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Abstract 19 

Nests of social insects are an important area for the exchange of food and information among workers. 20 

We investigated how the topology of nest chambers (as opposed to nest size or environmental factors) 21 

affects the spatial distribution of nestmates and the foraging behavior of Myrmica rubra ant colonies. 22 

Colonies were housed in artificial nests, each with same-sized chambers differing in the spatial 23 

arrangement of galleries. A highly connected central chamber favored higher occupancy rates and a 24 

more homogeneous distribution of ants across chambers. In contrast, a chain of successive chambers 25 

led to a more heterogeneous distribution of ants, with the occupancy of a chamber chiefly mediated 26 

by its distance to the entrance. Irrespective of nest topology, the entrance chamber housed the largest 27 

proportion of ants, often including the queen, which exhibited a preference for staying in densely 28 

populated chambers. Finally, we investigated how nest topology influenced nestmate recruitment. 29 

Surprisingly, a highly connected chamber in the center of the nest did not promote a greater 30 

recruitment nor activation of ants. At the onset of foraging, the largest number of moving ants was 31 

reached in the topology where the most connected chamber was the nest entrance. Later in the 32 

process, we found that a chain of successive chambers was the best topology for promoting ant’s 33 

mobilization. Our work demonstrates that nest topology can shape the spatial organization and the 34 

collective response of ant colonies, thereby taking part in their adaptative strategies to exploit 35 

environmental resources. 36 

 37 
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Introduction 39 

Nests of social insects serve multiple functions: they maintain a homogeneous internal environment 40 

(e.g., Korb 2003; Turner 2009; King et al. 2015), contribute to organize the division of labor (e.g., 41 

Tschinkel 1987; Tschinkel 2004; Tschinkel and Hanley 2017) and act as a protective fortress for the 42 

colony (e.g., Noirot and Darlington 2000; reviewed in Perna and Theraulaz 2017). The nest also 43 

represents an important area for the exchange of food and information within the colony. Ant colonies 44 

are capable of complex forms of collective behavior such as digging large and complex nests (Tschinkel 45 

2015) or taking efficient collective foraging decisions (Detrain & Deneubourg 2008; Jeanson et al. 46 

2012). Such complex collective organization depends on multiple interactions between nestmates 47 

(Theraulaz et al. 2003; Detrain & Deneubourg 2006; Gordon 2010). Most importantly, these 48 

interactions often take place in the constrained physical space of the nest. By constraining the 49 

movement and the interactions of nestmates, the nest becomes more than a passive setting for 50 

information sharing and colony activities. Indeed, the form of the nest contributes to determine where 51 

and when interactions occur, which work-related stimuli (larvae, wastes, corpses, etc.) become 52 

available to each individual ant, and ultimately the organization and behavior of the entire colony 53 

(Mersch et al. 2013; Jeanson & Weidenmüller 2014; Lehue & Detrain 2019). 54 

As interactions between workers are related to non-linear, self-amplifying processes, even small 55 

variations in interactions at a local scale can potentially generate large differences in colony-level 56 

behavior (Camazine et al. 2003; Detrain & Deneubourg 2006). In particular, the chamber closest to the 57 

entrance (i.e., ‘the entrance chamber’) is inevitably the first place visited by returning foragers and 58 

thus appears as a crucial location for information-sharing and initiation of collective recruitment. Some 59 

studies (Pinter-Wollman et al. 2013; Davidson & Gordon 2017) showed that the number of ants waiting 60 

in this particular chamber affects the rate at which outgoing ants will leave the nest. Assuming that 61 

the volume of the entrance chamber limits the maximum number of foragers that can be present at 62 

any one time, it could also shape the collective dynamics of food exploitation. However, Pinter-63 

Wollman (2015) showed that the volume of the entrance chamber did not influence the speed of 64 

recruitment, suggesting that colony-level behavior was more dependent on the topological features 65 

than on the carrying capacity of this chamber. This study highlighted for the first time the importance 66 

of nest topology on the emergence of collective behavior in ants. 67 

The nests made by different species of ants, and sometimes also by different colonies of the same 68 

species, can take many different forms. Examples range from complex network of galleries excavated 69 

in soil or wood cavities, to nests made out of leaves woven together (Hölldobler & Wilson 1990). On 70 

the one hand, nest size is often related to the size of the colony (Mikheyev & Tschinkel 2004; Tschinkel 71 



 

4 
 

1999, 2005). On the other hand, nest shape and topology change depending on season (Hart & 72 

