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Abstract
Current in vitro genotoxicity tests can produce misleading positive results, indicating an inability to effectively predict a 
compound’s subsequent carcinogenic potential in vivo. Such oversensitivity can incur unnecessary in vivo tests to further 
investigate positive in vitro results, supporting the need to improve in vitro tests to better inform risk assessment. It is increas-
ingly acknowledged that more informative in vitro tests using multiple endpoints may support the correct identification of 
carcinogenic potential. The present study, therefore, employed a holistic, multiple-endpoint approach using low doses of 
selected carcinogens and non-carcinogens (0.001–770 µM) to assess whether these chemicals caused perturbations in molecu-
lar and cellular endpoints relating to the Hallmarks of Cancer. Endpoints included micronucleus induction, alterations in gene 
expression, cell cycle dynamics, cell morphology and bioenergetics in the human lymphoblastoid cell line TK6. Carcinogens 
ochratoxin A and oestradiol produced greater Integrated Signature of Carcinogenicity scores for the combined endpoints 
than the “misleading” in vitro positive compounds, quercetin, 2,4-dichlorophenol and quinacrine dihydrochloride and toxic 
non-carcinogens, caffeine, cycloheximide and phenformin HCl. This study provides compelling evidence that carcinogens 
can successfully be distinguished from non-carcinogens using a holistic in vitro test system. Avoidance of misleading in vitro 
outcomes could lead to the reduction and replacement of animals in carcinogenicity testing.
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Introduction

Thousands of new chemical entities (NCEs) are generated 
each year, and all require initial safety testing to predict their 
human health implications. Exposure to certain agents can 
increase human cancer risk, due to genotoxicity or other 
mechanisms of carcinogenesis. Carcinogenicity assessment 
of NCEs is, therefore, necessary prior to chemical advance-
ment within the pharmaceutical, food, agriculture, and gen-
eral manufacturing industries.

Chemical safety assessment generally follows a tiered 
route, where initial in vitro genotoxicity test results deter-
mine whether subsequent in vivo genotoxicity and carci-
nogenicity investigation is performed (Rovida et al. 2015). 
It is well accepted by regulators that in vitro tests demon-
strate low specificity, failing to successfully distinguish 
carcinogens from non-carcinogens (Pfuhler et al. 2011; 
Rovida et al. 2015). There are, therefore, two classes of 
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in vitro positives: true positives, which are in vitro posi-
tives that cause carcinogenesis in in vivo follow-up tests, 
and ‘misleading’ positives, which are positive in vitro 
yet negative when subsequently tested in vivo. Such mis-
leading positives are, therefore, only identified when the 
results are not replicated in follow-up in vivo carcino-
genicity testing (Fowler et al. 2012a; Kirkland et al. 2005a, 
b; Kirkland et al. 2007; Thybaud et al. 2007). Factors 
such as the choice of cell type and excessive toxicity from 
high doses can affect the frequency of misleading posi-
tive results from in vitro genotoxicity tests (Fowler et al. 
2012a, b, 2014; Shah et al. 2016). The choice of treatment 
type, number of test concentrations and timescale in vitro 
will also impact on the outcome for certain endpoints at 
low doses (Chapman et al. 2015, 2020).

High misleading positive rates have important conse-
quences, including hindering the development of many 
chemicals with beneficial applications, such as in products 
and treatments (Fowler et  al. 2012a). A second serious 
consequence of such misleading positives is the required 
performance of unnecessary animal testing to further inves-
tigate positive in vitro results that are later determined to 
be artefactual (Pfuhler et al. 2009). Improving in vitro tests 
for carcinogenicity prediction is, therefore, imperative for 
alignment with the 3Rs principle (Burden et al. 2015) and, 
therefore, avoiding ethical issues and resources associated 
with in vivo testing. Furthermore, initiatives such as Tox-
icity Testing in the Twenty-First Century are recognising 
that the use of human cell-based in vitro testing may confer 
greater human relevance than animal-based tests (Adeleye 
et al. 2015; Council 2007).

The advantages of multi-endpoint in vitro approaches for 
accurate prediction of in vivo carcinogenicity are increas-
ingly being recognised (Benigni 2014; Bourcier et al. 2015; 
Breheny et al. 2011; McKim and James 2010). The paral-
lel assessment of multiple, holistic endpoints may enable a 
broad range of carcinogenic mechanisms to be monitored 
and link to adverse outcome pathways (AOPs) (Burden et al. 
2015). Previously, we have demonstrated that integrated 
in vitro endpoints show promise in distinguishing genotoxic 
carcinogens from non-genotoxic carcinogens, with results 
also correlating well with in vivo data (Wilde et al. 2018).

While in vitro genotoxicity tests have been studied previ-
ously for their ability to identify carcinogens and non-car-
cinogens accurately (Kirkland et al. 2005a, b; Kirkland et al. 
2006), holistic approaches have not been comprehensively 
validated. Indeed, using multiple genotoxicity test systems 
has been demonstrated to increase sensitivity (Kirkland et al. 
2005a, b); this supports the use of multiple endpoints to pro-
vide more information on compounds’ biological effects. It 
is possible that the traditional genotoxicity endpoints alone 
have limited relevance for cancer prediction, and cancer-
relevant endpoints should instead be pursued, given that the 

next test stage usually involves carcinogenicity assessment 
(Steiblen et al. 2020).

