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ABSTRACT A System-of-Systems (SoS) is a complex, dynamic system whose Constituent Systems (CSs)
are not known precisely at design time, and the environment in which they operate is uncertain.
SoS behavior is unpredictable due to underlying architectural characteristics such as autonomy and inde-
pendence. Although the stochastic composition of CSs is vital to achieving SoS missions, their unknown
behaviors and impact on system properties are unavoidable. Moreover, unknown conditions and volatility
have significant effects on crucial Quality Attributes (QAs) such as performance, reliability and security.
Hence, the structure and behavior of a SoS must be modeled and validated quantitatively to foresee any
potential impact on the properties critical for achieving the missions. Current modeling approaches lack
the essential syntax and semantics required to model and verify SoS behaviors at design time and cannot
offer alternative design choices for better design decisions. Therefore, the majority of existing techniques
fail to provide qualitative and quantitative verification of SoS architecture models. Consequently, we have
proposed an approach to model and verify Non-Deterministic (ND) SoS in advance by extending the current
algebraic notations for the formal models as a hybrid stochastic formalism to specify and reason architectural
elements with the required semantics. A formal stochastic model is developed using a hybrid approach for
architectural descriptions of SoS with behavioral constraints. Through a model-driven approach, stochastic
models are then translated into PRISM using formal verification rules. The effectiveness of the approach
has been tested with an end-to-end case study design of an emergency response SoS for dealing with a
fire situation. Architectural analysis is conducted on the stochastic model, using various qualitative and
quantitative measures for SoS missions. Experimental results reveal critical aspects of SoS architecture
model that facilitate better achievement of missions and QAs with improved design, using the proposed
approach.

INDEX TERMS Stochastic systems, system-of-systems, architecture modeling, quantitative verification,
statistical model checking, system properties, formal modeling.

NOMENCLATURE CTL Computation Tree Logic
ABBREVIATIONS CTMC  Continuous-Time Markov Chain

ADLs  Architecture Description Languages EBNF  Extended Backus—Naur form

BTL  Branching Time Logic HSF Hybrid Stochastic Formalism

CCS  Calculus of Communicating Systems loT Internet of Things

CPS  Cyber- Physical System LTL Linear Temporal Logic

CS Constituent System MCCS  Markov Chains for Concurrent Systems

CSL  Continuous Stochastic Logic MDE  Model-Driven Engineering

CSP  Communicating Sequential Processes ND Non-Deterministic

NFRs  Non-Functional Requirements
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OKT  Qualitative Reachability, with Known

Thresholds

QUT  Quantitative Reachability with Unknown
Thresholds

SA Software Architecture

SCCP  Stochastic Concurrent Constraints Programming

SoS System-of-Systems
SPA Stochastic Process Algebras

SYMBOLS

o All individual named actions as a, b.c, .., .
of CSs

Ai Random rate of actions «; between CS

A Random rate of actions «; between CS

Q. Infinitesimal generator matrix for CTMCs

Rt Set of real numbers

P Probability or likelihood of reachability
and QAs

S Set of finite states with discrete or
continuous time

= Model satisfaction relation for states and paths

¢, V¥, d State and path formulas with property ®

T It is the path for exponential state transitions

M Set of paths in stochastic model M

ACT Set of all the actions among CSs

Bp Binding protocol with (Ports, Roles)

Cp Set of concurrent constraints

E; Set of exogenous interaction for CS

E75q1(s)  Total exit rate of states in rate matrix

Gp CSs global behaviors

Gy Guard predicates used for constraining modules

1 Set of interfaces for CSs

L(f) A labeling function for states: s — '

Lp CSs local behaviors

P,Q Named processes used as CSs in HSF

R Transition rate matrix for states interactions
in HSF

Sinit Initial state at the start of CSs transitions

T, Cartesian product of two transitions systems 7T's

Vv A collection of local and global variables

Vinit Initial variables in stochastic modules

I. INTRODUCTION

A System-of-Systems (SoS) is a complex system that behaves
in a stochastic manner resulting from the collaboration among
various heterogeneous sub-systems known as Constituent
Systems (CSs). The CSs are often distributed, exhibiting
operational and managerial independence, but work together
to achieve the SoS mission with the help of emergent behav-
iors which an individual CS alone could not accomplish [1],
[2]. The emergent behavior, which is dynamic and results
from unknown CSs interactions at runtime, makes over-
all SoS behavior stochastic [3]-[5]. Due to the indepen-
dence and autonomy of SoS CSs, the administrators of the
SoS have loose control over CSs, making it difficult to
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ensure the correct architectural design of SoS [1], [6], [7].
Modern mission-driven critical infrastructures designed as
SoS provide services that are essential in daily life, including
health, transportation, energy, emergency, and rescue ser-
vices. If not designed properly, an SoS could fail, leading
to the loss of human lives, disruption of core businesses
and damages to economic growth [8]-[10]. Unlike tradi-
tional single systems whose components, structures, and
behaviors are well known, it is challenging to design and
implement SoS architecture since it is stochastic due to
its unknown CSs, unpredictable behaviors, and continuous
evolution [4], [11]. Therefore, the main focus of this study is
to devise a unique formal modeling and verification approach
for SoS architectures.

The Software Architecture (SA) modeling of complex
software-intensive systems involves describing the functional
features and performing structural analysis to determine
potential defects and SA design issues. The SA design issues
have a detrimental effect on Quality Attributes (QAs) such as
performance, reliability, and security [12], [13]. A correctly
designed SA for describing structure and behaviors coupled
with constraints specification is crucial to software modeling
and verification. Although SA provides specific modeling
abstractions for the early prediction of defects and design
issues, the current notations available for SoS modeling and
verification lack the essential reasoning capabilities required
to deal with the Non-Deterministic (ND) architecture. An SoS
architecture is ND primarily because it is not known in
advance whether the potential coalition of SoS (consisting of
CSs that are autonomous and fully independent) can conform
to the functionalities and QAs. Consequently, SoS struc-
tures, behaviors, and related QAs are not easy to predict and
measure [11], [14]. Therefore, SA modeling and reason-
ing for such systems are challenging tasks that require
strong mathematical foundations to specify stochastic behav-
iors and ND events in an unpredictable environment [15].
In this context, formal modeling and reasoning enable sys-
tems designers to specify and analyze SA models using a
robust mathematical foundation.

Among various SA modeling tools, formal Architecture
Description Languages (ADLs) are strong candidates for
representing software systems architecture in the form of
components (CSs), connectors (Mediators), and resulting
configurations/coalitions [16]-[18]. The majority of these
ADLs are based on core process algebras originating mainly
from Calculus of Communicating Systems (CCS) [19] and
Communicating Sequential Processes (CSP) [20] to model
the SoS architecture [21]-[24]. However, they fail to deal
with the stochastic behavior and dynamic nature of SoS [15].
On the other hand, some approaches try to model complex
systems similar to these using Stochastic Process Algebras
(SPA) [25]. Still, these formal ADLs individually based
on process algebraic notations, i.e. CCS, CSP, SPA and
related approaches [26] have certain limitations when it
comes to modeling SoS [4], [11]. These limitations include:
(a) vocabulary and reasoning capabilities to manage the
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architectural characteristics of SoS (b) support for automated
model verification [4] concerning missions and QAs and
(c) inability to specify and reason dynamic stochastic behav-
iors and uncertainty of the SoS at the architectural level.

Verification of a complex system can be performed with
statistical model-checking that enables various architectural
analysis of system properties [27]. However, most of the
current modeling approaches have a semantic mismatch mak-
ing it difficult to perform automated quantitative verification
analysis and reasoning. This requires models to retain seman-
tic consistency and completeness during the transformation
process, which needs to be addressed.

In this research work, we overcome these limitations
with a unique approach based on Model-Driven Engineering
(MDE) [28] that supports the stochastic architecture model-
ing of the SoS by using Markovian process algebra. This work
makes several key contributions to this area of research. It is
broadly categorized according to three aspects: (i) Syntax
and semantics of SPA are extended with concurrent and
stochastic composition operators into Hybrid Stochastic
Formalism (HSF) as our proposed formalism. HSF brings
features such as probabilistic choices, non-determinism and
Stochastic Concurrent Constraints Programming (SCCP)
constructs [29] to describe SoS architecture models.
(i) The resulting stochastic model specified using HSF is
a Markovian model that supports Stochastic Model Checking
(SMC). Formally founded mapping rules from proposed
HSF to PRISM [30] are defined using formal semantics to
perform automated verification analysis of the SoS model.
(iii) Various system behavioral reachability and quantitative
analysis of dynamic properties are performed with Continu-
ous Stochastic Logic (CSL) on the transformed SoS model for
the first time in PRISM using known and unknown bounds.

The proposed approach is validated using a case study
of a Cyber-Physical System (CPS)-based SoS (CPSoS) for
Real-Time Fire Monitoring and Emergency Response. The
system has been modeled with the proposed HSF taking
into account ND behavior and concurrent compositions.
The probabilistic behavior has been tested for reachabil-
ity employing approximate SMC. Steady-state and transient
analysis are applied to predict QAs such as performance
and reliability, using multiple scenarios to assess mission
accomplishment qualitatively and quantitatively.

The rest of the paper is organized as follows. Section II
describes the work related to our approach; background
knowledge has been established in section III. The proposed
approach has been elaborated next in section IV. The syntax
and semantics of the proposed formalism have been extended
in section V. Section VI provides an SoS architectural design
with extended formalism. Section VII presents mapping rules
from extended formalism into PRISM. Validation of the
approach has been provided in section XIII with a case study
implementation, including preliminary results discussions.
A comparison of the proposed approach with existing works
is performed in section IX. Finally, conclusions are drawn,
and future work is discussed in section X.

177582

Il. RELATED WORK

Work related to our proposed approach can be categorized
into two broader bodies of knowledge: (i) Formal represen-
tation of complex systems architecture, especially (Formal
Syntax and Semantics) and (ii) System architecture qualita-
tive and quantitative analysis through model verification.

Over the past decade, there has been an emphasis on
formal modeling of complex distributed systems to acquire
insights into a system in terms of its architectural design
and behaviour, and how it evolves over a period of
time [31]. The most common and widely used formalisms
for architecture description are categorized into: (i) Petri-nets,
(i1) Queuing Networks, (iii) Z Notations (iv) Bi-graphs and
(v) Process Algebras [32], [33]. Process algebra-based ADLs
have increased in popularity and have established a place in
the industry and academic research [16], [34], [35]. Architec-
ture Description Interchange Language (ACME), enhanced
with multiple formal representations, allows us to specify cer-
tain Non-Functional Requirements (N FRs)! with architecture
structure and behavior using Wright and Rapide annotated
properties [36], it has been extended for product line software
system with aspect-oriented semantics. Architecture Analysis
and Design Language (AADL) is a semi-formal notation for
modeling systems structures and behaviors along with system
properties [37]. Its syntax and semantics have been extended
for the modeling of safety and hazard scenarios and detailed
analysis using QaSten [38] approach for error modeling and
verification.