Tschinkel 2012), soil type (Toffin et al. 2010), ants’ body size (Kwapich et al. 2018) as well as the 73 

presence of brood or food (Römer & Roces 2014). The opposite is also true, and some species dig nests 74 

with clearly recognizable shapes across a wide range of ecological contexts (Tschinkel 2004, 2013).  75 

Regardless of its complexity, the structure of most underground ant nests can be broken down into a 76 

set of chambers interconnected by galleries. These structures can easily be described in terms of the 77 

tools derived from network theory (Gravish et al. 2012; Pinter-Wollman 2015, Kwapich et al. 2018). In 78 

this case, the chambers are the nodes of the network, and the galleries are the edges. A node (i.e., a 79 

chamber) can be characterized by its connectivity degree, which corresponds to the number of edges 80 

(i.e., galleries) directly connected to it. A node can also be characterized by its distance to another 81 

specific node, called the “path length” or by its average distance to all other nodes in the network, 82 

called the “average path length”. Because of the importance of the entrance chamber for foraging 83 

recruitment and exchanges with the external environment, one can assume that nodes closer to the 84 

entrance -having a shorter path length to the entrance chamber -are more likely to be influenced by 85 

the external environment. 86 

Many underground ant nests, particularly those excavated by small-sized colonies, are tree-like 87 

networks meaning that they have no cycles (Antonialli-Junior & Giannotti 1997; Lévieux 1976; 88 

Tschinkel 2003). Likely, this is because cycles are only formed when the growing tip of one gallery 89 

encounters another gallery, an event that is relatively unlikely at low gallery density in three-90 

dimensional soil. Conversely, larger colonies build nests of higher complexity with a high number of 91 

cycles (Gautrais et al. 2014), a factor that could facilitate the rapid mobilization of foraging ants (Pinter-92 

Wollman 2015). Tree-like networks are simpler to characterize because some of their topological 93 

properties are fixed: the number of edges is always equal to the number of nodes minus one, and the 94 

time that it takes to move between two chambers is always proportional to the path length, 95 

independently of the type of movement of ants, e.g. if they follow a completely random walk or they 96 

move directly to a destination. 97 

Network theory has proved to be a powerful tool to describe and compare the nests of social insects. 98 

For example, a network analysis of nests constructed by termites of the genus Cubitermes enabled 99 

Perna et al. (2008) to highlight the highly efficient network of galleries that created effective 100 

communication and transportation paths. In addition to acting as a tool to describe complex structures, 101 

network analysis allows researchers to explore relationships between specific properties of the 102 

network and collective behavior. In order to isolate the effects of nest topology, the behavior of a 103 

colony should be compared across nests with different topologies but otherwise similar characteristics. 104 
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For example, in the Argentine ant, Linepithema humile, the partial obstruction of nest exits 105 

counterintuitively enhanced the outgoing flows of alarmed ants (Burd et al. 2010). In the harvester 106 

ant, Veromessor andrei, a study by Pinter-Wollman (2015) showed that the speed of recruitment to 107 

food increased in relation to the degree of connectivity of the entrance chamber and with the 108 

‘meshedness’ of the nest network. Such field studies have paved the way for establishing a causative 109 

relationship between nest structure and collective behavior.  110 

Some nest casting techniques allow researchers to identify the ants’ location within the nest when the 111 

cast is dissolved/melted (Tschinkel 2010). However, in field studies it is not always possible to 112 

accurately relate the colony-level behavior to its underlying mechanisms because the spatial 113 

distribution of workers, their mobility and their interaction patterns are usually not known (but see 114 

Pinter-Wollman et al. 2013). Even when the distribution of ants inside the nest can be observed, it 115 

remains difficult to discern if it is determined by the size and topology of different nest parts, or instead 116 

it matches environmental gradients of temperature, humidity and other physico-chemical parameters. 117 

The same limitations apply to the study of ant queens. Ant queens have primarily been observed deep 118 

down in the nest and/or in areas of high density of workers (Tschinkel 1993; Walin et al. 2001), but 119 

observations of queen location are relatively scarce and do not allow to tell apart the effect of 120 

environmental gradients and nest topology. 121 

Laboratory studies represent an interesting alternative to field studies as ant colonies can be housed 122 

in artificial nests designed to control directly nest properties such as the size, number of chambers, 123 

and the spatial arrangement of chambers and corridors. Many laboratory studies have focused on ant 124 

nest occupancy and behavior inside the nest (Moreau et al. 2011; Pinter-Wollman et al. 2011; Mersch 125 

et al. 2013), but most of these studies have focused on relatively simple nests comprising only one or 126 

very few chambers. One recent exception is Tschinkel (2018), who compared colony growth and 127 

worker production for colonies housed in either artificial nests of a single chamber or nests of equal 128 