The objective of the present study, therefore, was to 
establish a more informative in vitro test that could increase 
confidence in in vitro genotoxicity data, and potentially be 
incorporated into current test batteries. This was achieved 
by evaluating, for the first time, whether our multi-endpoint 
in vitro carcinogenicity approach could correctly predict 
in vivo carcinogenicity outcomes for both carcinogens and 
non-carcinogens. The chemicals selected for study are sum-
marised in Table 1. Based on the existing literature, two car-
cinogens, ochratoxin A (OTA) and 17-ß-oestradiol (oestra-
diol), were selected to further evaluate the test strategy for 
carcinogens of which the mechanism is not fully understood. 
As well as the carcinogens, two different types of ‘non-
carcinogens’ were tested to validate our holistic approach; 
‘misleading’ in vitro positives and toxic non-carcinogens. 
The three misleading in vitro positive compounds tested 
were quercetin, 2,4-dichlorophenol (2,4-DCP) and quina-
crine dihydrochloride (QDH) (Kirkland et al. 2008). While 
quercetin has often been referred to as a misleading in vitro 
positive, there is also a  TD50 value available suggesting that 
it is not necessarily a misleading positive (Table 2). The 
small number of studies that did produce positive in vivo 
carcinogenicity results with quercetin have, however, been 
heavily criticised due to study design (Pamukcu et al. 1980; 
Program 1992). The three non-carcinogens selected were 
caffeine, cycloheximide and phenformin HCl (Kirkland et al. 
2016; Bryce et al. 2017). By comparing the overall outcomes 
for the carcinogens with non-carcinogens, we can determine 
the suitability of our test strategy for correctly identifying 
new chemicals with carcinogenic potential.

Materials and methods

Chemicals

Test chemicals were purchased from Sigma-Aldrich and 
stored according to the manufacturer’s instructions. OTA, 
QDH and quercetin were dissolved/diluted in dimethyl sul-
foxide (DMSO) (Fisher Scientific), whereas 2,4-DCP, caf-
feine, cycloheximide and phenformin HCl were dissolved/
diluted in  dH2O. Oestradiol was dissolved/diluted in ethanol. 
Final concentrations of test chemicals within cell cultures 
ranged from 0 to 770 µM, and these were selected based on 
toxicity, as outlined below. Safety precautions, such as PPE 
and suitable waste disposal, were taken to protect users from 
exposure to hazardous compounds.
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Cell culture

The human lymphoblastoid cell line, TK6 (ECACC), was 
cultured in RPMI 1640 Medium (Life Technologies) sup-
plemented with 10% donor horse serum (BDGentest) and 
2 mM l-glutamine (Life Technologies). The cells were 
maintained in culture between 1 × 105 and 1 × 106 cells/
ml. For all studies, cells were seeded at a density of 1 × 105 
cells/ml and cultured for 24 h prior to treatment com-
mencement (37 °C, 5%  CO2).

Selection of doses for study

Doses were selected based on initial relative population dou-
bling (RPD) data to ensure that excessive toxicity (> 50% 
RPD) did not occur. Following this, MN datasets were gen-
erated based on the defined dose range, and from MN data, a 
selected number of doses were chosen for study with further 
endpoints. If the chemical was positive in the MN assay, the 
NOEL (no observed effect level), LOEL (lowest observed 
effect level) and the dose producing 50% reduction in RPD 
was tested. If the chemical tested negative in the MN assay, 
doses within the initial dose range tested were then taken 
forward. The multiple-dose approach allowed dose-depend-
ent trends to be identified, as well as provide an indication 
of safe exposure levels.

Cytokinesis‑blocked micronucleus assay

Frequency of chromosome damage in the form of micro-
nuclei was analysed using the cytokinesis-blocked micro-
nucleus (CBMN) assay. The protocol for Metafer analysis 
was as published previously (Seager et al. 2014). Timepoints 
used were either 4 h treatment + 23 h recovery, or 23 h treat-
ment + 23 h recovery, unless otherwise stated. Cytocha-
lasin B (4.5 µg/ml) was added at the commencement of the 
recovery period and this ensured that cells divided following 
the treatment period to allow observation of micronuclei 

Table 1  A summary of the compounds used in the study

Group Compound name Source of exposure/application Cellular mechanisms/carcinogenic potential 
(where applicable)

Carcinogen Ochratoxin A (OTA) Food contaminant (cereal, wine, coffee) 
(Heussner and Bingle 2015)

IARC Group II carcinogen. Genotoxic 
(nephro)carcinogen (Boorman 1989; Dai 
et al. 2003; El Adlouni et al. 2000; Pfohl-
Leszkowicz and Castegnaro 2005)

β-oestradiol Steroid hormone (reproductive) IARC Group I carcinogen. Evidence for 
genotoxic and non-genotoxic mechanisms 
of carcinogenesis (Bryce et al. 2017; 
Hernández et al. 2013)

Misleading in vitro positives Quercetin Most abundant flavonoid in the human diet 
(Casella et al. 2014)

TD50 value suggests carcinogenic potential 
(Table 2). Consistent misleading in vitro 
positive but full mechanism not known

2,4-DCP Herbicide used in agriculture (Munro et al. 
1992)

Possibly superoxide radical generation by 
decreasing superoxide dismutase in vitro 
(Bukowska 2003; Garg et al. 2001)

Quinacrine dihydro-
chloride (QDH)

Antimalarial drug, non-surgical female 
sterilisation (Clarke et al. 2001)

Evidence of in vitro DNA intercalation but is 
not carcinogenic (Clarke et al. 2001)

Toxic non-carcinogens Cycloheximide Antibiotic Protein synthesis inhibitor that causes cyto-
toxicity (Youngblom et al. 1989)

Caffeine Stimulant Mitochondria-dependent apoptosis, ROS 
inducer that causes cytotoxicity (Bryce 
et al. 2017)

Phenformin HCl Biguanide antidiabetic (Kirkland et al. 
2016)

Non-carcinogen, negative in vivo (Kirkland 
et al. 2016)

Table 2  TD50 data (Gold database, Lhasa database) for rodent carci-
nogenicity (where applicable) for the test compounds

ND no data

Chemical TD50 (mg/kg/day)

OTA 0.136
Oestradiol 1.0
Quercetin 10.1
2,4-DCP Negative
Caffeine Negative
Cycloheximide Negative/ND
Phenformin HCl Negative/ND
QDH Not available/ND
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(Fenech et al. 2003). For all other endpoints, 0 h recovery 
time was allowed following treatment to maximise the win-
dow for observing treatment-specific cell and molecular 
effects. A total of 9000 binucleate cells were scored per treat-
ment per replicate. Relative population doubling (RPD) (%) 
(Fellows et al. 2008; Lorge et al. 2008) was measured in par-
allel cultures in the absence of cytochalasin B, with < 50% 
reduction in RPD relative to the vehicle control aimed for, 
in line with OECD requirements.