For some time now, Electronics Architecture and Software
Technology-ADL (EAST-ADL) has been used to model com-
plex autonomous systems. Its application has been extended
to modeling stochastic behaviors as it improves Clock
Constraint Specification Language (CCSL) time-constrained
semantics for probabilistic analysis [39]. ACME models
are transformed into ALLOY? for performing verification,
by integrating formal modeling notation of Wright into
the Failures-Divergences Refinement (FDR) model checker;
however, this approach has certain limitations in terms of QAs
verification [40]. Cavalcante et al. [41] devised an approach
for the verification of dynamic SA specified in 7 —ADL
using the Plasma-Lab® SMC tool. For the verification of
dynamic properties, DynBLTL was used, which is an exten-
sion of Bounded Linear Temporal Logic (BLTL) [42]. How-
ever, these model-checking processes cannot verify stochastic
models and face the problem of state-space exploration [43].

In their work in [44] extended the Behavior Interaction
Priority (BIP) [45] formalism to the stochastic formalism
of Stochastic BIP (SBIP) [46] based on timed automata for
enriched compositional modeling. They used Probabilistic
BLTL (PBLTL)-based SMC algorithms to verify the prop-
erties of SBIP models, focusing particularly on performance
evaluation. However, there was no explicit description of the

INFRs are QA such as performance, reliability, and security.
2https://alloytools.org/
3 https://project.inria.fr/plasma-lab/
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system threshold and the non-functional properties of the
system. Song et al. [47] extended Monterey Phoenix (MP)
formal modeling language with probabilistic automata for
modeling software systems, using a model-checking tool
based on Process Analysis Toolkit (PAT) to verify sys-
tem behavior and quantitative evaluation. This approach
used dead-lock checking and reachability analysis using
Event-trace Linear Temporal Logic (LTL) based algorithms.

The aforementioned formalisms embedded into ADLSs can-
not be used to model and analyze SoS architectures as,
predominantly, the formalism and vocabulary used in these
approaches deal only with deterministic systems whose com-
ponents, behaviors, and operating environments are already
known to the system designers [3].

In their research work on SoS, Arnold et al. used
UPDM/SysML profiles for modeling CSs as functional
mock-up units, using Contract Specification Language to
define the constraints on input and output [48]. The
Plasma-Lab model-checking tool was used to perform SMC
on stated execution traces of SoS. However, the underly-
ing formalism used here is unable to reason about ND
behaviors. Bozzano et al. [49] employed probabilistic model
checkers with Compass Modeling Language (CML), a semi-
formal SoS modeling language to perform safety verification.
Sosadl [21] is a formal modeling language that specifies
the deterministic structure and behaviors of SoS architec-
ture. It is able to describe static architecture at abstract lev-
els with intentional compositions. However, neither Sosadl
nor CML support rigorous stochastic reasoning and cannot
support qualitative and quantitative verification of behaviors
and associated QAs. Moreover, they are unable to reason
uncertainty concerning unknown CSs and their interactions.

Our approach is unique as it creates a modeling speci-
fication to describe SoS stochastic behaviors and dynamic
structures in terms of runtime using rich syntax and seman-
tics. The formally founded stochastic SoS models enable the
formal verification and validation of system properties with
steady-state and transient analysis. We try to enhance the SoS
CS exogenous contractual behaviors by integrating CCS and
CSP into the SPA as Markov models. Similarly, we use state-
of-the-art SMC tool with unique stochastic model-checking
algorithms for verifying dynamic emergent behavior. The
proposed modeling approach enables SoS designers to ver-
ify qualitatively and quantitatively missions and goals from
runtime perspectives at the design stage, taking into account
the core architectural aspects of the SoS.

Ill. BACKGROUND

A. THE COMPLEX SYSTEM ORGANIZATION

SoS is a special type of complex system with increased
complexity when implemented on a larger scale [50], [51]
accompanying the physical components and information sys-
tems capabilities ranging from cybernetics-multi agents to
computational biological systems [52]. Considering the types
of SoS; i.e. collaborative and Virtual SoS, CSs are fully
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independent, geographically dispersed, and become part of
SoS with partial contracts to achieve global missions by form-
ing stochastic emergent behaviors dynamically [53]-[55].
On the other hand, centrally operated and managed SoS has
non-stochastic behavior.

The architectural characteristics and types of SoS designed
based on the level of autonomy, play a significant role
in determining dynamic stochastic behaviors. This has
been detailed in our research on SoS dynamic architecture
modeling [7], [15].

Figure 1 depicts the complex nature of a SoS, evolving
over a period of time, T as coalitions of independent and
autonomous CSs, collaborating to achieve a global mission
in an uncertain environment. The uncertainty and the con-
tinuous evolution of SoS increase its complexity, impacting
QAs such as performance and reliability that are critical to
the fulfillment of the mission. A concrete example of such
a SoS is an Emergency Response system comprising many
heterogeneous and independent Internet of Things (IoT) (fire
monitoring sensors, drones, police and ambulance services)
as CSs, collaborating to achieve specific missions in the
event of natural disasters or calamities (floods, hurricanes,
and wild/bush fires incidents). However, the success of the
mission and conformance of QAs in resulting coalitions is
uncertain since CSs which are unknown may fail or mission
may be compromised due to the unpredictability of CSs
collaborations. Therefore, a SoS must be designed carefully
early in its life cycle so that it can deal with the under-
lying SOS architectural complexity and minimize design
bottlenecks.

High
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FIGURE 1. SoS architectural complexity and impact on system properties.

Definition: An SoS is a complex system M and can be
defined as tuple M= < CS, I, Cy, Gp, Rjp > where:

e CS=CSi(i=1...n), nis a collection of independent
systems as tuple in the form CS; = (Lp, Ej) with certain
time scales of T € Rt > 0 as continuous time or
discrete time starting from f,..., .
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— Lg: Individual local behavior of CS; that becomes
part of a larger SoS.

— Ej:Itis a set of exogenous interaction for CS; x CS;
that it provides to external environment and inter-
acting CSs for collaboration.

e I = () wherej=1,...,mand [ is a set of interfaces
for interactive transition relations (IR) = S; x S; among
independent CSs.

o Cy IOcy — 1, O, mediation for IR as input
and output channel with order sequence or in parallel
communication.

¢ Gp: Global behavior are formed with the interaction of
independent CSs Lp as a result of S; x Sjinteractions.

o Ryp: All the Ej interactions and Lp are essentially ran-
dom generating Gp stochastically.

In this definition, a SoS M with architectural elements is a
non-linear system, integrated with CSs such as IoT and CPS
in social-technical and scientific contexts [10], [56], [57]. The
architectural design of such complex systems needs to be
described stochastically with underlying reasoning capabil-
ities to avoid failures.

B. STOCHASTIC SYSTEMS

SoS is a stochastic system that exhibits random concurrent
actions where the CSs interactions lead to the probabilistic
distributions. The CSs interactions are uncertain for future
state reachability and primarily exhibit the properties of a
Markov process. A stochastic process is a collection of ran-
dom variables at time 7 with each ¢ as: (X1, X3, ..., X;) with
a function of: 1p < #1 < fh.. < ty,...,< ty41 in the
form {X/(t1), X2(t2), ..., Xu(ty) .. . X(t441)} and collectively
represented as: {X(¢)}; € T.

A stochastic process is discrete if {X(f) € T} is observ-
able at distinct points T € N7 or it is continuous if
T € [0, 00). In this research paper we selected the continuous
time Markov process for modeling stochastic SoS.

Definition Markovian Process: A system acts as a
Markovian process with a series of random variables
if system states have a probability distribution as:
PX(1), X(12), ..., X(tn)) = PXn+1) | X(@)),t > 0.Ina
stochastic process, the next state of a system can be described
from current states of the system going from time ¢ to time
t + 1 which is At with time homogeneity property with
transition from i to j we get:

Pijy = PX(AN) =j | X(t) =i )

Definition Memory-less Property: At a given time t, the
state x" of the system with probability P is independent of
all previous states and dependent only on the recent one; i.e.
x"~ ! attime ,,_ . This leads to a stochastic process exhibiting
Markov property of being memory-less. Formally we can
define this as:

(PXt)(= x"X(t—1)) = x""1 & P(s — 5)
= [sis1 =515 = S)
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where:
o Sisaset of finite states with discrete time or continuous
time.
o P is a probability of moving from state s to s’. With
its memory-less property, the system’s behavior can be
predicted with the current state excluding the past states.

1) STOCHASTIC INTERACTIVE FORMALISM

For modeling stochastic systems, Stochastic Interactive For-
malism (SIF) originating from SPAs is the most suitable
formalism for modeling and reasoning about probabilistic
behavior and non-determinism [25], [58]. A SIF-based for-
malism leads to the formation of Markov labeled actions.
These labeled actions with transition probability are repre-
sented as a set of actions:

ACT = {< a,b > U < F >} witha,b € ACT as
observable actions and F unobservable actions. Observable
actions are external actions of CSs through which a CS
interacts with other CSs to achieve its objectives, for example,
using public interfaces to send and receive messages. On the
other hand, unobservable actions are internal control events of
a CS through which core actions are managed. Examples are
a CS reading and writing of data internally; such actions are
usually private and concealed from other CSs. With a finite
distribution of states S we obtain a distribution function as
Ff(x): S— [0, 1]. As it is a finite set of states, it yields to > s
€ Sfx)(S)=11if f(x) = 1. This produces a Markovian
distribution of Mp;(S) describing probabilistic distributions
over states S of a system.

Definition: A stochastic formalism is a tuple M = < S, so,
A, P(A)> where:

o & is a finite set of states.

e 5o € S is the initial state.

e A is a set of actions, such that A € ACT and it is
represented as ACT — S x A x Mp;u(S) forming a
transition relation.

e P(A) is a probabilistic transition relation in M as: P

A . . e .
S ﬂ) S’ with A being a general probabilistic random
rate and P is the probability that the transition of states
will occur.

2) LABELED TRANSITION SYSTEMS FOR CONCURRENT
PROCESSES

A stochastic system is essentially a concurrent process Pp ||

Py, ..., || P, that forms Labeled Transition Systems (LTS),
the behavior of which depends on the interactions of the
(a,1)

processes and the environment as: s —— s’ and forms a
transition relation 7. By generalizing transition relation with
P(A) we get:

T(N=PA) s—s =Y s L2 sy @

AeACT

Here P(A) represents rate of action A for every a € A
representing transition probability from s to 5" and T is the
transition relation over states.
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States Transitions and Paths: The state transitions of com-
ponents performing actions with certain timed rates can be
traced on a particular path. Based on the execution traces of
states, an infinite path is an infinite set of traces as:

Path(T,) = {(so, aop, 1) , (s1, a1, t1), ...} so we obtain:
(ao,10) (a1,11) (an—1,ta—1) ,

T =50 —> S|,51 —> Sy, ... 8-1 —> S,
where t € T, > 0 and a € ACT and path is 7 such that
Vi > 0, R (s, si+1) > 0. The finite path is a sequence of traces
from so — s, with finite traces of execution with absorbing
states. s, is the absorbing state for the system such that Vi and
T+ (Sn, Sn+1) > 0. A particular path depending on the next
state can be finite or infinite with the traces in a state space.