total volume but made up of multiple small chambers. 129 

In our study, we want to specifically address the question of how nest topology affects the nest 130 

occupation and the collective recruitment to food in the red ant Myrmica rubra. This ant species is 131 

widespread in temperate regions, nesting from Europe to Western Asia but also North America where 132 

it is considered as invasive. We know that this species uses various types of microhabitats for nesting; 133 

it is mostly found under or inside dead wood as well as beneath leaf litter. Brood is stored in curled 134 

leaves but also under rocks and even in moss tussocks (Groden et al. 2005). Nest relocation has been 135 

observed (Dobrzańska & Dobrzański 1976; Bernard 2014) but remains understudied (Abraham & 136 
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Pasteels 1980). The variety of nest structures dug/occupied by the red ant makes it an ideal species for 137 

studying the effect of different nest topologies. 138 

Here, we address the question how nest topology shapes the spatial distribution of the ant population 139 

and thus the emergent collective behavior of the colony. We characterized the spatial organization of 140 

workers inside the nest as well as the process of recruitment to food in colonies of the red ant M. rubra 141 

which were housed in artificial nests with three different topologies. Each nest had unique topological 142 

properties, while all nests had identical size and number of chambers. Specifically, we compared the 143 

dynamics of nest occupancy over a week focusing on the distribution of workers across the chambers. 144 

We investigated whether the connectivity of a chamber or its distance to the entrance influenced the 145 

level of occupancy by the ants. We paid particular attention to whether the queen had a higher 146 

tendency to occupy chambers located far from the entrance and/or chambers characterized by high 147 

connectivity and/or densely occupied by workers. Eventually, we compared the intensity of nestmate 148 

recruitment in the different nests to see if some topological features facilitated the spreading of 149 

recruiting stimuli to the whole colony.  150 

151 



 

7 
 

Methods 152 

The species used in this study is the red ant, M. rubra (Linnaeus, 1758) (Hymenoptera: Formicidae). A 153 

total of nine ant colonies were collected in the summer of 2016, 2017 or 2018, in woodlands located 154 

at Sambreville (Namur district: N 50°25.210'; E 004°37.878') and Aiseau-Presles (Hainaut district: N 155 

50°25.657'; E 004°35.764') in Belgium. M. rubra nests are found in a variety of substrates such as dead 156 

wood, leaf litter or soil and are typically composed of 100 up to 1500 workers and a highly variable 157 

number of queens from one up to 20 (based on our personal observation and Elmes 1973). For the 158 

nests that were dug under stones or under wood logs, the superficial nest chambers covered a total 159 

area of 20 to 50 cm², housing a few hundred individuals and consisting of a large single chamber or of 160 

multiple chambers of a few square-centimeters each, separated by loose walls or well- defined ridges 161 

(personal observations). The colonies were kept under controlled laboratory conditions (21°C ± 1°C; 162 

50% ± 5% humidity and 12L – 12D daylight cycle) for a minimum duration of 30 days before any 163 

experiment. We provided colonies with water, sucrose solution (0.3M) and freshly killed mealworms 164 

(Tenebrio molitor) ad libitum.  165 

Each experiment took place in a 15x25cm plastic tray with sides covered with Fluon® 166 

(polytetrafluoroethylene) to prevent the ants from escaping. The nests were made from 2mm thick, 167 

laser-cut Plexiglas discs of 6.5cm diameter (see Online Resource 1 for nest pictures). Each nest chamber 168 

was 1.5cm in diameter and each gallery connecting two adjacent chambers was 0.5cm long and 0.2cm 169 

wide. The nest had access to the outside through a single opening connected to the so-called “entrance 170 

chamber”. This agrees with previous results (Lehue & Detrain 2019) showing that M. rubra ants located 171 

within a 2-centimeter radius from the nest opening were oriented towards the entrance and were the 172 

most likely to interact with nestmates coming back from the outside. The overall nest size was chosen 173 

in order to be sufficiently large to comfortably host the entire colony as well as to have chamber 174 

dimensions that were broadly in the same range of sizes as those observed in natural M. rubra nests. 175 

The nest ceiling consisted of another Plexiglas disc of the same size as the nest (diameter 6.5cm) and 176 

was covered by a red filter paper to create darkness inside the nest. The nest floor was made from 177 

plaster and sat over a 3mm thick, highly water-absorbing synthetic fabric to ensure homogeneous 178 

humidity across the whole nest area. This absorbent plaster base and the entire foraging arena were 179 

watered daily (4mL/day). The nests were off-centered in the tray and placed 2cm away from one of 180 

the short sides with the entrance facing the large foraging area. 181 

 182 

 183 
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Nest topologies 184 

 185 

Fig. 1 The three different nest topologies studied. Chamber abbreviation letter: E=Entrance; C=Center; B=Back; FL=Front Left; 186 