Protein isolation and immunoblotting

To investigate p53 and phospho-p53 expression following 
treatment with test chemicals, protein isolation and immu-
noblotting were performed. A previously published method 
was followed (Brusehafer et al. 2014).

Gene expression analysis

A shortlist of genes for qRT-PCR analysis was generated 
via mRNA microarray chip technology (Illumina) to meas-
ure genome-wide transcriptome alterations, as detailed by 
Wilde et al. (2018). qRT-PCR was completed for cyclin-
dependent kinase inhibitor 1A (CDKN1A), choline kinase 
alpha (CHKA) and serine/threonine protein kinase (SGK1). 
A previously published method was followed (Brusehafer, 
et al. 2014). Primer sequences are available in Wilde et al. 
(2018).

Cell cycle analysis

Flow cytometry assessed nucleated cells in the cell cycle 
phases of G1, S and G2/M after 4 h or 23 h. Samples were 
harvested using the In  Vitro MicroFlow Micronucleus 
Analysis Kit (Litron Laboratories), as per the manufactur-
er’s instructions. Samples were analysed using the BD Facs 
Aria Flow Cytometer (BD Biosciences), with FacsDiva soft-
ware (BD Biosciences), as described in Verma et al. (2017). 
Appropriate gating was applied to segregate the cell popula-
tions within the respective cell cycle phases and a total of 
36,000 events were analysed across three replicates for each 
treatment.

Cell and nuclear morphology analysis

Cell and nuclear morphology analysis was performed using 
the INCell Analyzer 2000 followed by a MATLAB-based 
script to identify cells and nuclei from captured images. The 
full methodology was previously outlined by Wilde et al. 
(2018). For the toxic non-carcinogens, the CellProfiler 
2.2.0 software was used to obtain equivalent data on cell 
and nuclear morphology.

Bioenergetics studies

The Seahorse Bioanalyzer (Agilent) was used to measure 
bioenergetic flux in control and treated samples, to establish 
whether chemicals influenced mitochondrial activity. Sea-
horse analyses were performed as outlined by Wilde et al. 
(2018).

ToxPi™ graphical user interface

The Toxicological Prioritization Index (ToxPi™) graphical 
user interface (GUI) was used to generate overall profiles 
for the eight test chemicals (Reif et al. 2013). ‘Slices’ of 
the pie chart were weighted as necessary and the length of 
the radius was proportional to the magnitude of the change 
relative to the vehicle control. The concentration of chemical 
inducing an approximately 50% reduction in RPD relative 
to the vehicle control, or the highest concentration admin-
istered, was used to generate fold-change values relative to 
the control. The selection of the dose eliciting approximately 
50% RPD was performed based on visual inspection of the 
original dose–response (Fig. 1). This dose was chosen with 
the objective of maximising the differentiation between car-
cinogens and non-carcinogens, given that the effect would 
be greatest at the highest concentration. The square root of 
all values was taken, and scores were scaled sufficiently to 
enable clear visualisation of all segments.

Statistical analysis

Three biological replicates (except where indicated) were 
performed as independent experiments on separate days, 
with separate stock vials of cells/chemicals. Error bars rep-
resent standard deviation. Data were tested for normality 
(Shapiro–Wilk test) and homogeneity of variance (Levene’s 
statistic) and transformed where appropriate, prior to statisti-
cally significant changes being determined using a one-way 
ANOVA with appropriate post hoc tests depending on initial 
test outcomes. A mean-centering approach was used for the 
qRT-PCR data (Willems et al. 2008), prior to statistical anal-
ysis. Outcomes of p ≤ 0.05 for two-sided tests were deemed 
statistically significant. On all figures, statistically significant 
changes relative to the vehicle control were indicated using 
asterisks; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.

Results

The present study applied an integrated test approach for car-
cinogenicity prediction within an in vitro system to observe 
for the first time whether carcinogens could be distinguished 
from non-carcinogens. Holistic endpoint analysis was inves-
tigated using eight test chemicals: carcinogens, OTA and 
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oestradiol; misleading in vitro positives, 2,4-DCP, querce-
tin and QDH; non-carcinogens, caffeine, cycloheximide and 
phenformin HCl.

Multiple test chemicals caused MN formation

The CBMN assay was used to generate genotoxicity 
dose–responses for all test chemicals (Fig.  1). Up to a 
50% decrease in concurrent RPD was tolerated, to avoid 
secondary toxicity associated with higher concentrations. 
Chemicals were tested initially using a 4 h treatment with 
23 h recovery; if the result after 4 h + 23 h was negative, 
the chemical exposure was then repeated for 23 h + 23 h. 
After 4 h, OTA produced statistically significant increases 
in MN frequency relative to the vehicle control. For OTA, 
the increase occurred at a concentration inducing an approxi-
mately 50% reduction in RPD (45 µM). Oestradiol produced 
a negative result after the 4 h and 23 h treatments, although 
was previously found to be positive in MCL-5 cells for an 
extended treatment period of 48 h + 23 h (Chapman 2018). 
To determine whether the 23 h result was a false negative, 
the longer exposure of 48 h + 23 h recovery was performed. 
Similar concentrations of oestradiol were used for 23 h and 

48 h, given that the elongated exposure did not result in 
considerably elevated cytotoxicity. This resulted in a posi-
tive response for micronucleus induction for oestradiol at 
concentrations of 40 µM and higher (Online resource 1).