3) MARKOV CHAINS FOR CONCURRENT SYSTEMS
A stochastic system that has continuous/discrete state transi-
tions in real-time is termed Markov Chains for Concurrent
Systems (MCCS). Every transition in MCCS is associated
with a rate or probability that shows the time it takes or the
probability of moving from state s to the next state s; leading
to the exponential distributions of state space for system
behavior.
Definition: At a given time t a MCCS is a tuple of the form
N =<8, Sinit, AR, ACT, 731-,1., 7w > where:
o &S is a state space and s;,;; is the initial state.
¢ A is the action rate or probability value for interaction
among stochastic process.
e R: S x8— RT > 0 is a transition rate matrix.
o ACT is a set of actions as defined above.
o P;j is the probability P(s,s’) of outgoing transitions
from s to s’
o 7 is the path for exponential state transitions of the
system.

A path w of MCCS is finite or infinite consisting of states
w(Sp, Sp+1) for all n > 0. From MCCS we can derive
Continuous-Time Markov Chain (CTMC) and Discrete-Time
Markov Chains (DTMC) models substituting A with ran-
dom rates (with r for A and probability values) respectively.
However, when these Markov models designed with process
algebraic capabilities are coupled with LTS, more meaningful
architectural descriptions for SoS can be specified.

A system can have reachable states if there is a finite
path from s to s’. Figure 2 shows CTMCs with 2 states
in 3(a), 4 states 3(b) and 3 states in 3(c) respectively with their
respective paths. Here, states shift from the current state to the
next state with actions ACT = {a, b, ¢, d} and the action rate
is A. The path for CTMC exhibits the race condition between
the processes with origin state s and successor state s” and the
rate is R(s, s’) > 0. The probability of moving from state s to
s in time ¢ is defined as 1 — ¢~ RS for time spent in each
states, and the movement from s to s’ in a single transition is
called exit rate E(s): ) ¢ R(s, 5).

Throughout this paper, we use Markovian process formal-
ism but extend and constrain it so that SoS can have specifi-
cation reasoning capabilities for architectural modeling.
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FIGURE 2. MCCS of (CTMCs and DTMCs) with actions rates and
probabilities.

C. TEMPORAL LOGIC AND VERIFICATION

A stochastic model M with the characteristics of a Markov
model can be verified against certain properties with
temporal logic based on assumptions (systems behavior)
and guarantees (properties of the system behavior) to be
conformed [59], [60].

1) TEMPORAL LOGIC
Definition: Temporal logic is defined on the LTS with tuple
T =< M, AP, L(f) > where:
e M is stochastic model to be verified.
o AP is a proposition alphabet or a combination of atomic
propositions (APs).
o L(f): S — 24P L(f) is a labeling function which attaches
labels to the states.
Here (AP, L(f)) are used for specifying properties and testing
whether M satisfies certain properties as (M = &) with =
being the satisfaction relation over logical proposition . Var-
ious Boolean logic operators (A, V, =, —, <>) are used for
constructing propositional logic formulae using propositional
logic. Furthermore, these can be used to check the states and
paths of the stochastic model.

2) BRANCHING TIME LOGIC

A Computation Tree Logic (CTL)* formula uses Branching
Time Logic (BTL) and can be represented with state formulas
and path formulas with the following specifications:

®:=APs| —® | d Vv & | 3¢ | Vo

Where 3¢ (there exists) represents a path of state(s) that fulfill
¢ and V¢ (all paths) are satisfied by ¢. It does not hold with
—® and ® v ® meaning that either one of them satisfies the
relation.

For path formulas we have ¢::= X® | & U &, X is to
ensure next states satisfy state properties. Here U stands for
until indicating @ is true until the @ is true. The probability
for property ¢ and reachability of state s from s¢ satisfying a
path 7 can be specified as:

P(p) = P(r € Paths(Ts)(M, s0) | 7 = ¢)

41t is a form of Branching Time Logic (BTL) as compared to LTL for
model verification of complex systems.
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FIGURE 3. SAM-Sos architecture modeling and verification approach.

Using these base logic propositions, various steady-state
and transient analysis can be performed on stochastic models
based on BTL formulas as PCTL and CSL specifications [61].

D. MODEL VERIFICATION

1) PRISM MODELING SPECIFICATIONS

PRISM is a formal language integrated with a model
checker, simulator, and system analysis sub-components.
It supports symbolic state-based model verification for var-
ious stochastic models including CTMCs/ DTMCs, Markov
Decision Process (MDP) and Probabilistic Time Automata
(PTAs) [43]. These models are analyzed with property spec-
ification languages such as CSL / PCTL, LTL, and CTL
for predicting system properties [62]. In our case, we use
PRISM for stochastic model verification generated from
our proposed formalism HSF. The PRISM modeling con-
structs consist of modules and variables equivalent to CSs
as components and their behavior transition from state to
state as concurrent compositions in the form of CSy || CS»
I CSs, ..., Il CSp.

2) FORMAL DEFINITION OF PRISM MODEL ELEMENTS
The mathematical foundation of PRISM is based on Alur’s
Reactive formalism [63], [64]. The semantics are defined as
the compositional arrangement of modules in algebraic form
for the interaction process.

Definition: The core elements of PRISM are stochastic
concurrent processes which can be defined as tuple in the
form W = (V, Vinit, G, Tg, C, Ml) where:

e V is a collection of local variables (LV) and global
variables (GV).

« Initial variables are represented as V.

e Gy is a set of guard predicates applied to guards for
transitions to occur if predicates are met.

o Tg is a Transition rate matrix R: VX V — Rgr,>0 that
results due to updates in the variables.

o C represents commands [Jguards — S, resulted
from G, Tg and corresponding updates.

« M represents the set of modules m interacting stochas-
tically in a concurrent manner. The module consists of
local variables and commands.

The general syntax elements for PRISM language is provided
here:

[ACT] guard— S,: Update|+, ..., +S,,: Update,
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The guard commands determine the system behavior with
state transitions of local variables. When the command starts
with an action represented by ACT as a parallel compo-
sition of concurrent modules, the transition from the state
is recorded as an update if the guard predicate is true for
local variables. The stochastic information is presented with
(stochastic value) S, that could be either probability P value
if the model is DTMC/MDP, and random action rates A if it
is CTMC.

IV. STOCHASTIC ARCHITECTURE MODELING AND
VERIFICATION APPROACH

This section presents an overview of the proposed approach
for the modeling and verification of complex SoS archi-
tectures, as described in Section IIIA. Figure 3 depicts the
proposed approach consisting of four core stages, starting
from stochastic formalism specifications, leading to stochas-
tic model development, and then transformations and model
verification through model-checking. Each step involved in
the proposed approach is described briefly below.

Hybrid Stochastic Formalism: At first, we integrate current
process algebra with randomness, concurrency, synchroniza-
tion, and concurrent constraints operators as a part of our
proposed formalism as HSF. To provide syntax and seman-
tics, we extend SPA with specific CCS, CSP, and CCP [65]
operators into our proposed HSF, providing a compositional
vocabulary for SoS architecture reasoning. HSF syntax and
semantics are defined to establish formal foundations for
modeling and analysis inspired by CML and Sosadl [21],
[49]. This enables us to specify SoS architecture as a stochas-
tic model to express concurrent compositions with proba-
bilistic choices and non-determinism in CSs. A multi-labeled
transition system with random actions L7Sg enables the
modeling formalism to generate probabilistic distributions
of the stochastic model M with execution state space S for
the collaborative, dynamic behaviors of SoS. An EBNF is
generated from HSF syntax and semantics to orchestrate SoS
architecture at an abstract level.

HSF-S0S Model: Secondly, we use stochastic architectural
specifications using the HSF-driven EBNF, incorporating
extended syntax and semantics for SoS. The structure and
behavior of SoS are specified as CSs and mediators with ports

SHSF  based syntax that generates the Extended Backus—Naur
Form (EBNF) establishing process algebraic rules.
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and roles by applying environment constraints to manage
uncertainty. This enables us to generate SoS coalitions, which
are stochastic and can be further reasoned for qualitative and
quantitative analysis for rigorous evaluations of architectural
models of SoS.

Stochastic Model Transformation: Model transformation
is performed at this step. The HSF model can be treated
as CTMC, which provides the abstraction for specifying
SoS architectural elements and their interactions. However,
the prediction of stochastic behaviors and their ability to
achieve missions and conformance of QAs requires stochastic
model verification. Therefore, the HSF CTMC model is trans-
formed by proposing formal transformation rules in compli-
ance with PRISM semantics. The formal rules allow auto-
mated transformation, enabling the analysis of the stochastic
model from the HSF model. The one-to-one mapping is done
by specifying formal rules for HSF and PRISM, which are
compatible with both types of formal descriptions for model-
ing SoS.

SoS Model Verification: In the last step, a transformed
stochastic model from HSF into the PRISM model-checker
is used as CTMC model to verify the SoS stochastic architec-
tural specifications. System properties are defined in CSL,
in a unique way using known and unknown bounds for the
evaluation of SoS missions and associated properties along
with time-bounded logic specifications. Quantitative verifi-
cation and predictions are made by applying relevant algo-
rithms using CSL transient and steady-state analysis based
on reachability and numerical computations [66].

V. HYBRID STOCHASTIC FORMALISM FOR SoS

This section provides the extended syntax and semantics
devised for formulating proposed HSF including abstract
SoS architectural reasoning and coalition behavior. At an
abstract level HSF for SoS is heterogeneous aggregation of
concurrent processes P, actions a € ACT, random rate of
action A/(r) © € R* and Channels C forming a tuple as
< P,a, A,C >. A process P engages into action a as (a.P)
with a probabilistic distribution over a time 7' with action
rate as (a.1).P which determines exponentially the duration
or delay of actions. In order to constrain the interaction and
deal with the uncertainty of exogenous interactions of CSs,
we add concurrent constraint store operators annotated with
random rates of CCP that enables the stochastic semantic to
constrain the environment.

A. SYNTAX

To compose SoS behavior and structure, we have used basic
combinators defined in PA. The notion of a process or agent
is retained with CSs where every CS is an independent pro-
cess P ranged over A, B, C,.. as Names. Names are used
for processes, and channels are used for communicating data
between processes. We formally define syntax for HSF-SoS

6Symbols A and r are used here interchangeably to represent random
action rates which lead to exponential distributions for system interactions.
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collaborating as concurrent processes:

(P 2= Skip [)a.A.P [)ax — P |)ay = O D(P(pchoice)Q 1)
(Pr<, QNP> QNA=P)
(SCCP : P ::= Tell . M(CStore) | ask.A(Cstore) — P)

The detailed description of each syntax element is as
follows:

« Skip: This indicates that a process has been successfully
terminated.

e (a.}).P: This is an action prefix operator that presents a
process P, performs an action « with activity rate r, and
then again behaves as P. Various behavioral operators
are used to determine the communication among CSs
processes to interact and form Coalitions. This com-
munication is categorized into sequential, parallel, and
choices.

o P(choiceyQ: This shows probabilistic external and internal
choices between P and Q. With probability P, it behaves
as P and as Q with probability P — 1 where probability
choice P € [0, 1] for choosing processes. The choice of
processes is ND.

e P <y, Q: Parallel composition occurs for multiple
events involving participating CSs. Actions could be
both synchronous and asynchronous. For stochastic pro-
cesses, parallelism is interleaved with a cooperation
operator < where the r operator represents a list of
actions that can be both hidden and silent.

e P>, Q:Itruns as CS as P if P successfully terminates
within a given time unit u; otherwise it behaves like Q.

o Tell. A(Cstore): This term tells the SoS environment
about the new constraints imposed on a CS and added
to the constraint store non-deterministically over a time
interval index i with a probabilistic distribution.

o Ask.A(Cstore): This term allows the participating CSs
to derive certain information from constraints stores
randomly over a time interval index with a probabilistic
distribution.

o« A = P: Ais a constant that assigns stochastic behavior
for process P.