FR=Front Right; BL=Back Left; BR=Back Right 187 

The three topologies studied will be referred henceforth as: the “star”, the “trident” and the “spiral” 188 

(Fig. 1). Several characteristics were shared by these three topologies. The first common feature is that 189 

all nests were “tree” networks and were open to the outside environment by a single entrance. All 190 

three topologies contained the same number of equally sized chambers (seven chambers), thus 191 

offering a similar volume to host nestmates. Finally, all nests had the same number of galleries (i.e., six 192 

galleries, plus one entrance gallery) with an average connectivity per nest chamber of 1.7. Although 193 

the three nests had the same number of chambers, they markedly differed in the way these chambers 194 

were interconnected by galleries leading to different topological properties (Tab. 1). 195 
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 196 

Table 1 Main topological differences among the three nest topologies studied. All values are expressed in terms of number 197 
of chambers (nodes) 198 

 Star Trident Spiral 

Average Path Length (n nodes) 1.71 2.29 2.67 

Average Distance to Entrance (n nodes) 1.57 1.29 3.00 

Maximum Distance to Entrance (n nodes) 2 2 6 

Maximum Connectivity (n nodes) 6 3 2 

 199 

The “star” nest had the lowest average path length of all three topologies. The central chamber was 200 

highly connected with a degree of connectivity of 6, while every other chamber was little connected 201 

with a degree of connectivity of 1. This feature created a nest topology with five chambers that were 202 

dead-ends and that inevitably went through a central hub before reaching the entrance chamber. 203 

The “spiral” nest had the highest average path length of all three topologies. The chambers were 204 

connected in series, and the degree of connectivity of the chambers was 2 except for the entrance 205 

chamber and the terminal chamber where the degree was 1. By consequence, the distance to the 206 

entrance gradually increased until a maximum of 6. 207 

The “trident” nest had an intermediate average path length. It was the only topology where the 208 

entrance chamber was connected to more than one chamber, with a degree of connectivity of 3. In 209 

this network, the entrance was the most connected chamber in a way that is reminiscent of the top-210 

heavy connectivity of natural ant nests (Tschinkel 2015). In terms of connectivity and average path 211 

length, the “trident” was intermediate between the two other topologies but provided a unique 212 

feature with the highly connected entrance chamber and the lowest average distance to the entrance. 213 

Experimental procedure 214 

The experiments lasted for nine weeks, and three colonies were tested simultaneously (Fig. 2). This 215 

process was repeated three times to reach a total of nine tested colonies. Each experiment consisted 216 

of the same consecutive events, starting by the settlement of ant workers in one of the three nest 217 

topologies, followed by a week of data collection on the spatial organization of the colony. After a 218 

resting period of eight days, the colony was starved for 72 hours prior to the recording of the food 219 

recruitment process. After two days, we removed the artificial nest and replaced it with a new artificial 220 
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nest characterized by another topology. The procedure was repeated until every colony was tested in 221 

each of the three nest topologies. The testing order of nest topologies was randomized.  222 

 223 

Fig. 2 Timeline of the experiments 224 

Spatial organization of nest population  225 

Each colony was placed in an experimental tray and could freely occupy the artificial nest characterized 226 

by one of the tested topologies. Ants started to settle inside the nest as it was the only place offering 227 

them suitable conditions of humidity and darkness. Because some colonies were slower than others 228 

to discover the nest, we started recording data as soon as at least 30% of the workers’ population was 229 

settled in. Once this threshold was reached, video frames of the nests were taken every hour for 12 230 

hours, during seven consecutive days. We then followed the hourly and daily location of the queen as 231 

well as the number of workers per nest chamber. The population size of each colony was standardized 232 

to approximatively 100 randomly picked workers, one queen and 15 larvae (first to third instars). We 233 

counted and removed every ant that died during the experiment and did not replace them. Throughout 234 

the experiment, the daily mortality remained very low, with an average of 0.22 ant dying per day. The 235 

highest and lowest mortality values observed in a colony were 0.42 and 0.10 dead ants per day 236 

respectively. In order to assess the impact of nest topology on the dynamics of ants’ settlement, a daily 237 

occupancy index was calculated by averaging the total number of ants inside the nest for each day and 238 

each topology. The dynamics of daily occupancy indices were then compared between topologies to 239 

see if one type of nest structure promoted a faster/larger settlement of ant colonies during the seven 240 
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days of experiment. Then, we observed the location of workers to see if the distribution of ants was 241 

