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ABSTRACT

Data compression forms a central role in handling the bottle-
neck of data storage, transmission and processing. Lossless
compression requires reducing the file size whilst maintaining
bit-perfect decompression, which is the main target in med-
ical applications. This paper presents a novel lossless com-
pression method for 16-bit medical imaging volumes. The
aim is to train a neural network (NN) as a 3D data predictor,
which minimizes the differences with the original data values
and to compress those residuals using arithmetic coding. We
evaluate the compression performance of our proposed mod-
els to state-of-the-art lossless compression methods, which
shows that our approach accomplishes a higher compres-
sion ratio in comparison to JPEG-LS, JPEG2000, JP3D, and
HEVC and generalizes well.

Index Terms— Lossless Compression, 3D Predictor,
Medical Image Compression, Volumetric Data Compression,
Neural Network

1. INTRODUCTION

Medical imaging is used for clinical diagnosis. Precise med-
ical imaging techniques have been developed where radiolo-
gists can acquire high quality and high resolution scans for
clinical purposes. 3D medical imaging is often used for fur-
ther diagnosis and precise pre-surgery planning. According
to Diagnostic Imaging Dataset Statistical Release published
by NHS, between September 2018 to September 2019, there
were over 45 million medical images acquired for clinical use
including 5.8M CT scans and 3.7M MRI scans. Data storage
for a large amount of medical images poses a great challenge.
Especially for clinical purposes, artefacts that introduced by
lossy compression introducing could result in misleading di-
agnosis and unfavourable treatment [1].

Lossless compression standards are classified into two
main types – image encoders and volumetric encoders. Stan-
dard image encoders include JPEG2000 [2], Lossless and
Near-Lossless Compression of Continuous-Tone Still Im-
ages (JPEG-LS) [3], Context-based Adaptive Lossless Image
Codec (CALIC) [4], and Minimum Rate Predictor (MRP)
[5]. In contrast to 2D image encoders, volumetric encoders
enhance the compression ratio by applying a reduction in a

higher dimensional context, such as: JPEG2000 Part 10 Ex-
tensions (JP3D) [6], High-Efficiency Video Coding (HEVC)
[7], 3D-CALIC [8], M-CALIC [9], and 3D Minimum Rate
Predictor (3D-MRP) [10]. Lossless compression methods
also have challenges such as relying on hand-crafted linear
transformation and codecs have limitation in representing
non-linear correlations. Recently, state-of-the-art deep neural
networks are demonstrated as feasible to construct both lossy
and lossless image compression which also achieve higher
compression ratio compared to classic linear methods.

State-of-the-art deep learning approaches address lossy
reduction to assist purposes such as dimensionality reduc-
tion (autoencoders) [11], super-resolution images or video
reconstruction [12, 13, 14], estimating pixel likelihood (auto-
regressive) [15, 16], and generative compression [17, 18].
Less attention has been made to address the lossless per-
formance using NNs. The current deep learning literature
for lossless compression usually combine a density estima-
tor model with an arithmetic coder or Asymmetric Numeral
System (ANS). The density estimator can be categorised into
various types, namely, fully connected NN [19], Recurrent
Neural Network (LSTM/GRU) such as DeepZip [20], a re-
cursive bits-back coding with hierarchical latent variables
known as Bit-Swap [21], and a parallelizable hierarchical
probabilistic model that learned both image distribution and
its auxiliary representations L3C [22]. Our proposed model
for lossless compression has a fully connected deep NN as
its data estimator, which should be faster to train than a
Recurrent Network in DeepZip and estimate higher dimen-
sional data (3D medical images) compared to [19], which
compresses only 2D scans. Additionally, our proposed 3D
sampling scheme allows the model to generalise well to un-
seen samples.

Our main contributions are: (a) A novel 3D predictor
model using a neural network that achieves lossless compres-
sion for volumetric medical images. (b) A computationally
efficient model that achieves a higher compression ratio when
compared to state-of-the-art lossless compression methods.
(c) Demonstrate the robustness and generalization of our pro-
posed models experimentally on many datasets for higher
dynamic range (16 bit-depths).
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Fig. 1. An overview of the proposed lossless compression method.