B. SEMANTICS

The semantics of the above grammar can be established by a
combination of axioms and inference rules for syntax opera-
tors. To build an LTS, the behavior of the system is derived via
meaningful assertions. The inference rule (P,a,P)— S x S
is a result of transitions P — P’ with s — s" € S for process
P; and P]’. participating in actions «;.

Definition Transition System with Rates (LTSg): The
LTS for stochastic process is a tuple of the form: <
> ¢- Lo, Ty = (f) > where, ) ¢ represents set of states S
of the system, L, is a set of label actions, T(,) — € P X P is
a transition relation and f is a rate function of the form (f):S
x Ly x 8§ — RT. This yields a probabilistic distribution for
transitions of the system. Time for 7, is t € R > 0 and has
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function with value [0,1]. These processes can be represented
with their action type and rate of action as:

a(ActionType).P — a(ActionType), r(ActionRate).P’

The random rate r leads to the exponential distribution of
system behaviors over a period of time ¢ with probability
being: Y f (P(a.r)Q). Now, by applying to the HSF syntax
the general me(Tar)lism defined above and the general rule of
premise and conclusion, we obtain abstract level transition
rules by:

Piay— Pj,...,Pyoy —> Py, ..., P, (0y.r) P,

(a.r).P — (a.r).P’

If the premise holds, then the conclusion also holds, and
all the rules are symmetric. The transition relation is derived
from the Cartesian product of two transitions systems say,
Tsy and Tsy as: (Tsy| Ts»). It works on rules if s —
and conclusion pair of the Transition System (TS) obtained
through a Cartesian product of the two transition systems
leads to the formation of semantics as:

(Ts1 || Tsp) = ((21) x 2, ACT; UACT,)
= (s0(Ts1) x (s1(Ts2), L(f)))

where €2 is the state space S, ACT is the set of actions, initial
states are of the form sg and s1 and L(f) represents a labelling
function. These principles of concurrent systems transitions
provide baselines for the the formation of HSF semantics.

1) AXIOM RULES

Axiom rules are encapsulated in LTSg, and are the possible
representations of the terms defined in the aforementioned
grammar. In the semantic rules, 7R signifies Transition Rule
while P, Q, P/, Q' represent the process involved in actions
o which are transformed with a condition as: if P transforms
with (a.r) to P’ then in return the transition relation of parallel
processes (P || Q) P’ is reached. Semantic operations based on
premise and conclusion rules are as follows:

PrefixT,op) : P &2 (P)
o P(“—”ﬁ P
Probabilistic Choice : (T1p)) :
(P(S)Q) (P’(5)Q)
(a,r) ,
(Tri0) : Q Q
(P(5)Q) (Q’(5)Q>
Parallelism : (T,2p,0))
P p
: ) (@ ¢ L))
(PXp Q) — (P¥LQ)
(a,r) .,
(Tr2)) : g Z:)Q (@ ¢ L))
(Pxp Q) — (Q'*LQ)
P (“—”3 P’
(Trap,0) : (@ € L))
(P Q) (P”"LQ)
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2) STOCHASTIC CONCURRENT CONSTRAINTS AXIOMS

The non-determinism of state transitions when communicat-
ing CSs and uncertainty can be managed with the application
of stochastic concurrent constraints. CCP is used for the SoS
model in order to constrain the interactions among CSs; it acts
as a mediator to manage concurrent systems by adding new
information about CSs by means of Tell() and Ask() opera-
tors. This forms a function C(f):C(Store) — R™ associating
a rate for constraint store with real number:

Pl< C, >] (“—”3 Pl< Cn >]

(Pl< Gy >]Q> (P [< Cn >10)
P[Tell < C, ] @) P/[Tell < Cy >]

(Tell.\) :

=)

(P[Tell < Cp >]Q) (P’[Tell < Cp, >]10)

where < C,, > is the set of constraints in the constraint store
that transforms P to P’. The constraints are inferred by means
of operator 7ell and Ask with the association of randomness
as A:

(a.r)

P P
(Ask.2) : [< G >] —

o,r)
(Pl< Cy >1Q) —> (P, 0)
(a.r)

P[when < C,, > do] — P’

(Plwhen < C, > do]Q) &5 (P, 0)

3) INTERLEAVING COMPOSITION

Since a SoS is stochastic in nature, a stochastic process
is a discrete continuous-time process of CMTC generated
through LTS exponential probabilistic distribution of system
state transitions. For every process, the overall rate at which
actions are performed is termed r.«;(P,Q) where o and r
represents action and rates respectively. From these semantic
transition rules, a stochastic model of a SoS can be treated as a
multi-labeled transition system leading to transition systems
Ts = Ty1 || Tra... || Ty interacting independent systems
combined and generalized we obtain:

(ZCS,AO,,», {(‘"—”2|(a, ) GACT}) 315 B

where Y CS is the set of constituent systems, Ay; € ACT
is the set of activities / actions (a.r) and the multi-transition
relation is represented as Ts. Such systems behave in a ND
fashion when an action is performed that affects certain inter-
acting systems as shown in Figure 4. By expansion law for
interleaving semantics and memory-less property, interleav-
ing parallel composition in the form of (P1]|P2).A states that
reachability is the A delay time rate with exponential distri-
butions. Suppose that we have two CSs as P and Q where P
has action «.A and Q has action 8., and these form a parallel
composition, e.g. (a.A|B.1)=(w. A, B.1+B.A,.2). By means
of an interleaving operator, such processes choose actions
non-deterministically as shown in the transition system in the
figure below.
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Proces-P Proces-Q

aA I BA  — (a.A). P Q

(a)

FIGURE 4. Interleaving semantics between two interacting systems.

Definition Behavior Transitions: Above LTSk leads to a
Markov model with the behavior transitions of a CTMC in the
form of a tuple < S, R, P; > with S being finite set of states,
R is the rate matrix with a function R : S x S — Rt >0
and P; is the probability distribution at the start P;:S— [0, 1]
such that it yields to Y, € SPi(S) = 1. Formally it can
be represented as rate of moving from state i to state j in T
as R(i,j) — R(s,s’). Then with the probability of moving
from state s to s’ at an exponential rate, A we get R(s.s') =
A.P(s,s"). If there are many possible states s, then it will
transition to next state s’ with the shortest time, known as
a race condition. The exit rate of all outgoing transitions is
denoted by E(s) and this can be generalized as the total exit
time from a particular state:

Etoral(s) = Zs €S R(s,s) )

s=s'

The transition of the form R(s, s”) = 0leads to an absorbing
state in the state space with E(s) = 0. The probability of
leaving non-absorbing state s in time interval [0, t] of the
time function f(¢) is exponentially distributed as: P(f (1)) =
1 — e £ Similarly, the probability of moving from s — s’
of non-absorbing state in time interval [0, t] is with E(s)
from (4):

R(s, s')

—E(s).t
E®) .(l.e ) 5)

PE@0): (s — )=
Definition States transitions over Continuous Time: The
dynamic behavior of system execution in its state space S
can be traced and analyzed using a rate matrix Q depicting
the rate of constant movement between states. Moving from
state i to j depends on current states and it ignores past
states that, essentially, are memory-less property of stochastic
processes. For all P;; for (i # j) and (i = j) the formal
notations for the infinitesimal generator matrix are:
0= {Ai,Pi,ji;Aj
A i=j
The transition diagonal matrix is in the form P[i, j] that
yields },_; R(i, j) with 1 < i < n, then and CTMC transition
matrix is formulated as:

Q=R-E®) (6)

Using row column notation with diagonal elements ¢;; =
- Zj:i gi and from (6) Q the matrix is formulated showing
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state transitions resulting from 7 of (3):

—all=a a2 aln
ayy  —aun=j - ap
Qij = ) ) ) ) @)
am1 am2 C —Opp = A

where a,a,, ..a, are individual state transitions of the form
Sy, 8, ...5, and a = A are the diagonal elements occupying
exit rates E(s). The probability of moving to the next state j
is provided by the time unit A¢ from (7). The Q matrix
allows system designers to compute a system’s steady-state
and probability of transient states with the help of vector P .
PP vector is used to indicate the probabilities of a system being
in the initial state. It is defined formally as:

P=] . ®)

Here, s1, ..., s, indicate the probabilities of a system in
state s; at time #;. If there is no change in long-run steady-
state then by applying limit it yields to P; = lim,  _ Pi(t)
and P; = 0.

The system of linear equations is a product of Q matrix and
vector P that enable system behavior to be explored as will be
explained further in subsequent sections. By applying various
algorithmic combinations to Markovian models, a range of
analysis and predictions can be performed on complex SA
using stochastic propositional logic.

C. ABSTRACT ARCHITECTURE LEVEL REASONING
SEMANTICS

Here, we provide the core of the semantics at the architectural
level for CSs and mediators, as depicted in Figure 5. These
semantics enable architectural level reasoning and establish
the basis for performing further systems analysis.

1) CONSTITUENT SYSTEM SEMANTICS

CSs interfaces are paired with (Port, Role) association, with
each port assigned a role by mediator. Here, port P describes
the external, exogenous behavior of every CS in association
with Role R defined by mediator M. So for every role of
mediator M there is a port association that forms a binding
protocol (Bp) as:

(Bp DBy [| Ry, P), || (R, P2) ... [ (Ry, Prn))

n,m
(Bp) = (Q_(R.P)
i=1
The behavior of the CSs is constrained by protocols in the
form of contracts among ports for information exchange. The
participating CSs can request and reveal certain information
to the SoS environment at random rates to cope with the
uncertainty. Here, the SoS has no control of the internal
behavior of CSs, so it is important to agree on some contracts

177589



IEEE Access

A. Mohsin et al.: SAM-SoS: Stochastic SA Modeling and Verification Approach

Roles (R} and Binding Protocoles (BP]Il‘
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FIGURE 5. Mediator and CS semantics at architectural level.

through which architectural elements can collaborate and
exchange information.

2) MEDIATOR SEMANTICS

Similar to CSs which have certain interfaces and ports, Medi-
ators have certain roles R and Bind Protocols By, that help to
coordinate with CS interfaces i.e. ports and this facilitates the
accomplishment of tasks. The coordination of these events is
done through By, in a specific order. Hence, it is clear that
interactions roles R and Bp, are parallel actions enabling CSs
to communicate. So we obtain:

Bp IRy | Ra,...,| Ry Bp =37 R,

Every role that the mediator defines for a system is
assigned a relevant functionality that is to be achieved during
system execution. From above equation, Joint protocol is a
sum of all possible actions relevant to the specified roles
of CS:s.