homogeneous across all chambers (same percentage of ants in the chambers) and if it was influenced 242 

by the properties of the chambers (for instance if its occupancy changed with distance to the entrance 243 

or connectivity degree). 244 

Furthermore, we tracked the queen’s movements between successive frames and measured, for each 245 

chamber, its level of occupancy by the queen. This was done by counting how many times a queen was 246 

observed in a chamber for each day and each topology. This chamber’s level of occupancy was then 247 

related to the topological properties of the chamber. We also recorded the frequency at which the 248 

queen moved from a chamber to another (assessed as its mobility) as a function of the number of 249 

workers locally occupying the abandoned chamber. Information about brood location was also 250 

collected on the last day of the experiment. In particular, we checked for possible effects of nest 251 

topology on the relocation of brood pile between the first hour and the last hour of observation.  252 

Recruitment to food  253 

Before carrying out the experiments on food recruitment, the colonies were starved for 72h. Then, a 254 

single food source of 600µL of sucrose solution (1M) was placed at 10 cm from the nest entrance, and 255 

the whole tray was video recorded for 2 hours. 256 

We noted the exact moment the first ant entered the entrance chamber right after drinking at the 257 

food source, that is, the moment when the recruitment process started. We counted the resulting flow 258 

of workers leaving the nest after the arrival of the first recruiter. To measure the outgoing flow, we 259 

counted the total number of ants leaving the nest during a period of either 30 seconds or 3 minutes. 260 

We also assessed ants’ mobility in each nest chamber as a proxy for the spread of recruiting stimuli, 261 

before and during the recruitment to food. To this aim, during short periods of 10 seconds, we counted 262 

the number of ants that were moving in each chamber, 20 seconds before the arrival of the first 263 

recruiter ant as well as 30 seconds, and 3 minutes after its arrival. An ant had to walk for a minimum 264 

distance of half of its body length during that 10 seconds period to be considered as “moving”. 265 

Data analyses 266 

Spatial organization of the colony  267 

All statistical tests were done using the R software v3.3.1. (R Core Team 2018). 268 

Data were analyzed on the seven colonies whose workers were well-settled in the artificial nest, with 269 

more than 30% of the worker population staying inside the nest. Two colonies that showed an 270 

abnormally low occupancy were discarded from the analysis. In order to investigate the effect of the 271 
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nest topology, time, and colony on the occupancy of chambers, we used the R package lme4 (v1.1-21; 272 

Bates et al. 2015) to fit a linear mixed model (LMM). In this model, the colony and the topology were 273 

treated as categorical variables, whereas the day was treated as a continuous variable. The colony was 274 

specified as random effect whereas the topology and the day were specified as fixed effects. In order 275 

to detect a possibly faster occupancy for certain nest topologies, we added the interaction effect 276 

between the day and the nest topology to our model. The significance of our variables was tested using 277 

the two-tailed Wald X2-tests. When significant, pairwise comparisons were made by using the Tukey 278 

test.  279 

To compare the homogeneity of nest occupancy, we carried out a permutation test on the values of 280 

chamber occupancy after the ants had settled in the nest (the average daily occupancy index at day 7). 281 

In the test, the empirical values of chamber occupancy for each nest and for each colony were 282 

randomly permuted across the chambers of the same nest and the same colony to generate a new set 283 

of values in which the total number of ants and their heterogeneous distribution across different 284 

chambers were preserved, but the identity of the chambers was lost. We extracted 1000 such 285 

permutation samples that were used to calculate chamber occupancy indices, averaged across all 286 

samples for each particular nest topology. The distribution of these average values gave us the 95% 287 

confidence intervals (CI) that allowed us to spot chambers with significantly different daily occupancy 288 

indices. Furthermore, by comparing the width of the CI between the three nest topologies, we were 289 

able to determine which topology favored a homogeneous occupancy of its chambers. Finally, 290 

Spearman tests were performed in order to detect a correlation between the chamber’s level of 291 

occupancy by the ants and the distance to the entrance value as well as the connectivity degree of 292 

these chambers. 293 

Spearman tests were also performed between the level of chamber occupancy by the queen and the 294 

distance to the entrance or the connectivity degree of that chamber. We used generalized linear mixed 295 

models (GLMM, R package lme4) with binomial distribution to assess whether the probability of the 296 

queen to leave a chamber was influenced by nest topology and by the number of workers in this 297 

chamber. In the model, the colony and the topology were treated as categorical variables, whereas 298 

the number of workers staying in the chamber with the queen was treated as a discrete variable. The 299 

colony was specified as a random effect, while the topology and the number of workers were specified 300 

as fixed effects. Fixed effect significance was calculated using the two-tailed Wald X2-tests, and the 301 

pairwise comparisons were done with the Tukey method. The impact of nest topology on the 302 

distribution of brood across chambers as well as the relative occurrence of brood relocation were 303 

analyzed using Χ² tests.  304 
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Recruitment of food 305 