2. PROPOSED METHOD

We propose (Fig. 1) a lossless compression approach using
neural network specifically for volumetric medical images,
where the data compression is formulated as a sequential
prediction problem. Our approach consists of: the data pre-
diction module which also called compressor, the entropy
coding using arithmetic coder, and the data recovery module
namely decompressor. Both compressor and decompressor
use one neural network model where the architectures are
the same and the weights are shared. The model learns the
projection function to predict the target voxel given a se-
quence of samples from its neighbourhood (Fig. 2). In order
to achieve high compression ratio for the arithmetic encoder,
we train the neural network to minimize the difference be-
tween the prediction and the ground-truth. The regression
problem can be solved by learning a mapping function f
that predict the output y from an input sequence X through
the back-propagation process given a training dataset. The
hypothesis is that the prediction is highly correlated with the
local appearance and geometric structure of its neighbours.
Formally, given a data distribution defined over X ∈ RN ,
where X contains input samples from the same distribution
(e.g. X = {x1, x2, ..., xn} forms a 1D vector of immedi-
ately neighboring voxel-intensities), we learn a differentiable
mapping function ŷ = f(X) that maps the vector X to a
predicted value ŷ to minimize the differences with the ground
truth voxel value y, where f(X) is represented using a neural
network model. Therefore, the residual or prediction error E
is calculated as follows:

E = y − ŷ (1)

The residual errorE is then encoded using an arithmetic coder
and transmitted in a lower bit-rate. The better the model per-
forms in approximating the data distribution, the smaller the
residual gets and the lower code-length the coder produces.
To fully recover the original data from the compressed rep-
resentation, the bit-stream is decompressed first, and then the
residual valuesE are added to the prediction values ŷ (Fig. 1).

2.1. Local Sampling

The input sequence forms a crucial role in learning the map-
ping function of the data distribution. We experimented with
differing sampling neighbourhoods and sampling strategy in
order to find optimal compression. There is a trade-off be-
tween the amount of information presented to the model and
the computation cost. Many image-based codecs use the im-
mediate neighbouring pixels (i.e. four previous pixels) to pre-
dict the current pixel location. In 3D, neighbours from previ-
ous slices are included. These neighbouring sequences allow
the encoder to exploit the spatial correlation and redundancy
in the 2D plane as well as within the inter-frame region.

Training a model on samples uniformly selected across
multiple volumes is problematic, as such a high dynamic
searching space does not allow the model to accomplish a
maximum compression performance. Therefore, in our pro-
posed work, we reduce the sampling space to one volume
with the assumption that the data distribution of the human
body across the volumes would share some structural similar-
ity and common feature representation since all scans share
the same resolution across width and height and are captured
by the same hospital with the same scan parameters (for train-
ing set and test set 1). Instead of sampling randomly from
the whole volume (uniform voxel sampling) or biasing our
sampling towards part of it (3D Gaussian voxel sampling),
we extract multiple complete 2D slices across the volume
z-axis with a fixed stride (i.e. ten slices from one volume).
Then, for each voxel in the ten slices, we extract the 3D
neighbouring voxels. We introduce two different shapes of
the neighbouring blocks; namely, 3D cube neighbouring se-
quence and 3D pyramid neighbouring sequence (See Fig. 2).
In both types, the sequences never include voxels from future
slices. All volume values are normalized to the range [−1, 1]
and the volume is padded, as determined by the block size,
by its minimum voxel value. Padding the volume is crucial in
order to include the edge and corner cases in training. All the
3D sequences will be flattened to 1D vectors and randomly
shuffled before inputting them to the predictor models. The
reason for selecting such sampling schemes is to provide
better coverage of the data to benefit the compression ratio.
We find that training the model on whole slices with every



voxel within the selected slices being available during train-
ing leads to an improvement in final compression ratio on all
slices including those not trained on.
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Fig. 2. Two neighbourhoods used for prediction. z=0 repre-
sents the current slice, the target voxel for prediction is black,
grey voxels are used in the input sequence.