D. SoS COALITION BEHAVIOR

The coalition behavior with Algorithm 1 is formulated based
on the stochastic LTSk semantics for the Markov model M.
At a given time ¢, the architectural model M for SoS forms
a coalition generating a stochastic behavior, which is a result
of local behaviors as: C =< Lg, (M) > where Lp is local
behavior in M as defined in section IIIA along other archi-
tectural elements. Algorithm 1 takes as input the initial SoS
coalition C. It starts with an empty set of Gp at line 1 and
probabilistically adds up incrementally the local behaviors Lp
of each CS. State transition matrix R at line 3 takes up the
local behaviors and looks for transitions with interfaces / for
each architectural element in the coalition. From line (4-5),
it determines binding protocol By, through the ports and roles
(Port, Role) of interfaces described in section VC. The set of
new transitions T, of labelled actions updating R’ is added
with the probability distribution of identifying the source
and target states using ports, roles over /Ocy connections at
lines (6-7).
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The resulting behavior of the coalition is assigned to Gp
at line 10, which is a result of initial and new states tran-
sitions satisfying stochastic Concurrent Constraints (CCs).
The last line ensures that stochastic behavior is a result of
the local actions of CSs. Algorithm 1 constrains SoS con-
crete architecture coalition behavior generated from proposed
HSF. It brings the architectural elements of SoS together
to generate global behaviors with probabilistic distributions
using underlying HSF semantics. The stochastic behavior is
generated as a CTMC Model, which is used in PRISM for
SoS model specification.

Algorithm 1 Stochastic Model Behavior
Require: C =< ),_,Lg || Lg, (M) >
1. Gg <0
2: foralln € N do
3 (s,8):R <@ {t €R|Y Lpy=(S, Sinit» R) N (1)}
4. forallt € Rdo
5 By < {(Port,Role) € Y By | (Port(P))=n v
Role = n A ip(P) = 1(t)}

6: for all IOcy € Bp do

7: R« R U Sy +— P |
By .LabelActions(I0cy))

8: end for

9:  end for
10: Gp < G U (S, sinir, CCs(R'\R) U (R'))
11: end for

Ensure:Gp = (Lpy | Ly, ... || Lp)Vn € N

E. FROM HSF SEMANTICS TO DSL

The HSF is then integrated into EBNF to generate a stochas-
tic Domain-Specific Language (DSL),” which is used for
describing SoS architecture using the MDE approach. The
meta-models are established using grammar rules to create
a high-level DSL. For this purpose, an EMF8-based, Xtext’
approach is used that allows us to parse, build and translate
the internal code into an external DSL for architectural rep-
resentation. A high-level DSL allows the system designers
to describe the architectural elements of SoS with stochastic
reasoning by emulating the underlying syntax and semantics
within meta- models.

Figure 6 depicts the EBNF rules based on HSF semantics
using Xtext for SoS CS behavior specification. The CS defi-
nition starts with its name, state, and ports declaration. The
behavior comprises exogenous actions with random delay
rates and stochastic constraints using tell and ask operators
to deal with uncertainty. CS transition rules are defined with
the set of states consisting of events with rates. This leads to
generating probabilistic distributions of CSs when interact-
ing with other CSs that have collective dynamic transitions.

THSF based external (DSL) that enables abstract level SoS architectural
representation.

8https://www.e(:lipse.org/modeling/emf/

9https://WWW.eclipse.org/Xtext/index.html
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= Constiuteintsystem: ‘parameters_list’ '('(actions+-rate (',' actiont+-rate)*)? ')’
"CS" name=ID

ports+=Port*"}";
= Part:
{Port} 'port' name=ID (provides+=provide)?|{Port} (requires+=require)?;
© stochasticbehavior:
{StochaticBehavior} (SystemTransition+=SystemTranstions)®
(ConConstraint+=StochaticConstriants)®;
Stocha

ts} *Stochastic’ 'C

'Ceonstraints’ "{’
ntShareDate+=shardata '.' rate ')'| 'Ask’ '('ConstraintData+=Datatoinfer '

“state” name=ID "{"
(transitions+=Transition)*

ion:
operations’ name-ID rates+-rate*

= rate:
‘actionrates’ rates=ID

FIGURE 6. Excerpt-CS EBNF rules for DSL based on HSF.

Similarly, grammar rules for mediator behaviors and abstract
SoS architecture are defined to allow system architects to
describe SoS architecture using simple architectural notation.
This hides from the system designers the internal complexity
of underlying formalism and provides flexibility to describe
SoS models, which can be reused in the future. The generated
DSL based on HSF provides a formal stochastic basis for the
qualitative and quantitative verification of SoS architecture.

This section makes significant contributions to the body of
knowledge regarding the modeling of SoS stochastic struc-
tures and behaviors. The underlying semantics of HSF, bring
reasoning capabilities among CSs events with probabilistic
choices, race conditions, and conditional synchronous com-
positions to generate model behaviors. The SCCP operators
are used to deal with uncertainty in SoS architectural models
at the interactions level.

VI. CASE STUDY- EMERGENCY RESPONSE SYSTEM

AS CPSOS USING HSF

Architecture modeling and verification by means of the pro-
posed approach are conducted through a case study design of
a mission-critical real-time Fire Monitoring and Emergency
Response SoS (FM-ERSoS). It is a part of a smart city
project that allows various departments and entities to collab-
orate, particularly when dealing with emergency situations.
The emergency system is inspired by smart city projects to
manage disaster situations by encompassing modern IoT and
CPS technologies [67], [68] as CPSoS (consisting of vari-
ous IoT-based CPS nodes and third party independent CSs).
emergency response SoS, in collaboration with remotely dis-
tributed software-intensive systems, deals specifically with
sudden fire eruptions in urban and rural areas with continuous
monitoring.

Due to its architectural characteristics, FM-ERSoS exhibits
ND behavior with exponential distribution comprising ran-
dom action delays. Therefore, it is a challenge to design
such a critical system that dynamically evolves to achieve
missions [57], [69]. Essentially, it is a collection of vari-
ous independent CSs as CPS nodes and embedded physical
resources enriched with computing logic and interconnected
and able to sense data from the environment and subsequently
make a decision [70], [71]. Each CPS node is equipped with
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different sensors, connected through Wi-Fi Networks and
Wireless Protocols (IEEE802.11 Wi-Fi and Zigbee). Various
CPS nodes further collaborate through local gateways capa-
ble of performing the necessary processing.

A. ARCHITECTURAL DESIGN CONSTITUENTS

Figure 7 (generated from UML based on FM-ERSoS meta-
model) shows the high-level architectural view with architec-
tural elements and flow of information for FM-ERSoS.

Following are the key architectural components
of FM-ERSoS:
o Heat, Humidity and Wind-flow Sensors (CPSHWEF-
nodes).

« Flame and Smoke Monitoring (CPSFS-nodes).

o Local Control Station (LCS-nodes).

o Emergency Control Unit (ECU).

o Mediators with Wireless Sensor Networks (WSNs) for
mediation among CS.

B. STOCHASTIC ARCHITECTURAL SPECIFICATION

Specific to FM-ERSoS, Figure 8 shows a CS architec-
tural specification with HSF-based semantics as outlined in
Section V. CS, named CPSFS, is integrated locally with
fire and smoke IoT sensors as a complete and independent
system. This CPS node is responsible for predicting/detecting
fire in the early stages, performing the necessary measure-
ments, and transmitting these to the nearby CPS. This CPS
sends fire data in real-time as sensors detect smoke and
flames in the environment. Figure 7 depicts the coalition of
FM-ERSoS, which generates behavior with different CSs
through the constrained coordination of mediators.

In order to deal with unexpected wild-bushfire, the system
consists of multiple CSs nodes working as CPSHWEF, CPSFS
that enable the detection of fire and send data in real-time
to LCS. In response, the LCS nodes issue immediate emer-
gency and warning alerts to the ECU. Starting with the
CPSFS, as aforementioned has ports providing interfaces,
namely send-fire-data and receive-fire-data, at random rates.
The random actions with delays lead to the exponential distri-
bution of system state transitions. The mediator named M as
WSN coordinates fire monitoring data with specified roles
of data communication using the CS port protocols. Here,
the sending and receiving of fire data are achieved with
corresponding CSs ports signatures and roles. The second
mediator defined here coordinates with the fire monitoring
nodes CPSFS and CPSHWF which continuously gets data
from fire areas in order to monitor the real-time situation.
To manage uncertainty, the mediators and CSs exchange
exogenous external information through stochastic concur-
rent constraints via the Tell and Ask operators.

C. FM-ERSoS MISSIONS AND QUALITY ATTRIBUTES

FM-ERSoS has two main missions namely M| and M;. The
first and by far the most important mission M is to detect the
fire events as soon as possible and send messages to ECU.
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FIGURE 7. FMER-SoS concrete architecture with missions.

// Architectural Specification for Flame and Smoke detection and measurement CPS
CS CPSHWF parameter list (H_rate, WF_rate, 1_rate) {
Port sendFiredata

cPs IoTnodes {

IoTnodel Humiditysensor

IoTnode2 Windflowsensor

ToTnode3 GPS-sensor}|

Iterate {

Hdata = Humidtysensor fettchdata.H_rate

WFdata = WindflowSensor.fetchdata.WF_rate
locationdata= GPS.get_coordinates()}

Stochastic CConstraints{
Tell.(sensorslocation.l_rate) through {locationdata}
Ask. (nearbynodes.l_rate) through {locationdata}
communicatdata {

Throughconnection Hdata send.H_rate

Throughconnection WFDdata send.WF_rate}}

FIGURE 8. Abstract CPSFS behavior description in HSF.

The second mission M, provides prompt emergency rescue
services through warnings and alerts via the coordination of
LCSs and ECUs. The scenarios with missions and sub-goals
are depicted in Figure 7 and explained in the next section.
These are based on disaster management and emergency
response operations considering core QAs [68], [72].

1) SCENARIO-A

In the first scenario, the SoS with CPS nodes tries to achieve
M, with sub-goals G; of monitoring the fire and prediction
of real-time events as GiM;. The IoT nodes comprising
humidity, heat, and wind-flow sensors, predict the possible
fire event occurrence and generate messages through LCS
gateway stations to the ECU. Similarly, for GoM7, CPS nodes
equipped with fire and smoke IoT sensors observe fire events
in the area and send information to the ECU through LCS
in near real-time without failures. Wind flow sensors also
work in conjunction with the detection of fire to provide
information about developing fire directions and flows.

2) SCENARIO-B

This scenario is connected to the previous scenario and
extends the global mission as M. In this mission, once the
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ECU receives information about fire events from CPS sen-
sor nodes and remote nodes (satellite and drones), it starts
processing them continuously in real-time and further col-
laborates with CSs such as police and rescue services, for
immediate evacuation and provision of emergency services.
It also collaborates with IoT nodes to generate timely signals
to contain the fire spread by sending warnings and alerts
notifications to fire-fighters.

D. REQUIREMENTS FOR TRANSIENT AND STEADY-STATES
Based on the scenarios A and B, we have identified core
system QAs in relation to performance and reliability, and
similarly steady-state requirements for the achievement of
SoS missions.

1) PERFORMANCE REQUIREMENTS

Two Performance Requirements (PR) for the above scenarios
are: 1) latency (events response time), and 2) throughput
(number of alerts, warnings sent) per time unit, respectively.
Related performance requirements are:

e PR;: What is the probability of data delivery among
CPS- nodes, i.e. (sending fire prediction data, receiving
sensors data) within time 7" unit of seconds?

e PR;: The probability that the emergency control unit
generates alerts and warnings to first emergency respon-
ders within T time unit of seconds after it receives
messages from the control station.

o PR3: The probability that smoke and fire data will be
delivered to the local control station within the first
10 seconds is greater than 0.90.

e PR4: Fire data will be sent to the ECU and LCS from
CPS nodes sensors in less than 70 seconds with a prob-
ability greater than 0.80 with more than 50.