Quercetin showed genotoxic activity in this study after 
4 h treatment at 127.5 µM only (50% RPD). Cycloheximide 
produced a statistically significant increase at all concentra-
tions tested following 4 h exposure. While cycloheximide is 
toxic, it is not always considered to be genotoxic (Bryce et 
al. 2017); it was, therefore, decided that testing a 23 h expo-
sure was necessary to confirm whether the 4 h result was a 
true positive (Online resource 1). A lower dose range was 
used for 23 h compared to 4 h, due to the elongated exposure 
period resulting in cytotoxicity at the higher doses tested. 
MN induction was greater after 4 h, where all concentrations 
caused significant MN induction and up to fivefold above 
vehicle control, compared to 23 h, where only one concen-
tration was significant and the number of MN induced lower.

After 23 h, a reduced genotoxic response was noted with 
only one concentration of cycloheximide, 1.1 µM, being 
significant, whereas the higher concentration of 1.4 µM was 
negative. It was noted that the concentration window was 
particularly narrow, ranging between 0.7 and 1.4 µM. The 

Fig. 1  The cytokinesis-blocked 
micronucleus (CBMN) assay 
(4 h/23 h treatment + 23 h 
recovery) was used to assess 
whether test compounds 
induced genotoxicity. The 
percentage of binucleated cells 
containing micronuclei (MN, 
%) (black lines) and relative 
population doubling (RPD, %) 
(grey lines) are presented for 
the chemicals (n = 2, n = 3). 
Statistically significant results 
from the statistical analysis 
(Dunnett’s tests) are indicated 
by p values, where *p < 0.05, 
**p < 0.01, ***p < 0.001 (color 
figure online)
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remaining chemicals, 2,4-DCP, caffeine, phenformin HCl 
and QDH, did not significantly increase micronucleus fre-
quency after either 4 h (data not shown) or 23 h treatments.

OTA and quercetin increased both p53 
and phospho‑p53 expression

Western blotting was used to observe alterations in p53 and 
phospho-p53 (ser15) expression in response to treatment 
with the test chemicals, relative to the equivalent vehicle 
control (Fig. 2). The doses for western blotting and all sub-
sequent endpoints were selected based on the LOEL and/
or reduction in RPD (Fig. 1). A marked increase in p53 
accumulation was noted for OTA at ≥ 35 µM after 4 h treat-
ment for both p53 and phospho-p53 expression. The p53 
induction was consistent with the positive MN data for OTA 
(Fig. 1), and indeed the LOEL for p53 and phospho-p53 
increases was at a lower concentration than the LOEL for 
MN induction (45 µM). Oestradiol appeared to increase p53 
and phospho-p53 expression at concentrations exceeding 
25 µM, although this was not consistently observed across 
all replicates. This weaker response perhaps linked into the 
longer treatment required to induce MN (Online resource 1).

Of the remaining chemicals, quercetin significantly 
increased expression for concentrations ≥ 125 µM (Online 
resource 2). Like oestradiol, 2,4-DCP increased p53 expres-
sion following 184 µM exposure yet this was not observed 
for all replicates. QDH and the toxic non-carcinogens did 
not alter p53 or phospho-p53 expression.

Carcinogens produced sizeable gene expression 
alterations

The transcription of three genes associated with cancer, 
CDKN1A, SGK1 and CHKA, were measured using qRT-
PCR. Fold change results were summarised using a heat map 
(Fig. 3). The carcinogens OTA and oestradiol significantly 
altered the expression of CDKN1A mRNA, which encodes 

p21. Oestradiol significantly increased CDKN1A mRNA 
expression at doses ≥ 50 µM, reaching a maximum increase 
of 17.5-fold at a concentration of 60 µM. This is consistent 
with the previously observed positive p53 response, indica-
tive of a DNA damage response. In contrast to oestradiol, 
OTA appeared to suppress CDKN1A mRNA expression. 
OTA produced significant decreases in CDKN1A mRNA 
expression at all test concentrations, reaching a 7.7-fold 
decrease at the highest concentration of 45 µM. A decreas-
ing trend was unexpected, due to OTA causing increased 
MN, p53 and phospho-p53 levels. The expression of the 
two remaining genes, SGK1 and CHKA, was only altered 
by OTA. For SGK1, all OTA test concentrations produced 
a statistically significant decrease in expression, reaching 
a > 33.3-fold decrease at 45 µM. For CHKA, a single signifi-
cant decrease of 35 µM was observed for mRNA expression. 
While toxic non-carcinogen cycloheximide substantially 
increased gene expression, the data were variable and not 
significant. Generally, chemicals that altered gene expression 
also induced micronuclei (Fig. 1).

The only other chemical to alter gene expression was 
QDH, which reduced expression of CDKN1A by twofold 
at a single test concentration (1 µM). This effect was not 
dose dependent, as expression did not change significantly 
at the higher QDH dose of 1.75 µM. QDH did not, how-
ever, alter the related endpoints of MN or p53. Other than 
QDH, none of the misleading in vitro positives and toxic 
non-carcinogens significantly altered gene expression for 
the genes tested.

Cell cycle arrest was time‑dependent for several test 
chemicals

Flow cytometry was used to collect data on alterations in cell 
cycle dynamics following chemical treatments, to ascertain 
whether chemicals were capable of inducing cell cycle arrest 
(Fig. 4).

Fig. 2  The change in expression 
of p53 and phospho-p53 was 
determined using western blot-
ting. Representative blots are 
presented for OTA-treated cell 
cultures (4 h treatments), where 
L Ladder of protein standards 
and N-methyl-N-nitrosourea 
(MNU) were used as a positive 
control. The sizes of protein 
standard markers are labelled. 
Doses selected were based on 
the MN and RPD data generated 
previously (Fig. 1)
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Oestradiol demonstrated a consistent dose-dependent 
trend towards G1 arrest, with an up to 21% significant 
increase in the percentage of cells in G1 phase occurring 
at 60 and 75 µM, accompanied by a significant decrease 
in the proportion of cells in both S and G2/M phases. This 
G1 cell cycle arrest is consistent with the large increases in 
CDKN1A mRNA caused by oestradiol (Fig. 3). OTA did 
not induce any significant cell cycle alterations after 4 h, 
although did cause a significant decrease in S phase at 4 h 
treatment with a recovery period (Online resource 3).