Data analyses on food recruitment were performed on eight of the nine colonies since one colony 306 

showed an abnormally low nest occupancy at the time of food recruitment, with less than 30% of the 307 

worker population staying inside the nest. By using a Spearman correlation test, we related the number 308 

of ants in the entrance chamber to the flow of workers exiting the nest after the arrival of the first 309 

recruiter. In order to see if nest topology influenced the flow of outgoing ants, we used a GLMM with 310 

a Poisson distribution. In this model, the nest topology and the colony were both treated as categorical 311 

variables. The colony was specified as a random effect, whereas the topology was set as a fixed effect 312 

whose significance was calculated using the two-tailed Wald X2-tests followed by pairwise comparisons 313 

using Tukey method. Similarly, the effect of nest topology on the proportion of moving ants inside the 314 

nest was assessed using a GLMM with binomial distribution.  315 

Finally, for each nest topology, we identified the chambers in which workers were significantly 316 

activated by the recruitment signal. To this aim, we used a GLMM with a binomial distribution 317 

considering the chamber as a fixed effect and the colony as a random effect. If the “chamber” had a 318 

significant effect (two-tailed Wald X2-tests), we then performed pairwise comparisons with the Tukey 319 

method to spot chambers within a significantly different proportion of moving workers.  320 

 321 

322 
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Results 323 

Spatial organization of workers inside the nest 324 

The topology of nest chambers had a significant impact on the overall level of nest occupancy by ant 325 

colonies (LMM: X²2=20.58, P<0.0001). Indeed, when looking at the whole week of experimentation, 326 

the “star” topology with a central hub housed on average more ants than the “spiral” and the “trident” 327 

topologies (Post hoc comparisons with Tukey method: star-trident P=0.0001 | star-spiral P=0.0047 | 328 

trident-spiral P=0.47) (Fig. 3). Moreover, the occupation of the nest was influenced by the number of 329 

days that the colonies spent in the setup, as gradually more ants were counted inside as time passed 330 

(LMM: X²1=50.47, P<0.0001). However, no topology promoted a significantly faster occupancy of the 331 

nest as there was no interaction effect between nest topology and time on the nest occupancy (LMM: 332 

X²2=1.91, P=0.38).  333 

 334 

Fig. 3 Occupancy dynamics of Myrmica rubra colonies in the three different nest topologies for 7 days and on the 18th day. 335 

Each point is a mean percentage of nest occupancy, based on the daily occupancy indices of seven replicates (N=7). The 336 

represented error bars are the standard error associated with each mean percentage  337 

On day 7, the settlement of ants was stabilized since for each topology the percentage of housed 338 

workers did not differ from the ones observed on day 18 (Paired Wilcoxon-test: star: W = 12, N=7, 339 

P=0.81 |trident: W = 14, N=7, P=1.0|spiral: W= 24, N=7, P=0.11 ). The average percentages of ants 340 

occupying each nest chamber were compared to the expected value of 14.3%, this latter value 341 
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corresponding to a perfectly homogeneous distribution of all the ants being equally split between the 342 

seven chambers (Fig. 4). On the last day of the occupancy dynamics (day 7), we observed the most 343 

homogeneous distribution of ants across all the chambers in the “star” topology, as shown by the 344 

width of its 95% confidence intervals (Permutation test-star: CI-= 12.2, CI+= 16.7, Width-CI= 4.6, see 345 

Online Resource 2 for the results in a table). The most heterogeneous occupancy of nest chambers was 346 

observed for the “spiral” topology (Permutation test-spiral: CI-= 10.2, CI+= 18.2, Width-CI= 8.0). In 347 

particular, the average occupancy of the entrance chamber in the “spiral” topology was four times 348 

greater than the average occupancy of the most remote chamber (i.e., chamber C for “spiral” topology 349 

on Fig. 1). The spatial distribution of the workers in the “trident” topology showed an intermediate 350 

level of heterogeneity across nest chambers (Permutation test-trident: CI-= 10.9, CI+= 17.5, Width-CI= 351 

6.5). 352 

 353 

Fig. 4 Percentage (mean ± standard error) of Myrmica rubra workers located in a given chamber over the total ant population 354 

hosted inside the nest on day 7. The color-scale enables to visualize how ants are distributed inside the nest. In the case of a 355 

perfectly homogenous distribution, the average expected occupancy per chamber is 14.3% as there are 7 chambers (100% / 356 