2) RELIABILITY REQUIREMENTS

Reliability R(z) of SoS is the likelihood that most of the
CSs will be working until the mission has been accom-
plished at time 7. SoS missions execute with continuous
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time, ¢t predictable failure rates A i.e. R(t) = e Mt. Core
Reliability Requirements (RR) are:

e RR;: Likelihood that CSs will be able to complete
actions when one of the CSs is degrading (leading to
failures) within Time T unit of seconds.

e RRj: There is less than a 50% chance that both CPSFS
and CPSHWF will continue to send data successfully.

e RR3: There is more than 50% likelihood that CPSCLS
may not send alert messages to the ECU in real-time.

3) STEADY-STATE REACHABILITY

Since the system usually executes on a longer period of time
starting from the monitoring of fire to send alerts to the first
emergency responders, it is vital to measure steady-states
which depict the long-run behavior of the system. We identify
few very critical Steady-State Requirements (SSR) vital to
system success as follows:

o SSR;: The long-run likelihood that various CPS nodes
will be able to send the fire situation data from source
nodes to nearby nodes?

o SSRy: Steady-state probability that Local control situa-
tion will not be able to send data and warnings to nearby
nodes and ECU?

o SSR3: What is the long-term possibility of success that
mission M1 or mission M, will be successfully accom-
plished?

VIl. MODEL-CHECKING SoS USING PRISM

Using CSL, model-checking algorithms based on BTL auto-
matically verify various system states to stochastic behav-
ior and quantitative measures of SoS properties with path
and state formulas. However, this creates the problem of
state space explosion with the exponential growth of state
space [62], [73]. Therefore, it requires a large number of
computational resources and time, adding to the complexity.
SMC methods try to solve the state-space explosion problem
by approximating the sample states using state-space reduc-
tion methods [15], [74].

Although there are many SMC tools including UPPAL
SPIN and PRISM to verify certain types of probabilistic
models [43], [75]. Among these, PRISM offers the features
required for the analysis of various types of stochastic models
and can optimize the use of resources by state space reduc-
tion [43]. Therefore, we use PRISM as our stochastic model
verification platform for performing structural and behavioral
analysis of SoS. The model specified in HSF is formally
transformed into PRISM as the CTMC model, which is fur-
ther reasoned and analyzed for conducting the architectural
analysis. The workflow and core analysis and evaluations
to be performed are depicted in Figure 9. SoS Require-
ments are specified by the system designer for modeling
SoS architecture. The stochastic model in HSF transformed
through formal rules into the PRISM CTMC model is readily
available for various architectural analyses. The SoS CTMC
model is analyzed with properties specifications using known
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FIGURE 9. SoS architecture model-checking from HSF to PRISM.

and unknown bounds to predict mission success and QAs
measurements to validate the stated requirements. Results are
evaluated considering requirements based on which the SoS
architecture model can be refined.

A. MAPPING RULES

To analyze the system architecture from HSF (syntax and
semantics defined in Section V) quantitatively, assess the
likelihood of SoS mission success and prediction of QAs in
PRISM (defined in Section IIID), an automated transforma-
tion approach has been adopted with mathematical principles
of mapping. Formally, an architectural model M which is a
stochastic model, can be transformed where each member
of M is mapped to each modeling element of S: M — S.
The following mapping rules have been defined for formal
translation from HSF to PRISM.

CS Initial State and Local Variables: The behavior of SoS
starts with an initial state in HSF as CS; € CS as a constituent
system that corresponds to local state and is represented as
Local Variable LV € V in PRISM and both eventually
represent initial state s; € S. We form the rule:

Rule|.CS; € CS < V < 5

CSs and Modules: Every module and CSs go through a
transition with a labeled action with delay rates r:

Ruley : CS; e ¢S > M Y s e 8

Each CS and module M also represent state s; as a result of
stochastic action taking place. We can formally represent the
CSs’ transition w.r.t command in PRISM, which is a result of
guard predicates and the transition rate matrix R with input
and output (10) ports (Pjy, Poy:) of interface I:

Rul€3 . CS, = R,’J[Pin, Pout] <> R(S, S/)I

Mediators and Modules parallel Composition: Modules
in PRISM can access shared actions («;) through parallel
composition in the form (M | (o) | M), and mediation
is performed through the synchronization of commands with
global variable (GV') which correspond to mediators respon-
sible for communication among CSs. Interactions are formed
on the fly with the ports following the transition as R when
CS4 and CSp form a binding through global variables:

Rule4 . med,- = Ri,j[Pin CSA | CSB Pout]
< GV :M—> M < R(s,s)
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Constraints across coalitions and systems: Constraints are
related to overall coalition behavior and QAs that correspond
to commands, which must be valid in terms of respective
guards and updates in PRISM modules:

Rules : YV(Col < G A Q4 >) = True
< V(GV <C>A<R>)

Where Col represents a coalition, Gp is a set of global behav-
iors and Q4 for QAs. Similarly GV with commands (C) and
rewards (R) are true.

Formally founded rules defined are complete with respect
to their compatibility with underlying semantics of HSF
and PRISM. A summary of transformation rules is given
in Table 1, which contains their descriptions and HSF, PRISM
elements aligning one-to-one corresponding through map-
ping rules. These formal rules enable the automated transfor-
mation of the HSF architectural representation to a PRISM
CTMC model.

TABLE 1. Summary of mapping rules for HSF to PRISM formalism.

Rules | Description HSF- Architecture | PRISM
Elements Elements
Rulel| System State CS- State LV
Rule2| Components CS Module M
Rule3| States Mapping | R(s,s’) Command C' :
— s(eventr) —» s’ | [Jguard— >
tr : update;
Rule4| Parallel Med=via(p) (M| a; | M)
Compositions & (p’) IO Ports
Ruleb| Coalition Con- | V(Col < Gp A | YV(GV < C >
straints QA >) A< R>)

B. MARKOV MODEL AND VERIFICATION SEMANTICS

The model specified as CTMC requires formal property spec-
ification; i.e. a model checker needs to verify that a stochastic
model conforms to specified properties according to a certain
logic. Before defining the logic specification, we redefine the
CTMC with model-checking perspective.

Definition: In a model-checking perspective CTMC is
defined as a tuple of the form M =< S, Siir, Q, E(s),
AP, L(f) > where:

o S and S;,;e s are same in Section IIIB.

o Qs a transition rate matrix, Q = [g ] : § xS —

R* > 0.
o E(s) is the exit rate, accumulating all rates from going
out of state s with actiona: R(s, s') = ), € S.R(s, a, s').

o AP and L(f) are the same as defined in Section ITIC.

With model-checking, a CTMC considers current state
with state residence time 7; of X (¢) random variable and stays
N time units in state i: S[X;);] that essentially exhibits a
memory-less property and does not require the counting of
previous states. For moving from s; to s; in time ¢ there exists
a transition probability of 1 — eR(i-9)

This can be expressed as the probability of moving from
state i to j with transition rate matrix R:

R(i,j) = )\.'P(i,j) = 'P(i,j) = R(s,-,sj) = ZS[—)s’ R(s;, Sj)
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A CTMC model with finite set of states s; € S forms a

path mw with time transitions ¢t € T = (o, do, ), (51,
ai,t1), ..., (Sp—1, an—1, t,—1) Wwith transitions rate matrix
R(s, s)):

TM)=me) S|m=(s5) )

=S
Paths and states are used extensively for steady and tran-
sient states during the model-checking process overs stochas-
tic state space for system properties verification, which we
explain in the section below.

1) CONTINUOUS STOCHASTIC LOGIC
To verify system goals and QAs, the stochastic model of
CTMC can be validated quantitatively using CSL descrip-
tions. For a specified period of time or interval, the model’s
architecture is analyzed in terms of transient properties, while
steady-state properties are specified for evaluating long-term
system behaviors.

Definition: For real-time events «, AP atomic propositions,
o € AP, and probability bound is Pe [0, 1], ¢ is the time
interval it takes for moving from R(s;, s;i11) € R* > and
€ {>, >, <, <}. The logic to express state ® and path W
propositions is described as follows:

@ 1= true |o|® A B|=P|Pocp[W] [Sop [W]] R (W)
Ui=X<td|dU®

State formulas & are used to verify every state of the
system, while path formulas W trace each path. Both of
these formulas are based on BTL semantics as described in
Section IIIC1. Based on CTL X (Next) and U (until) are
temporal operators and can derive other operators such as
eventually (F, ¢) and always (G, [J) for defining advanced
logical formulas i.e. O='® = true U< ®.

2) CSL PATH FORMULAS-SEMANTICS

The path formula X ®=' is true if @ is true in time interval
t in path 7 against a state transition. Similarly, ®;U’®,,
tends to be true if ®, is true in time interval ¢ and ®; also
holds on a path execution. Set of paths in M is Path ™ (z™)
therefore, s |= ® assure that state s satisfies property ® and
Path 7M: v |= W satisfies property W. We have transient and
steady-state formulas: s = Poop[W] iff W is satisfied in path
m starting with state s € § ep<, and w |= S.p[V] iff W is
satisfied in long-run for state s. The steady-state probability
of model Ps(M) over the the path 7" from (6) and (7) with
matrix Q and vector P are calculated respectively. Therefore,
we obtain the initial path mo(e, s”) as:

aM)=P{S =5|S =(s,t,5)} = limi_0(s, t,5) (10)

By applying the system of linear equations, we assume
mi(e, ¥) = 0 to compute steady-state probabilities:

(M) =IP’(7r(s).Q=O,Z7t(s, s)=1 (11)

Transient probability is the measure of the probability of a
system being in a state s for a particular time interval ¢ s; @¢
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FIGURE 10. FM-ERS0S CTMC states transitions and missions with stochastic behaviors in PRISM.

on a path 7 of the form r5; @¢; therefore, from(6) and (7) we
obtain:

7 (M)s.¢ 1) = P{n; € Paths(S)|n;, @t = 5} (12)

System performance and reliability properties are
expressed through CSL using (10) and (11) for CTMC models
using combinations of CSL operators. Here, we focus on
time-bounded verification of properties using ‘until’ and
‘next’ operators. The performance and reliability can also
be predicted with unknown probability bounds. From (10)
and (11) we have general property specification formulas as
follows:

PM = Poop (V) (13)
PM = Seep(W)) (14)

The quantitative measures for the Markov model of a
complex system M can be determined for transient and
steady-states overs paths from (13) and (14), respectively,
using stochastic logic propositions.

3) BOUNDS: KNOWN AND UNKNOWN

To deal with non-determinism, we adopt a unique approach
for the verification of a stochastic model using known and
unknown bounds for system properties. CSL allows reach-
ability analysis, also known as Qualitative Reachability,
with Known Thresholds (QKT) values to determine if a
certain state(s) of the system is reachable with probability
ratios. Bound <, can be used with relational operators i.e.
Pro,0.71(¥) for P<o.7(¥) to check whether certain thresholds
of system properties are met.