Following a 4 h exposure, quercetin did not induce signif-
icant cell cycle alterations, although a dose-dependent trend 
was observed (data not shown). To further investigate this 
apparent effect, and considering quercetin’s positive effects 
for some of the previously described endpoints, the expo-
sure period was extended to 23 h, after which a statistically 
significant 7% increase in G2/M and a 8.7% decrease in G1 
were observed at 25 µM, the highest test concentration for 
this time point. Lower chemical concentrations were used at 
23 h relative to the initial 4 h studies for quercetin to avoid 
excessive toxicity. This outcome was consistent with the 
genotoxicity and p53 increases observed following quercetin 
exposure (Fig. 1, Online resource 2).

The other misleading in vitro positive compounds QDH 
and 2,4-DCP did not cause any significant cell cycle altera-
tions following their respective 23 h exposures. The toxic 
non-carcinogens cycloheximide and phenformin HCl did 
not cause any statistically significant changes, although caf-
feine did induce a statistically significant decrease in cells 
in G2/M at 450 and 700 µM.

Toxic non‑carcinogens altered cell morphology

The INCell Analyzer 2000-based analyses were used to 
quantify cell and nuclear area alterations in response to test 
chemical exposure (Figs. 5, 6). Cells were treated for either 
4 h or 23 h.

For cell and nuclear area, the tested carcinogens and 
misleading in vitro positive compounds did not produce 
any significant alterations. Oestradiol induced marked, 
but non-significant, changes in some cell area categories 
(Fig. 5). For example, there was a greater than twofold 
increase in the frequency of cells falling into the ‘low-
est’ area category for all concentrations of oestradiol 
(≥ 25 µM) (p = 0.197 at 50 µM). Alongside this change, the 
frequencies of the largest area categories also decreased. 

0.03 1 17.5
Down-regulation Up-regulation

Legend
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Chemical Conc 1 Conc 2 Conc 3 Conc 1 Conc 2 Conc 3 Conc 1 Conc 2 Conc 3
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Oestradiol 7.63 * 17.50 *** 13.02 *** 0.98 1.36 1.19 1.1 1.9 1.72

Quercetin 2.7 2.4 2.35 1.17 0.79 0.86 1.15 1.47 1

2,4-DCP 0.97 1.1 1.2 0.96 0.97 1.55 0.96 1.12 1.2
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Cycloheximide 1.51 - - 1.2 3.61 5.31 1.81 2.04 6.79

Caffeine 1.75 1 0.31 0.97 0.67 0.26 0.98 1.26 0.29

Phenformin HCl 0.79 1.58 0.35 0.91 1.02 0.53 1.82 1.89 0.94

Carcinogens

Misleading in vitro 
posi�ves

Toxic non-
carcinogens

Final concentrations (µM)
Chemical Conc 1 Conc 2 Conc 3
OTA, 4h 35 40 45
Oestradiol, 23h 50 60 75
Quercetin, 4h 50 125 127.5
2,4-DCP, 23h 61 123 184
QDH, 23h 0.5 1 1.75
Cycloheximide, 4h 17.8 53.3 71.1
Caffeine, 23h 45 450 770
Phenformin HCl, 23h 0.001 0.01 0.015

Fig. 3  Heat maps summarizing the relative mRNA expression of the 
CDKN1A, CHKA and SGK1 genes as determined by qRT-PCR (n = 3) 
for 4  h or 23  h exposure. Numbers indicate mean fold change rela-
tive to the appropriate vehicle control (equal to 1). Individual cells 
are coloured according to the magnitude of the fold change; shades of 

green represent a decrease relative to the vehicle control and shades 
of red represent an increase relative to the vehicle control. Signifi-
cant results from the statistical analysis (Dunnett’s tests) are indicated 
by p values, where *p < 0.05, **p < 0.01, ***p < 0.001 (color figure 
online)
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This trend towards smaller cell area is consistent with 
oestradiol’s induction of cell cycle arrest at G1 (Fig. 4), 
which would produce smaller cells.

The only chemicals to produce significant changes were 
the toxic non-carcinogens. Caffeine produced statistically 
significant, dose-dependent decreases in the frequency of 
cells in the ‘highest’ size category, from 45 to 770 µM, and 
increased the frequency of cells in the ‘lowest’ category at 
770 µM only (Fig. 5). These results suggest that caffeine 
reduced cell area. Cell area was also altered by cyclohex-
imide and phenformin HCl, although statistically significant 
effects were observed only at lower concentrations and did 
not appear to be dose dependent.

For nuclear area, only cycloheximide and caffeine caused 
significant changes (Fig. 6). Cycloheximide reduced the pro-
portion of the smallest, or ‘lowest’, nuclear area category 
for the lowest test concentration, 18 µM, only. Higher con-
centrations, however, did not cause statistically significant 
changes. Caffeine significantly changed the proportion of 
cells in the ‘normal’ and ‘highest’ categories following treat-
ment after the highest treatment concentration of 770 µM, 
although there was not a clear result in terms of the direc-
tion of change of nuclear morphology. Overall, cell area 

appeared to be more sensitive for the detection of morpho-
logical changes caused by test chemicals than nuclear area.

Mitochondrial activity was mostly unchanged

Bioenergetics analysis was completed using the Seahorse 
Bioanalyzer, to allow effects on mitochondrial respiration 
to be observed (Fig. 7). The two carcinogens did not cause 
any statistically significant changes for this endpoint; the 
sole chemical to produce a statistically significant alteration 
from the control was 2,4-DCP, producing a 20% reduction in 
mitochondrial activity after 23 h at the 50% RPD concentra-
tion of 184 µM. The data for several other chemical treat-
ments indicated a similar decreasing trend in OCR/ECAR 
fold change with increasing test chemical concentration, 
although these alterations were not found to be statistically 
significant.