2.2. Transforming Function

Layer Number of Neurons Activation Function Used
Fully Connected 1024 LeakyRelU
Fully Connected 512 LeakyRelU
Fully Connected 256 LeakyRelU
Fully Connected 128 LeakyRelU

Output 1 Linear

Table 1. The proposed neural network architecture.

Multi-layer Perception (MLP) is used to build the se-
quence prediction models, which consists of an input layer,
4 fully connected hidden layers with non-linear activation
functions and followed by a linear output layer as output. The
parameter settings of individual layers are given in Table 1.
Inspired by [23], to train the neural network, we minimize
a joint loss LJoint (Eq. 2) of the sum of Mean Absolute
Error (MAE) (Eq. 3) and the Pearson Correlation Coefficient
(PCC) (Eq. 4)

LJoint =MAE + λ(1− |PCC|) (2)

MAE =

∑n
i=1 |y − ŷ|

n
(3)

PCC =
cov(y, ŷ)

σyσŷ
(4)

where, cov is the co-variance of ground-truth and the predic-
tion, σy and σŷ are the standard deviation of y and ŷ respec-
tively. PCC measures the linear correlation between two vari-
ables y and ŷ. Empirically, we found that joining those two
losses improves the accuracy and stabilizes the training pro-
cess.

3. RESULT & DISCUSSION

All the datasets used in this paper consist of a set of DI-
COM files, which represent CT scans for patient’s entire trunk

stored in 16-bit grayscale images. Our models were trained
on one training set however the evaluation were conducted on
two different test sets. Both training set and testing set 1 are
a private dataset from the same data source – generated by
the same hospital and with similar scanning parameters such
as the slice thickness, and spacing between slices but with
some variation in the pixel spacing ∈ [.488, .5, .635, .703].
All volume slices have 512 × 512 resolution but it varies in
the number of frames (volume depth), which is in the range
of 750 to 1120 frames. The maximum value is 3071 and the
minimum value is -1024. The training set consist of ten slices
out of 840 slices extracted from one volume (patient 40) with
pixel spacing [0.625, 0.625] and slice thickness 0.625. The
two proposed NN models were evaluated on test set 1, which
consist of 42 volumes. On the other hand, test set 2 con-
tains two volumes from a publicly available dataset provided
by The Cancer Imaging Archive (TCIA) [24]. The DICOM
dataset is CT scans of a human lung for patients who suffer
from non–small cell lung cancer. The datasets characteristics
are presented in table 3.

To select the block size with best compression perfor-
mance, we experimentally applied different neighbouring
sizes for the 3D cube input sequence including 3x3x3, 5x5x5,
7x7x7, 9x9x9, and 11x11x11. Figure 2 illustrates an example
of each input sequence type. In the given examples, z=0
represents the current slice, the black voxel refers to the tar-
get voxel that needs to be predicted, and the grey voxels are
the input sequences while the white voxels are the ones that
will be masked because they are unknown information during
decompression. In the given 3D cube example, the block size
is equal to 7x7x7, which implies that the maximum distance
from target voxel in each dimension (x, y, z) is 3. However,
in the 3D pyramid neighbouring example, the distance to the
target voxel is decreasing in both x and y axes at each increas-
ing z step. For instance, (at z=0, the block size=7x7), and (at
z=-1, the block size=5x5), etc. Based on several experiments,
we choose (11x11x11) as the input sequence block for model
1 as it produces the best compression rate. However, for
model 2, the 3D pyramid sequences with (13x13, 9x9, 5x5,
1x1) sequence size are used. The rationale for choosing a
pyramid is that it reduces the number of voxels in each train-
ing sample (and consequently storage size and training time)
but still retains the possibility to integrate information from
previous slices into the training.

For the neural network, we set the parameters λ = 1,
which weights the contribution of the two losses to be the
same. We optimised the neural network using Stochastic Gra-
dient Descent (SGD) with momentum β = 0.9. Both models
have a good stability even without applying batch normaliza-
tion, weights L2 regularization or dropout. The training hy-
perparameters of the two models are illustrated in table 2. The
hyperparameters for model 1 are with batch size of 256, learn-
ing rate of 0.0002. However, for model 2, the batch size of 32
and learning rate of 3e-5 are used.
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Fig. 3. Comparing the compression ratio in bpp for the proposed models with the state-of-the-art lossless compression methods
over 16-bits volumes on test set 1.