7 = 14.3%). Proportions colored in yellow are close to this expected average whereas proportions colored in red and green 357 

are higher and lower respectively. Mean numbers with (*) are values outside of the 95% CI of the permutation test 358 

For all the tested topologies, the mean percentage of workers standing in the entrance chambers (E 359 

chamber Fig. 1) on day 7 were always significantly higher than the upper confidence interval obtained 360 

from the permutation test (Fig. 4) (star: mean=17.3+2.0, CI+=16.7 |trident: mean=19.5+1.9, CI+=17.5 361 

|spiral: mean=20.0+1.3, CI+=18.2). On the contrary, the central chamber from the “spiral” topology, 362 

which was the most distant from the entrance, as well as the central chamber from the “trident” 363 

topology, were significantly less occupied (trident: mean=10.90+1.2; CI-=10.93 |spiral: mean=4.8+1.4; 364 

CI-=10.2). 365 
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In the “spiral” and the “trident” topologies, the number of M. rubra workers decreased in chambers 366 

that were located further from the nest entrance (Fig. 5). Indeed, when looking at the first day of 367 

settlement, we observed a significant negative correlation between proportion of ants in a chamber 368 

and its distance to the entrance except for the “star” topology (Spearman test – day 1: star: rs = -0.24, 369 

N=49, P=0.098 |trident: rs = -0.40, N=49 P=0.0048 |spiral: rs = -0.66, N=49, P<0.0001). Distance to the 370 

entrance still influenced the local occupancy of nest chambers until the end of the experiment for the 371 

“spiral” topology but had no longer a significant impact for the “trident” and for the “star” topologies. 372 

(Spearman test – day 7: star: rs = -0.11, N=49, P=0.46 |trident: rs = -0.28, N=49, P=0.053 |spiral: rs = -373 

0.59, N=49, P<0.0001). The “star” topology showed the less steep decrease of chamber occupation 374 

with distance to the entrance (Fig. 5) suggesting that this topology facilitated ants shifting across 375 

chambers. Throughout the week of experiment, the influence of the distance to the entrance on the 376 

distribution of workers was most important in the “spiral” topology which is the topology that offers 377 

the largest possible values of distances to the entrance. 378 

We found no relation between the connectivity degree of the chambers and the proportion of workers 379 

residing in them except for the “trident” topology which showed a positive correlation on the first day 380 

of the experiment (Spearman test – day 1: star: rs = -0.09, N=49, P=0.53 |trident: rs = 0.40, N=49, 381 

P=0.005|spiral: rs = 0.04, N=49, P=0.76). On the last day, that tendency was no longer significant for 382 

the “trident” (Spearman test – day 7: star: rs = -0.24, N=49, P=0.092 |trident: rs = 0.28, N=49, 383 

P=0.053|spiral: rs = 0.09, N=49, P=0.54). It is worth noticing here that in the “trident” topology the 384 

connectivity degree of a chamber is inversely proportional to the distance to the entrance (Fig. 1). 385 

Consequently, for this nest it is not possible to disentangle the impact of these two network 386 

parameters on chamber occupancy.  387 
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 388 

Fig. 5 Percentage of Myrmica rubra workers inside a nest chamber on day 7 as a function of its relative distance to the 389 

entrance. Each dot represents the percentage of ants in a given chamber over the total ant population inside the nest that 390 

was averaged over the 12 observations made at day 7. The trend line is the linear regression of the data with its corresponding 391 

equation. The distance of the chamber to the entrance (expressed as number of nodes) ranges from 0 to 2 for the “trident” 392 

and the “star” topologies and from 0 to 6 for the “spiral” topology 393 

Spatial localization of the queen and larvae inside the nest 394 

For each nest topology, every chamber was occupied at least once by the queen when considering all 395 

the observations made on the seven tested colonies (Fig. 6). The least occupied chamber by the queen 396 

was the terminal chamber of the “spiral” nest where the queen was recorded on 1.7% of all 397 

observations for that nest (N=588). The chamber in which the queen was found most often was the 398 

entrance chamber of the “trident” nest where the queen was recorded on 40.8% of all observations.  399 

We found no correlation between the distance to the entrance of a chamber and its level of occupancy 400 

by the queen, on the first day of experiment (Spearman test – day 1: star: rs = -0.03, N=49, P=0.86 401 

|trident: rs = -0.18, N=49, P=0.20|spiral: rs = -0.26, N=49, P=0.066). On the last day, however, we found 402 

a negative correlation in the “trident” topology (Spearman test – day 7: star: rs = 0.13, N=49, P=0.36 403 

|trident: rs = -0.47, N=49, P=0.0007|spiral: rs = -0.26, N=49, P=0.07). 404 

We found no correlation between the connectivity of a chamber and its level of occupancy by the 405 

queen, on the first day of experiment (Spearman test – day 1: star: rs = -0.13, N=49, P=0.38 |trident: rs 406 