ToxPi GUI indicated carcinogens’ greater potency

To visually summarise the results of the multiple-endpoint 
approach, the ToxPi GUI software was used to generate 
diagrammatical representations for all of the chemicals 

Fig. 4  Cell cycle analysis was 
performed using flow cytom-
etry for samples treated for 4 h 
or 23 h (n = 3) to determine 
whether chemicals altered 
cell cycle dynamics. Signifi-
cant results from the statisti-
cal analysis (Dunnett’s tests) 
are indicated by p values, 
where *p < 0.05, **p < 0.01, 
***p < 0.001
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(Fig. 8a). Integrated Signature of Carcinogenicity (ISC) 
scores (Wilde et al. 2018) were also generated to quantita-
tively rank the chemicals based on their collective effects 
at the highest tested concentration that also did not exceed 
a 50% reduction in RPD (Fig. 1). The ISC scores were cal-
culated based on the sum of the mean fold changes for the 
different endpoints, with endpoints weighted, as appropriate.

ISC scores demonstrated that carcinogens OTA and 
oestradiol were the highest ranking of the eight test chemi-
cals, with OTA ranking first and oestradiol, second. The 
remaining test chemicals, cycloheximide, quercetin, caffeine, 
2,4-DCP, phenformin HCl and QDH, ranked lower. These 
ISC scores were combined with ISC scores from the afore-
mentioned publication by Wilde et al., where eight genotoxic 
and non-genotoxic carcinogens were studied (Fig. 8b). It 
was observed that carcinogens generally ranked higher than 
misleading in vitro positives and toxic non-carcinogens, with 
the exception of cycloheximide.

Discussion

Improved in vitro genotoxicity tests are essential for the 
accurate prediction of the carcinogenic potential of chemi-
cals in vivo and the avoidance of unnecessary animal tests. 

The present study aimed to evaluate a more sophisticated, 
multiple-endpoint in  vitro approach for distinguishing 
between selected carcinogens, misleading in vitro posi-
tive compounds and toxic non-carcinogens, as compared to 
in vivo carcinogenicity outcomes where relevant.

Outcomes for multiple endpoints in vitro indicated 
carcinogens’ mechanisms

The two tested carcinogens’ endpoint outcomes generally 
reflected their established mechanisms of carcinogenesis. 
First, the carcinogen OTA induced MN (Fig. 1), supporting 
a genotoxic mode of carcinogenesis for this agent (Table 1). 
OTA also increased p53 and phospho-p53 expression 
(Fig. 2) and altered gene expression (Fig. 3), which sup-
ported the MN results. It was noted that while MN frequency 
increased only at the highest concentration tested (45 µM), 
p53 and phospho-p53 were increased at doses below the 
lowest observed effect level for MN (Fig. 1). Equally, oestra-
diol elicited significant effects for non-MN endpoints after 
23 h exposure, while only inducing MN after 48 h. This 
important observation demonstrated that other endpoints 
exhibited greater sensitivity than MN frequency and perhaps 
indicates the role of DNA repair at lower concentrations 
preventing eventual MN formation (Zaïr et al. 2011). The 

Fig. 5  Cell area changes from 
data obtained via the INCell 
Analyzer 2000 followed by 
Matlab-based image analysis. 
The frequency of cells (%) in 
each quintile category is plotted. 
Significant results from the 
statistical analysis (Dunnett’s 
tests) are indicated by p values, 
where *p < 0.05, **p < 0.01, 
***p < 0.001
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decreased expression of CDKN1A mRNA caused by OTA 
was unexpected, when it was considered that OTA increased 
the related endpoints of MN frequency and p53 expression. 
A similar phenomenon of p53 up-regulation accompanied 
by p21 inhibition has, however, been observed previously 
following OTA exposure and was hypothesised to be due to 
p53-independent inhibitory action of OTA on transcription 
(Golli Bennour et al. 2009). Indeed, decreased p21 is asso-
ciated with a cancer phenotype (Gartel and Radhakrishnan 
2005). OTA’s effects on the cell cycle were minimal, which 
supported the reduced p21 expression; such effects were 
also time-dependent, with 4 h treatment producing negative 
results (Fig. 4), whereas recovery led to reduced S phase 
frequency (Online resource 2).

Oestradiol, like OTA, was genotoxic yet was only positive 
after an elongated treatment period of 48 h (Fig. 1, Online 
resource 1). As for OTA, this indicates that exposure dura-
tion can be important for observing positive effects. While 
oestradiol was negative for MN after 23 h, this timepoint 
produced sizeable changes in other endpoints; for example, 
a large increase in CDKN1A mRNA accompanied by cell 
cycle arrest at G1 at concentrations ≥ 50 µM were observed. 
Oestradiol’s effects on the cell cycle have been documented 
previously (Yue et al. 2013). It could, however, be argued 
that G1 arrest would not be consistent with mismatch repair 

of associated replication errors (Yue et al. 2013), which is 
more likely to occur during G2 arrest (Hawn et al. 1995), 
implying alternative mechanisms were at work.

The two carcinogens did not alter cellular and nuclear 
morphology endpoints (Figs. 5, 6) and this contrasted with 
positive results for most carcinogens in Wilde et al. (2018). 
This might owe to the carcinogens selected here having dif-
ferent mechanisms and potency to those tested previously.

Overall, the carcinogens produced clear, dose-dependent 
and in some cases time-dependent responses for several end-
points, further supporting the use of integrated, multiple-
endpoint testing approaches for recognising carcinogens.

Misleading in vitro positive compounds and toxic 
non‑carcinogens produced largely negative results

Following validation of the approach with carcinogens, it 
was essential to establish whether the non-carcinogens pro-
duced different results and did not erroneously test positive. 
To evaluate this, three misleading in vitro positive com-
pounds and three toxic non-carcinogens were used.