Model
ID Sampling Space

Shapes of the input
Neighbouring Block Hyper Parameters

1
All samples were generated from 10 slices

extracted from one volume (patient 40) 3D Cube 11x11x11 input sequence
Batch size = 256, learning rate = 0.0002,

no L2 regularization, no dropout and no batch normalization

2
All samples were generated from 10 slices

extracted from one volume (patient 40)
3D pyramid input sequence

13x13, 9x9, 5x5, 1x1
Batch size = 32, learning rate =3e-5,

no L2 regularization, no dropout and no batch normalization

Table 2. Illustrating the neural network training specifications for the two proposed models.

Patient ID Resolution Frames Pixel Spacing Slice Thickness
CT Lung R004 512 x 512 68 [0.830078, 0.830078] 5.0
CT Lung R013 512 x 512 67 [0.623047, 0.623047] 5.0

Table 3. Overview of test set 2 information composed of 16
bit-depth medical images [25] [26]

We evaluated the compression performance in bits-per-
pixel (bpp) of the proposed neural network models in com-
parison to the state-of-the-art lossless compression methods
including JPEG-LS, JPEG2000, JP3D and HEVC (HM-SCC-
extensions-4998) using the lossless configuration with main-
RExt profile available in [7]. Figure 3, illustrates the compres-
sion rate in bpp on test set 1 compressed by the state-of-the-art
lossless methods and our two proposed neural network mod-
els. The results indicate that the proposed predictor models
achieve the best compression ratio on test set 1 in compari-
son to the existing methods. Additionally, it is clear that the
methods using 3D contents (two proposed models, and JP3D)
gained smaller bit-rate than the ones using 2D content only
(JPEG2000 and JPEG-LS). Among the different compression
approaches, our 3D data predictor model (Model 2) achieves
the best compression ratio.

We also evaluated the generalization ability of our mod-
els on a completely different data distribution (CT of lung
cancer). Our models were not trained on these volumet-
ric medical images, however, it can again achieve close
compression ratio to other methods: Dataset Lung R004,
JPEG-LS 5.937bpp, JPEG2000 6.014bpp, HEVC 5.739bpp,
JP3D 5.967bpp, Model 1 6.664bpp, Model 2 6.715bpp
and Lung R013, JPEG-LS 5.747bpp, JPEG2000 5.539bpp,
HEVC 5.835bpp, JP3D 5.623bpp, Model 1 5.959bpp, Model

2 5.847bpp. This is achieved even though the scanning pa-
rameters of the test set 2 differs totally from the training set
and test set 1. The slice thickness is 5mm while in training
set and test set 1, the thickness is .625 mm, which influ-
ences the 3D neighbouring quality learned by our models.
Since our neural network models were trained to learn the
explicit relation of neighbouring voxels in a specific resolu-
tion (i.e. training set), different volume resolution (i.e. test
set 2) will influence the performance of the models. How-
ever, our model is generalized to gain better compression
if the data provided is consistent and has similar structure
to the training set (i.e. test set 1 has similar slice thickness
but variation in pixel spacing). We tested this by resampling
test set 2 to pixel spacing of 0.625 and compressing it. On
that test, our models performed better than the other methods
(Lung R004, JPEG-LS 5.46bpp, JPEG2000 5.24bpp, JP3D
5.2bpp, Model 1 4.92bpp, Model 2 4.9bpp and Lung R013,
JPEG-LS 5.698bpp, JPEG2000 5.485bpp, JP3D 5.375bpp,
Model 1 5.237bpp, Model 2 5.238bpp).

4. CONCLUSION

In this paper, we proposed a novel lossless compression sys-
tem using neural network for volmetric medical image. Two
localized sampling methods were introduced and evaluated
on real volumetric medical imaging datasets. The compar-
ison study shows that our method outperforms the standard
lossless compression methods. It also suggests that the pro-
posed method is feasible to generalize to unseen dataset while
retains satisfactory performance.
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