 
well as those stored in the nodes. 
Aiming at improving data-based collective self-learning, in 
this paper, we present an alternative strategy based on sharing 
and combining ML models instead of data; as ML models 
consist of a set of parameters of moderate size compared to the 
size of training datasets and capture knowledge behind them, 
the amount of data to be shared/exchanged can be remarkably 
reduced. Note that this might be at the cost of adding 
complexity in the subsequent ML model combination process. 

2. Collective Self-Learning

We propose the architecture in Fig. 1 to enable model-based 
collective self-learning based on model sharing and 

combination. This architecture allows a wide range of ML 
model combination alternatives commonly used in computer 
science [3]. 
We assume that the devices are able to measure several 
performance parameters and generate monitoring data [4]. 
Then, ML algorithms can be trained using such data; we can 
consider that the ML model training process can be executed 
either in the node agent or in the controller and once trained, 
ML models can be deployed to the device agents. Under some 
specific conditions, ML models can be shared with other 
agents and those models can be used together with the initial 
ML models aiming at increasing their accuracy; alternative 
approaches on how ML models are combined are presented in 
Section 3. ML models are key components of self-
configuration processes. In particular, we can assume that such 
autonomous process might consist of a set of ML problems 
generating different outputs to a decision maker module that 
finds the best configuration for the underlying device. Any ML 
problem might require a specific procedure to combine several 
ML models and being able to generate their outputs. We can 
assume that the combination process can take place either in 
the node agent/controller or inside the device agent, as part of 
the algorithm capabilities [5]. 
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Fig. 1 Architecture for model-based collective self-learning 
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Fig. 2 ML model combination options: a) model ensemble, b) model merge, and c) model retraining. 
To illustrate the co-existence of several ML algorithms 
working together, let us focus on a use case derived from our 
previous work presented in [2] under scenarios where low-
resolution Analog-to-Digital converters are used [6]. 
Specifically, the evolution of the State-of-Polarization (SOP) 
(the Stoke parameters) and the pre- Forward Error Correction 
(FEC) Bit Error Rate (BER) in the last w time units are used 
for both dynamic receiver configuration and pre-FEC BER 
degradation anticipation in the next δ time units; three different 
ML-based problems need to be continuously solved: 
1) a regression model that estimates future pre-FEC BER; 
2) a probabilistic estimator of the chance of violating a given 

pre-FEC BER threshold; 
3) a classifier to determine the proper configuration of the 

receiver based on the predicted class, e.g., the number of 
iterations of soft-decision FEC [7] to run. 

3. Model combination 

In this section, we will focus on three different options for 
model combination (see Fig. 2) that can be applied depending 
on the ML technique used; we consider three ML techniques 
Artificial Neural Networks (ANN), Support Vector Machines 
(SVM), and Decision Trees (DT).  
For generalization purposes, let us assume that a ML model is 
characterized by a set of parameters ϑ (including the 
coefficients of the trained model, e.g., weights of an ANN). 
The model receives a set of input features X (SOP, pre-FEC 
BER evolution [t-w, t-1]) and returns the estimation of the 
response variable y, which can be either numerical (regression 
model) or categorical (classification model). Each trained ML 
model is shared along with additional meta-data π, which 
contains some relevant inputs required for model combination. 
The first combination option, called model ensemble (Fig. 2a), 
consists in combining the prediction of several individual ML 
models by means of a procedure that returns one single output. 
Several alternatives can be considered for this procedure, e.g., 
a weighted average of the individual responses. The meta-data 
of a ML model can include the weight that need to be applied 
to its predictions and/or the features range observed during 
model training, just to mention a few. 
Model ensemble is the option requiring less computational 
effort to apply collective self-learning, while only small 
additional storage capacity is required in the device for 
individual ML model’s persistency. Moreover, it can be 

applied to any ML technique and even different type of ML 
models could be combined. On the other hand, the definition 
of the ensemble procedure and the weights are crucial for the 
sake of producing good quality predictions. In our use case, we 
will apply this methodology for the local receiver 
configuration classifier; note that in this problem, the 
individual ML models can be seen as weak classifiers that are 
combined into a strong (accurate) classifier. 
The second model combination option consists in merging 
individual ML models with the aim of obtaining a single 
enhanced model that is used in the device agent as a single 
predictor (Fig. 2b). Parameters of the enhanced model are 
modified by the merging procedure as soon as a new individual 
model is available. This methodology can provide potential 
benefits for those cases where model parameters can be 
partially updated without affecting the robustness and 
accuracy of the non-updated part. In our case, we will use 
model merging in the probabilistic pre-FEC BER threshold 
violation estimator that it is based on a DT. In the event of a 
new individual model capturing a previously un-observed 
pattern, the merging procedure can enhance the ML model in 
several ways, e.g., updating probabilities of leaf nodes and/or 
extending a new sub-tree (branching) from a leaf node. 
Finally, the third model combination option consists in 
generating the response from the shared individual ML models 
in the given features range to obtain a synthetic training dataset 
from which a new ML model is trained (Fig. 2c). The local 
data re-synthesis from ML models avoids exchanging large 
amounts of monitored data among nodes and/or to the 
controller. Note that some of the shared models and/or part of 
the synthetic data could need to be kept for future retraining 
cycles. In our case, we will use retraining with data re-
synthesis for the ANN-based pre-FEC BER estimator. 