Moreover, in CSL, transient and steady-state probabilities
can be quantified by leaving the bounds unspecified. Hence,
we can define properties in the following way: P =?[V] —
(unknown transient probabilities quantification of properties)
S =?[V¥] — (unknown steady-state probabilities quantifica-
tion of properties). For example, to predict a future state that
a stochastic system may reach in a given time interval t with
an unspecified probability bound, we apply as: P =?[F='].
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The model-checking of system behaviors with unknown
bounds is called Quantitative Reachability with Unknown
Thresholds (QUT).

System Qualities with Rewards: The system model receives
a reward for each time instance that it spends in a particular
state s. For the reward specification, we use the general
formula R (¥), R being the reward amongst a set of paths
 with starting state s that satisfies ¥ a bound < x. From
this the commutative reward C and instantaneous reward I,
are formulated with time unit ¢ as:

Reoax (CS ’) and Ryax (IrS ’)

VIIl. VALIDATION

The overall process for the verification and validation of the
stochastic model is depicted in SAM-SoS in Figures 3 and 9
which show the schematic flow of the approach. The exper-
imental results are checked and verified against stated
properties for verification and predication as outputs of the
validation process.

A. STOCHASTIC MODEL IMPLEMENTATION

Based on the transformation rules defined in section
VIIA, we have mapped the stochastic SoS CTMC model
(FM-ERSoS) from HSF into PRISM semantics. The model
consists of abstract CSs forming coalitions at runtime primar-
ily based on Algorithm 1. The stochastic CTMC specification
based on the architecture of the SoS model is presented
in Figure 10 with possible states and CSs to achieve SoS mis-
sions. All the modules (CSs) interact with each other through
actions ACT transition rates T,. The complete model speci-
fications of the transformed FM-ERSoS model in PRISM is
available in the link.'”

The model starts from state 0 and moves to multi-
ple states. We assume states {1, 2} and {5,6} represent
the CPSHWF and CPSFS nodes respectively. Transitions
occur with real-time events and action delay rates. LCS is

1Ohttps://github.(:om/ahmadspm/FM-ERS0S—Model—Verifi(:ation—from—
HSF-driven-Models
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represented in state 9 as the critical state (there are other
possible states for this node, but for simplicity, we have
chosen this state). The system reaches to state 10 for com-
pleting mission M; (Generate early warnings and Transmit
data to ECU). ECU with states 12 and 13 generates alerts
and early warnings to first responders. The absorbing state
is 15 and indicates the achievement of mission M;. The
parameters used for the model are given in Table 2. N repre-
sents system constant, ¢, is transition rate, and these rates are
extracted by examining the similar type of complex real-time
systems [45], [76]. T is the time unit used for a real-time sys-
tem for model-checking at runtime while individual numbers
of CPS nodes are described with minimum and maximum
variables.

TABLE 2. FM-ERSo0S stochastic model parameters.

Parameter Description Possible Values

(N) System Constant (int>0 )

(T) Real-Time Interval units | (seconds, minutes, hours)
(trl- trd) Sensors Reading Rates (0.5.0.75,0.85,1.00)
(tr5,tr13,tr9) Sending Sensor Data (4.5,5.0)

(tr6,tr14,,tr15) | Receiving Sensor Data (6.5,6.0,8.0)
(tr10,tr11,tr12) | Warnings & Alerts (8.5,10.5, 12.0)

(min, max) | Number of individual | (4,75)

nodes CPS nodes

B. VERIFICATION THROUGH TEMPORAL LOGIC CSL

By means of CSL, APs are checked for state properties using
steady-state and transient analysis via (13) and (14).

1) STEADY-STATE PROPERTIES

Steady-state CSL properties help to verify the long-term
behavior of the stochastic FM-ERSoS. By using (14), we for-
mulate steady-state specification as:

S =7[P(Ss Vv Cs)] (15)

® is for an AP that could be a single state (Ss) or composite
state (Cs) and S be the steady-state operator.

2) TIME BOUNDED TRANSIENT PROPERTIES AND REWARDS
STRUCTURES

To determine how different system QAs perform while
achieving certain functionalities in SoS, we use transient
CSL properties with time bounds. CSL has two variants of
transient time-bounded properties as time bounded next with
operator (F) and time bounded until (U). By using (13) we
obtain:

P = NF='D(Ss Vv Cs)] (16)

P =01 U= ds] (17)

Here &, ®; and &, are APs for paths states while ‘t’ is
the time interval, g is the given threshold value, and the next
operator (F) may contain single or composite states as APs.

Single state is preferred for the ‘until’ operator (U ) especially
when monitoring a fire from the prediction state to emergency
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management since CSs are operating in an unstable and
volatile environment. Finally, time-based reward structures
are used in the model to reason about certain performance and
reliability requirements. Following is the general specifica-
tion for state-based or transition-based rewards verification:

R{“Reward"} =7[®] (18)

Relevant requirements for performing analysis, their
description, and logical specifications are presented
in Table 3.

TABLE 3. Transient specifications and related requirements: QUT.

Req. | Description

PR | Fire Data Delivery
Rates

PR>| Average No. of Alerts
& Warnings

RR1| CPS nodes Reliability

Logical Specification
P=?[F<=T("Send(A) A Send(B)")]

R{"Alerts-Warnings" }=?[C<=T]

P =7[—(op(A)) U <=T(Op(B))]

C. RESULTS AND DISCUSSIONS

All the experiments were conducted on Intel(R) i7-7700@
3.60GHz with a RAM of 16 GB. To perform verification
and simulation, a hybrid engine was selected for PRISM
using JAVA client as a runtime environment. The maximum
iteration for termination was 10000, the probability threshold
was established as 1.0 x 107>, and hybrid sparse memory was
up to 1024 kB.

1) SYSTEM REQUIREMENTS VERIFICATION THROUGH QKT
We start our experiments by checking the QKT model, which
involves qualitative verification of specific system properties.
Since the threshold values are already known, results are
either satisfied or not satisfied. Table 4 shows the corre-
sponding requirements, CSL logic predicates, and associated
outcomes. Most of the requirements are satisfied. However,
PR, does not meet the desired likelihood of 80% which can-
not be achieved in real-time due to the uncertain environment
in which CPS nodes work. For reliability, especially RR»,
results show that there is less chance that both CPS nodes
will be able to send data to LCSs.

TABLE 4. Transient specifications and related requirements: QKT.

QKT | CSL logic Results
Req.
PR3 | P>=0.9[F[0,10] "FireDataSent-LCS"] Satisfied

PRy| P>=0.8 ["Data from CPS-nodes"U<=70 | not Satisfied
"FireData-LCS"]>=50

RR2 | P<=0.5 [F("CPSHWE-willSend") A("CPSFS- | Satisfied
willSend")]

RR3 | P>=0.5[F !"Data from LCS- ECU"] Satisfied

2) LONG-RUN SoS BEHAVIOR

Logical specifications for steady-state analysis are derived
from (15). Results are presented in Table 5 together with par-
ticular requirements and expected values. It is observed that
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TABLE 5. SoS long-run behavior analysis.

SSR Stochastic Logic Expected
Values
SSR1| S=?"Send_Sensors_Data"] 7.837¢=2
SSRo | S =7[- ("Local_CS_Transmit_Data")] 4.459¢~T
SSR3| S=["(MI1_Achieved V M2_Achieved")] | 7.0962e~1

for the initial configuration of CSs (CPSHWF and CPSES)
the probability of sending sensors’ data in the long term is
quite low at 7.837e¢~2. This is because both of these CSs
operate in a volatile environment where there is a strong pos-
sibility of failure as the fire situation develops. The long-term
likelihood that (CPSLCS) will not be able to send messages
to the ECU is as high as 45%, indicating that there may be
problems with data transmission in future. Once the data has
been processed with nodes at the edges i.e. with ECU and
a local gateway LCS, the chance of the mission succeeding
increases with an expected value of 7.0962¢~ .

3) TIME BOUNDED TRANSIENT ANALYSIS WITH QUT
Fire Data Delivery- Latency: PR

One of the important tasks of the fire monitoring system
is to measure the real-time fire events from source locations
and forward this data to the nearby node in minimum time.
The graph in Figure 11 shows the different probabilities of
sending sensors data from CPS-nodes to connecting nodes.
The time unit was constrained to 20 seconds, while N= 20,
10 and 30. The average number of iterations performed by
these nodes was 430. The minimum probability at time unit 1
for CPS nodes CPSHWF and CPSFS is 0.40, and it gradually
reaches 0.99. The first two nodes had the maximum amount of
response time of five-time units. This indicates that if source
CPS nodes are connected well and have the right amount of
bandwidth for mediator, the CSs may perform better. When
any one of the nodes works with a LCS node, the performance
remains moderate as in the second case where the probability
that sensor data will be sent from the CPSFS to the gateway
station LCS within the given time is more than 60% on aver-
age. Similarly, the probability of data delivery from gateway
stations to ECU nodes increases to 0.80, indicating the change
in likelihood with a positive trajectory. The average response
time for the last two pairs of nodes remains at 10-time units,
which are quite high. Thus additional nodes are required to
reduce the load.

Alerts and Warnings: PRy

Once the ECU starts receiving data from local gateways,
it is vital that it processes the data immediately to generates
the maximum number of warnings and alerts to first emer-
gency responders, including police, ambulance services, and
fire-fighters. This can be measured with the reward formula
from (18). It obtains the warning data and other events data
randomly from distributed LCS and sends messages after
further data processing. We verify the combined rewards
for alerts and warnings within 30-time units by changing
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the number of system constants. With N = 10, the max-

imum number of rewards reached is 30, while it reaches
90 with N = 20 in given time units, which is the highest
reward for sending warnings and alerts messages as depicted
in Figure 12. It reflects with increasing N system number of
CSs, and it has a direct impact on the performance of ECU
as it allows to process more sensors data in and disseminate
the information in a timely manner. Depending on the risk
areas and geographic spread of the fires, the participating CSs
may be increased, starting with source CPS nodes at the local
gateway station and moving towards the ECU.
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FIGURE 12. Average number of alerts and warnings.

Reliability with CSs Degrading: RR, Since a SoS com-
prises various CPS-IoT nodes with multiple independent sen-
sors operating autonomously, the reliability of the system
is governed by the number and types of failures occurring
among the collaborating CSs operating in a volatile environ-
ment. As we can see from the graph in Figure 13 for RR»,
when CSs are collaborating, the likelihood that HWF will not
be degraded is very low, ranging from (0.039 to 1.52) within
time units 1 to 30, respectively. The CPS nodes of the ECU
and LCS have arelatively low percentage of failure when col-
laborating with a maximum value of 0.129 within time . The
likelihood that the system will achieve a sub-goal (i.e. ECU
can send alerts if LCSs are failing) is relatively lower than
desired. During a separate experiment, it was also observed
that when predicting the failure of the SoS combined with all
CS failures in the long term, i.e. for the next unit of hours,
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the probability was almost 0.99, which is quite high. This
is due to unexpected and sudden failures and environmental
uncertainty. The reliability of the system can be improved by
replacing the degrading CSs with redundant CSs.