Of the three misleading positives, quercetin elicited the 
greatest effect, inducing MN (Fig. 1), p53, phospho-p53 
(Fig. 2) after 4 h treatments and G2/M arrest after 23 h 
(Fig.  4). The overall outcomes for quercetin suggested 

Fig. 6  Nuclear area changes 
from data obtained via the 
INCell Analyzer 2000 followed 
by Matlab-based image analy-
sis. The frequency of cells (%) 
in each quintile category is plot-
ted (n = 3). Significant results 
from the statistical analysis 
(Dunnett’s tests) are indicated 
by p values, where *p < 0.05, 
**p < 0.01, ***p < 0.001

Carcinogens

M
isl

ea
di

ng
 in

 v
itr

o 
po

si�
ve

s Toxic non-carcinogens

0%

50%

100%

0 35 40 45

Fr
eq

ue
nc

y

OTA (µM)

a. OTA NA (4h)

0%

50%

100%

0 25 40 50

Fr
eq

ue
nc

y

Oestradiol (µM)

b. Oestradiol NA (23h)
lowest
low
norm
high
highest

*0%

50%

100%

0 18 53 71

Fr
eq

ue
nc

y

Cycloheximide (µM)

d. Cycloheximide NA (4h)

0%

50%

100%

0 50 125 127.5
Fr

eq
ue

nc
y

Querce�n (µM)

c. Querce�n NA (4h)

0%

50%

100%

0 61 122 184

Fr
eq

ue
nc

y

2,4-DCP (µM)

e. 2,4-DCP NA (23h)

0%

50%

100%

0 0.5 1 1.75

Fr
eq

ue
nc

y

QDH (µM)

g. QDH NA (23h) 

*

*

0%

50%

100%

0 45 450 770

Fr
eq

ue
nc

y

Caffeine (µM)

f. Caffeine NA (23h)

0%

50%

100%

0 0.001 0.01 0.015
Fr

eq
ue

nc
y

Phenformin HCl (µM)

h. Phenformin HCl (23h)



Archives of Toxicology 

1 3

behaviour reminiscent of genotoxic carcinogens, such as 
OTA, as well as other compounds in this category (Wilde 
et al. 2018). Overall, these data imply that quercetin is fun-
damentally genotoxic under these conditions, which in vitro, 
has been attributed to auto-oxidation effects (Harwood et al. 
2007). This provides cause to question whether classification 
of chemicals into discrete categories is an oversimplification 
(Wilde et al. 2018), and quercetin is a carcinogen, particu-
larly as it has a  TD50 value (Table 2).

In contrast, other misleading positive compounds, 
2,4-DCP and QDH, produced a very limited number 

of positive results in a sporadic manner. QDH altered 
CDKN1A expression at 1 µM, yet not at the highest dose of 
1.75 µM, suggesting that this effect was not dose depend-
ent. Similarly, 2,4-DCP appeared to alter p53 levels, yet 
not phospho-p53, and the result was not consistent across 
experimental replicates. Inconsistency within 2,4-DCP test 
results has been reported previously (Fowler et al. 2012a). 
As 2,4-DCP did not increase MN frequency, the p53 result 
may have been an artefact of toxicity. The only endpoint 
that 2,4-DCP significantly altered was mitochondrial activ-
ity, being the only chemical to affect this endpoint (Fig. 7). 
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Fig. 7  Bioenergetics analysis of control and treated cells using the 
Seahorse  XFe24 Bioanalyzer (n ≥ 3) to establish whether chemicals 
induced a mitochondrial stress phenotype. The fold change for the 
ratio of oxygen consumption rate (OCR) and extracellular acidifica-

tion rate (ECAR) is plotted against chemical concentration. Signifi-
cant results from the statistical analysis (Dunnett’s tests) are indicated 
by p values, where *p < 0.05, **p < 0.01, ***p < 0.001
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A possible explanation is 2,4-DCP’s proposed involve-
ment in in vitro superoxide radical generation (Garg et al. 
2001). Interestingly, while QDH appeared almost inert, 
only inducing one positive outcome, it was also the most 
potent apart from phenformin HCl, eliciting a 50% reduc-
tion in RPD at lower molarity than most other chemicals 
(i.e., ≤ 1.75 µM).

Similar to the misleading positive chemicals, the toxic 
non-carcinogens cycloheximide, caffeine and phenformin 
HCl were also found to produce largely negative results. 
Cycloheximide had the largest effect, inducing MN at two 
different timepoints (Fig. 1, Online resource 1) and altering 
cell and nuclear area (Figs. 5, 6); however, these were not 
usually dose-dependent patterns, with sometimes only one, 
low test concentration producing a significant result. Despite 
being considered a non-carcinogen, previous studies have 
also demonstrated that cycloheximide can induce genotoxic-
ity, including MN, in both in vitro and in vivo models (Sei-
ichi et al. 1990; Bašić-Zaninović et al. 1991). Cycloheximide 
was shown to induce MN via both clastogenicity and aneu-
genicity (Basic-Zaninovic et al. 1987). Collectively, these 
results suggest that cycloheximide is a genotoxicant with 

carcinogenic potential; therefore, its classification as a non-
carcinogen might not be accurate.

Caffeine produced positive results for three endpoints, 
with some dose-dependent effects. Caffeine reduced G2M 
frequency (Fig. 4) and reduced cell and possibly nuclear 
area (Figs. 5, 6), supporting cell cycle arrest in G1 phase. In 
support of such effects, caffeine has been demonstrated to 
induce TP53-independent G1 arrest in human cells (Qi et al. 
2002), which supports this chemical’s negative western blot 
data. The positive results for caffeine could relate to toxic 
rather than carcinogen effects. Phenformin HCl, however, 
tested negative for all endpoints with the exception of a posi-
tive result for one quintile for cell area, although this was not 
dose dependent. Despite negative outcomes, it was the most 
potent agent given that the highest dose tested was 0.1 µM; 
this was a far lower molarity than that of other compounds.