4. Illustrative results 

For performance evaluation purposes, we configured a four-
node setup where optical nodes consist of one single optical 
receiver. Both the node agent and the device agent were 
implemented in Python 3.0 and multiple configurations were 
enabled to reproduce different collective self-learning options. 
For comparison purposes, individual self-learning, where 
generated knowledge is used for training and updating only the 
ML models of the local device, was also implemented. 
Emulated receivers generate synthetic monitoring samples at a  
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Fig. 3 Normalized prediction error vs time

rate of 278 µs (3600 samples/s). Each sample consists of: i) 
time stamp, ii) the values of the three Stokes parameters, and 
iii) a pre-FEC BER measurement. Based on the experimental 
measurements carried out in [2], realistic fiber stressing events 
causing correlated SOP and pre-FEC BER fluctuations were 
randomly generated. Regardless of the model combination 
option and ML problem, each ML model in the device was 
initially trained with 5000 samples collected from the same 
device. Once initial models were available, operation was 
emulated by sequentially generating samples, comparing the 
predicted response with the real one observed and, in the case 
of detecting inaccuracies, storing the meaningful data for 
further model improvement. With a given periodicity, e.g., 
every hour, detected inaccuracies are used to train one or more 
specific ML models, which are shared for model combination. 
For the receiver configuration classifier, we considered SVMs 
with 5th-degree polynomial kernels. Here, the high 
misclassification cost leads to consider diverse ML models and 
use the model ensemble option, where the number of training 
samples is used for weighting the combined response. For the 
probabilistic BER threshold violation anticipation, we 
considered a DT where the topology of the trees was pre-
defined. Here, the merge option consisted in updating all the 
numerical parameters in the tree nodes by weighted averaging 
based on node size. Finally, for pre-FEC BER forecasting, 
ANNs were considered and configured with 90 inputs (i.e., last 
30 values of each Stokes parameter) and 45 hidden neurons. 
Here, data re-synthesis was adopted, where every model was 
used for data re-synthesis only in the observed range of the 
input features; such information is shared as meta-data. 
Fig. 3 shows the evolution of prediction error against the 
emulated operation time. For convenience, prediction error 
was normalized to the error of the initial trained models of the 
individual self-learning approach, whereas time was 
normalized to the time where the most accurate approach 
reached negligible error (<0.5%). As it can be observed, 
model-based collective self-learning provides an excellent 
performance in terms of convergence time as it clearly over-
performs the individual approach and gets noticeably close to 
that of the data-based collective one for all the considered 
problems. The exception is during the early stage of operation 
in the case of data re-synthesis; note that as models were 
trained with a small data set, data synthetized from them would 
easily diverge from the real data, even though they are 
generated in the observed range. In view of this, we suggest 
start sharing ML models for data re-synthesis once they 
provide moderated accuracy. 
We have demonstrated that collective self-learning performs  
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Fig. 4 Data exchanged comparison. 

similarly regardless of sharing data or ML models. The main 
benefit of model-based collective self-learning compared to 
the data-based one is presented in Fig. 4, where the data 
exchange ratio is plotted in logarithmic scale as a function of 
time; the ratio is computed as the amount of data exchanged 
under the data-based approach (i.e., ML training data) over the 
amount of data exchanged under the model-based one (i.e., 
model parameters and meta-data). As it can be observed, the 
model-based approach requires far less data exchange during 
the operation time needed to converge to accurate models 
(normalized error <1%). Once reached such accuracy, the 
data-based approach can be used to reduce even more 
exchanged data. The embedded table provides absolute 
numbers of the estimated size of an example data exchange 
during the very first stage of operation of a single device. By 
scaling these figures to a deployment with hundreds of devices 
exchanging data, one can realize that the model-based 
collective self-learning approach reduces the requirements of 
the control plane communication network. 

5. Conclusions 

Collective self-learning based on ML model sharing have been 
proposed and different model combination options have been 
explored (ensemble, merge, and re-training with data re-
synthesis). A use case for autonomic transmission have been 
used for evaluation purposes, showing that they reach similar 
performance with much better scalability than a collective 
approach based on training data sharing. 
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