4) MISSIONS AND RELATED SUB-GOALS

Moreover, all these analyses enabled us to predict the possible
success values for missions and associated goals. Mission M
has two sub-goals: monitor and predict G;M; and transmit
data to ECU and send-alerts as Go M. Similarly, mission M»
has a collective and time critical mission to generate warnings
and send-alerts to first responders. We check the likelihood
that these individual missions are achieved within time T
units. The property specification logic is provided:

P =2F <= T“MissionM-Goal — GAchieved”]

The graph in Figure 14 shows mission behaviors during
an emergency and their probability of success in time 7.
There is approximately a 30% chance that mission M and its
sub-goals will be achieved within the time of 40% success.
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The probability of achieving mission success M| is quite
high, which reaches to value 0.80 that first responders and
population in the area can receive alerts and warnings in a
timely manner. However, the level of reliability of participat-
ing nodes is determined by the number of failures during the
mission.

D. SUMMARY OF THE RESULTS

The analysis of SoS stochastic architecture behavior in the
long term shows that the model has a likelihood of failing as
it continues to perform goals. The results reveal that starting
with HWEF, the long-term stability of CPSFS nodes for fire
detection, smoke, and humidity, is expected to be lower than
50%, and there is a greater chance that at certain stages,
one or all of the starting CPS nodes may fail once the fire
spreads. There are varying results for the quality of attribute
performance and reliability of FM-ERSoS. For example,
the latency of sensor data exchange from node to node is rela-
tively satisfactory, provided that intermediate nodes are con-
nected. The likelihood that messages will be delivered within
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time 7 units is around 60%, which is satisfactory. This
increases as the flow of data go to the next nodes, i.e. from
the LCS to ECU and first emergency responders.

The FM-ERSoS reliability is below the expectations, for
both the starting and ending CPS nodes. The participating
nodes are prone to failures, and it is also observed that there is
a strong tendency for individual nodes to degrade. There is a
strong probability that CPS nodes CPSFS and CPSHWF will
deteriorate with time, with low average reliability of 70%.
The LCS gateway may also degrade, further impacting the
flow of information while the actual fire situation is esca-
lating. The degradation of the ECU when collaborating with
LCS is relatively low as it operates in a much more stable
environment. However, collective reliability R(¢) decreases as
LCS has a higher rate of failures. There is a possibility that
more than 55% of the messages fail to reach their destination
if one of the CSs is failing within time, 7. Therefore, all
the corresponding nodes must work effectively when collab-
orating to achieve missions/goals, especially in the case of
warnings generated by LCS and sent from the ECU to the first
emergency responders. The inevitable failures could lead to
disasters; timely evacuations, help services, and rescue may
be delayed as the information is lost among nodes.

1) IMPROVING PERFORMANCE WITH ADDITIONAL CPS
NODES

The performance of FM-ERSoS in terms of response time
for mission accomplishment can be improved with addi-
tional CSs, especially in emergency cases where human lives
and critical infrastructures are under threat [77], [78]. How-
ever, additional CSs will increase the cost and may require
extra resources for maintainability. We added CSs to the
model in parallel based on critical suburban regions with
areas of roughly 10-20km. The starting CSs, i.e. CPSFS and
CPSHWE, increase in number area-wise when the LCS and
ECU are moderate in number.

The graph in Figure 15 shows how additional CSs have
influenced the response time in terms of individual fire data
delivery. Starting from a suburb with an area of 10 square km,
initially, with 10 CSs, it has 200-time units of response time,
and it decreases gradually with the addition of other CSs.
Similarly, suburban areas of 15 and 20 square km exhibit a
similar pattern; however, the impact on response time varies
for the specified area. For example, the response time for
15 CSs is 180-time units, which is quite high. In the third case,
where the maximum number of CSs is 70, the response time is
55, which is ideal. One important observation is regarding the
level of uncertainty: despite the addition of nodes, the overall
impact is not always positive in some cases, as shown in the
cases of the first and last suburbs with nodes 50 and 30, which
have high latencies of 110 and 270 respectively.

2) IMPROVING SoS RELIABILITY WITH REDUNDANCY

As discussed above, the reliability of redundant CSs can
be improved; however, certain design principles must be
followed. The sequential addition of components might not
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improve the reliability since this will further be lowered if any
one of the CSs fails [79]. This problem can be overcome by
applying parallel reliability with redundant CSs [80]. Parallel
reliability is achieved in terms of unreliability (1 — R(¢)) of
CPS node as:

R(t) = 1-[(1-R(t1))(A=R(12))(1 =R(13))] = 1 =TI(1-R(1)))

A high collective reliability R(¢) value of 0.99 is achieved
with the composition of many redundant nodes. However, this
approach has associated cost and maintainability overheads
for the system in the longer term. Due to the fire spread,
initial nodes, i.e. CPSFS and CPSHWEF, are prone to failures
and can be very volatile. Hence, reliability R(¢) is measured
with the random addition of parallel CSs. Figure 16 shows the
improved reliability with redundancy for the SoS.

FM-ERS0S-Reliability with Redundency
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FIGURE 16. Improving SoS reliability with redundancy.

3) PREDICTION OF MISSIONS SUCCESS

Results reveal that a SoS is prone to mission failures and,
if left untested, this would jeopardize the accomplishment
of system goals. At the same time, QAs metrics show
that reliability and performance need to be improved upon
because the values indicate that latency and throughput
have a high likelihood of diverging from the stated require-
ments necessary for mission success. However, with alterna-
tive models and rigorous verification, architectural designs
can be improved well before time to minimize defects and
improve QAs.
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TABLE 6. Comparative analysis of proposed approach with related work.

Approach System Formalism Model Stochastic | Reason Formal Analysis Type | QAs
Type Structure Behaviors Uncertainty | Transformation Quantification
& Behavior & Prediction
Wei et al. | Single Automata +++ -- -- ++ Transient safety
[38] System
Huang and | Single Semi formal | +++ Not - -- Transient Safety,Security
Kang [39] System known
Cavalcante et | Single CCS +++ -- -- -- Transient Availability
al. [41] System
Nouri et al. | Single Timed +++ -- -- -- Transient Performance
[44] System Automata
Song et al. | Single CSP & Z | +++ ++ -- -- Transient Performance
[47] System Notation
Mignogna et | SoS Semi formal | +++ -- -- -- Not known --
al. [48]
Bozzano et | SoS CSP +++ ++ -- -- Not known Saftey without
al. [49] prediction
F.Oquendo SoS CCS & CCP | +++ -- -- -- -- --
[21]
Our SoS Hybrid +++ +++ +++ +++ Steady-state, Performance,
Approach. Formalism Transient Reliability
(known,
unknown
bounds)
Legends: +++ means: Fully Supported , ++ means: Partially Supported,- - means: Not Supported

IX. SAM-SoS: COMPARISON WITH EXISTING
APPROACHES

Table 6 presents a qualitative comparative analysis of our
proposed approach for modeling and verifying SoS architec-
tures with related works. The analysis is performed based
on the capabilities of approaches to support the required
features: (i) modeling (system type, formalism, structure and
behavior, stochastic behaviors, and uncertainty reasoning),
and (ii) formal verification (formal transformation, analysis
type, and QAs quantified and predicted).

The single-system modeling and verification approaches
are able to perform the transient analysis with the quantifica-
tion of single QA. However, these modeling approaches are
unable to deal with the unique architectural characteristics of
SoS as these are intended for single stand-alone deterministic
systems; therefore, they fail to provide solutions such as
that as proposed in our approach to overcome the existing
limitations. Among these approaches, QaSten [38] based on
Automata by Wei et al., provides a modeling and verification
approach with semi-formal transformation rules. Specific to
single systems, Song et al. [47] have been able to constrain
the stochastic behavior of large complex systems to a certain
extent.

Among techniques specific to SoS architecture modeling,
CML based on CSP in [49] partially supports the description
of stochastic behavior using contracts specification coupled
with semi-formal SysML notations. Therefore, it is unable
to model SoS behaviors that later can be evaluated quantita-
tively. Sosadl by Flavio [21] is a promising formal modeling
language based on CCS and CCP. However, it does not sup-
port stochastic models and uncertainty reasoning in its current
state since the underlying formalism is unable to constrain
actions with probabilities or random rates; and consequently,
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it fails to provide features necessary for model verification.
Although some of these approaches attempt to manage struc-
tures and behaviors with probabilistic choice, none of these
can deal with the non-determinism and stochasticity of SoS
architecture dynamic behaviors for modeling, reasoning, and
further quantitative verification. None of these approaches
provides formal transformation rules from a stochastic archi-
tecture model to a statistical model checker, which should
conform semantics to ensure consistency.

Compared to existing techniques, our proposed approach
specifically brings modeling capabilities, with HSF deriving
process algebraic features that have the essential vocabulary
and reasoning semantics to deal with uncertainty and stochas-
tic behaviors of SoS at the architectural level. It allows us to
build stochastic models quantitatively, enabling various anal-
yses of SoS architecture models. With formal transformation
rules, we provide consistency and completeness for model
mapping from HSF to PRISM. Our verification consists of
model-checking of steady-state and transient analysis cou-
pled with known and unknown bounds that enable quantita-
tive prediction of multi-QAs in terms of the performance and
reliability of SoS architectural models. Our approach is more
comprehensive and addresses most of the shortcomings of the
current approaches for the modeling and verification of SoS
architectures.

X. CONCLUSION AND FUTURE WORK

In this research paper, we have proposed a comprehensive
approach for the modeling and verification of complex SoS
architectures. Our contribution to the broader body of knowl-
edge is multi-fold. At the first stage, we have devised a hybrid
formalism by integrating syntax and semantics of traditional
PAs into SPA. To deal with unpredictable and uncertain
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interactions within a SoS, we have introduced stochastic
model capabilities. The exogenous behavior of CSs involves
parallel actions by means of concurrent stochastic constraints
applied to HSF. Improved syntax and semantics give reason-
ing capabilities for modeling the random, ND behavior of
stochastic SoS. In particular, the MDE approach was adopted
whereby we transform EBNF into formal DSL, producing an
extended HSF for SoS.

At the second stage, for model verification, we establish
formal rules for mapping from our stochastic model into the
PRISM equivalent transformation, employing SMC. Formal
rules allow the automated transformation of the architectural
elements of HSF into the PRISM language. Thirdly, we
propose a unique verification approach using time bounded
modeling checking against labeled Markovian processes.
In addition to performing behavioral analysis, we allow sys-
tem architects to undertake qualitative and quantitative analy-
sis. In this paper, the approach has been validated with an end-
to-end case study of real-time CPSoS employed to manage
and control emerging fire emergency from a socio-technical
perspective. The achievement of the SoS missions and the
QAs has been verified through SMC with the application
of both steady-state and transient analysis of known and
unknown bounds. An adequate number of experiments have
been run, and results have been evaluated for the stochas-
tic system at design time before implementation, allowing
system architects to make better decisions with alternative
choices.

In future work, we intend to improve our formal semantics
for HSF in order to build Markov models from CTMCs
to MDPs that will improve the non-deterministic reasoning
capability of dynamic SoS reconfigurations. For this, we shall
add operators to manage dynamic architectural changes at
architectural level with certain constraints. By taking into
account the complexity of SoS, the MDPs will offer alter-
native strategies for the assessment of emergent behaviours
and QAs at runtime. We plan to increase the ability of QAs
by, for example, providing a specification with each dynamic
configuration at abstract level. We also plan to perform QAs
trade-off analysis of various attributes in order to improve the
architectural design decisions for SoS.
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