Overall, these results indicate that while misleading 
in vitro positive chemicals and toxic non-carcinogens did 
produce a small number of positive results, these were gen-
erally not inter-supporting, not across multiple doses and of 
a smaller magnitude than for carcinogens. Compared to the 
carcinogens, therefore, overall effects for non-carcinogens 

Overall ISC rankings 
combined with chemicals 
from Wilde et al., 2017

MNU 60.2
OTA 57.6
H2O2 52.7
TCDD 42.3
MMS 40.7
Acetaldehyde 36.5
Oestradiol 31.6
Methyl carbamate 29.2
Cycloheximide 28.4
NiCl2 27.1
DEHP 26.4
Caffeine 22.2
Quercetin 19.2
Phenformin HCl 16.2
2,4-DCP 14.8
QDH 13.0
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Fig. 8  a Outputs from the Toxicological Prioritization Index (ToxPi) 
GUI summarising the fold changes for the endpoints at the 50% 
RPD-inducing concentration. Chemicals were ranked according to 
their Integrated Signature of Carcinogenicity scores, from highest to 
lowest. Fold changes were square-rooted and values < onefold were 
inverted to give values > onefold. b Table summarising ISCs for all 

chemicals tested using the multiple-endpoint method, including 
those from Wilde et al. (2018) (non-emboldened text). Chemicals in 
bold are from the current publication. Blue = genotoxic carcinogens; 
grey = non-genotoxic carcinogens; yellow = toxic non-carcinogens; 
pink = misleading in vitro positives (color figure online)
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were noticeably weaker within this test system. It is perhaps 
worth considering that a minimum ‘threshold’ number of 
concentrations or endpoints need to be significantly altered 
for a chemical to be classed as a ‘carcinogen’.

ISC scores successfully distinguished carcinogens 
from non‑carcinogens

ToxPi GUI analysis and ISC score generation enabled the 
observation of overall potency of the test chemicals based 
on all endpoints at the greatest test concentration (Fig. 8); 
the two carcinogens, OTA and oestradiol, produced the two 
highest ISC scores, with OTA ranking first (57.6) and oestra-
diol, second (31.6). This order also reflected the  TD50 rank 
order in Table 2, with OTA’s lower  TD50 indicating greater 
potency relative to oestradiol. The higher ranking of the gen-
otoxic carcinogen, OTA, relative to non-genotoxic, or less 
potently genotoxic, carcinogen, oestradiol, was consistent 
with the results for these two carcinogen subtypes published 
previously (Wilde et al. 2018).

Other chemicals ranked below the two carcinogens in 
terms of ISC score (Fig. 8). While there was some over-
lap between toxic non-carcinogens and misleading posi-
tives, toxic non-carcinogens generally ranked higher with 
an average ISC of 22.3, compared to 15.7 for misleading 
positives. There did appear to be some overlap between 
non-carcinogen ISCs and non-genotoxic carcinogens ISCs 
published previously by Wilde et al. (2018); non-carcinogen 
cycloheximide’s ISC was 28.4, whereas non-genotoxic car-
cinogens  NiCl2 and DEHP produced lower ISCs of 27.1 and 
26.4, respectively. As previously mentioned, it is, however, 
possible that cycloheximide is inherently genotoxic (Fig. 1, 
Online resource 1) and so classification as a non-carcinogen 
might not fully reflect its biological activity. This is sup-
ported by the fact the second highest non-carcinogen ISC 
was 22.2, which was less than any carcinogen, genotoxic or 
non-genotoxic, tested. This suggests that the multiple-end-
point approach is less likely than single endpoint approaches 
to generate misleading positive results and may be superior 
for recognising carcinogenic potential and identifying such 
mechanisms of action. However, given that cycloheximide’s 
score exceeded that of two non-genotoxic carcinogens, fur-
ther validation of the approach and perhaps the addition of 
other endpoints may be appropriate in future work.

The greater ISCs for carcinogens compared to non-carcin-
ogens implied that carcinogens produced a greater biologi-
cal effect for endpoints relating to the Hallmarks of Cancer 
(Hanahan and Weinberg 2011), supporting the use of such 
a test to identify chemicals’ carcinogenic potential. It was 
noted that multiple endpoints altered by carcinogens tended 
to be mechanistically inter-supporting. Changes were also 
often observed for at least two individual doses, occurring 
in a dose-dependent manner. Non-significant changes also 

contributed towards the overall ISC score, meaning that 
more subtle effects could assist in informing chemical risk 
assessment. These outcomes all support the use of an inte-
grated and quantitative weight of evidence (WoE) approach 
for distinguishing between carcinogens and non-carcinogens 
in vitro, rather than isolated, single mode of action endpoints 
and tiered approaches (Rovida et al. 2015; Thybaud et al. 
2007). Further study will assist in determining which end-
points are most powerful for distinguishing between carcino-
gens and non-carcinogens; the data from Wilde et al. (2018) 
and the present study suggest that MN, p53, CDKN1A and 
cell cycle data may be among the most powerful.

Conclusions

In vitro genotoxicity tests remain rudimentary and often 
fail to successfully distinguish carcinogens from non-car-
cinogens. In the first study of its kind, we have provided 
compelling evidence for a human cell-based, multiple-end-
point in vitro carcinogenicity test distinguishing between 
carcinogens and non-carcinogens. This holistic approach 
also identifies mechanisms of carcinogenic action in vitro, 
while identifying results that are not dose dependent. With 
further validation, it is hoped that the ranking of chemicals 
based on their ISC scores may allow a minimum ‘cut-off’ 
score for carcinogens to be established. This could support 
the avoidance of misclassifying non-carcinogens as carcino-
gens via in vitro test results. Indeed, we have demonstrated 
that there is potential for applying holistic approaches to 
in vitro 3D cell culture models in future (Chapman et al. 
2014; Shah et al. 2018). Overall, holistic approaches appear 
to be a valuable tool for identifying non-carcinogens at the 
in vitro stage, avoiding unnecessary in vivo testing.
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