= 0.18, N=49, P=0.20|spiral: rs = -0.03, N=49, P=0.81). On the last day, however, we found a negative 407 
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correlation in the “trident” topology (Spearman test – day 7: star: rs = -0.12, N=49, P=0.41 |trident: rs 408 

= 0.47, N=49, P=0.0007|spiral: rs = 0.12, N=49, P=0.42). 409 

 410 

Fig. 6 Percentage of chamber occupancy by the Myrmica rubra queen for each nest topology. The percentage is given by the 411 

number of occurrences of queen presence in a chamber over 588 observations (12 observations per day for 7 days and for 7 412 

colonies) 413 

In each colony, the queen frequently moved from one chamber to another throughout the day. The 414 

probability for the queen to relocate significantly differed between nest topologies (GLMM: X²2=11.68, 415 

P=0.0029). The queen’s position was less stable in the “star” topology as she moved from one chamber 416 

to another on average 2.7 ± 2.1 times per day, compared to 1.7 ± 2.1 in the “trident” and 2.0 ± 1.8 in 417 

the “spiral” (Post hoc comparisons with Tukey method: star-trident P=0.004 | star-spiral P=0.036 | 418 

trident-spiral P=0.72). Furthermore, we found that the number of workers standing in the chamber 419 

was the explanatory variable from the generalized linear mixed model (GLMM: X²1=15.61, P<0.0001), 420 

the queen being more likely to leave sparsely populated chambers (Fig. 7). When staying in a chamber 421 

with very few workers (at most 4 workers), the queen had a probability of 0.4 to be observed in another 422 

chamber the next hour whereas this probability decreased to less than 0.05 in a populous chamber 423 

(with 17 to 20 workers). 424 

With respect to larvae, on the last day of the experiment, brood could be located in a single chamber 425 

(5 out of 21 experiments) but was most often split between two chambers (8 out of 21 experiments) 426 

or even between three to five chambers (8 out 21 experiments). The nest topology did not influence 427 

the number of chambers in which larvae were staying (Khi2 test: X²2=1.4, P=0.497). Moreover, in each 428 

of the three tested nest designs, the queen was observed in the same chamber as larvae in four out of 429 

the seven replicates. The occurrence of brood relocation was not influenced by the nest topology (Khi2 430 

test: X²2=1.376, P=0.503). Over the course of the last day, larvae were scarcely moved from one 431 

chamber to another. In the “star”, “trident,” and “spiral” topology, we observed respectively only 4, 5 432 
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and 2 relocation events among the 49 observed chambers (seven nest chambers observed during 433 

seven replicates).  434 

 435 

Fig. 7 Probability for Myrmica rubra queen of leaving a nest chamber as a function of the number of workers in this chamber 436 

Recruitment to food 437 

We found a significant influence of the nest topology on the outgoing flow of ants from the nest during 438 

the 30 seconds that followed the arrival of a recruiter ant inside the nest (GLMM: X²2=6.64, P=0.036). 439 

The mean outgoing flow was the lowest in the “star” topology and was significantly different from the 440 

one observed in the “spiral” nest (Fig. 8; Pairwise–test - Tukey method: star-spiral P=0.039 | star-441 

trident P=0.71 | trident-spiral P=0.21). Intermediate values of ant flows were observed in the “trident” 442 

nest. After 3 minutes, the outgoing flow of workers tended to even out as no nest topology significantly 443 

differed (GLMM: X²2=0.38, P=0.82). One can however notice that the average outgoing flow of ants 444 

was the lowest in the “star” topology at all times. Furthermore, a higher number of workers in the 445 

entrance chamber did not result in higher numbers of recruited ants. Indeed, we found that the 446 

number of ants standing in the entrance chamber did not influence the outgoing flow of ants 30 447 

seconds after the arrival of the first recruiter ant (Spearman test: rs = -0.17, N=24, P=0.44) nor 3 448 

minutes after (Spearman test: rs = -0.10, N=24, P=0.64).  449 
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 450 

 451 

Fig. 8 Cumulative outgoing flow of Myrmica rubra ants, 30 and 180 seconds after the arrival of the first recruiter. The outgoing 452 

flows were expressed in percentages given by the cumulated numbers of outgoing foragers over the total number of ants 453 

present inside the nest. N=8 per nest topology. Post-hoc pairwise comparisons were made using the Tukey method. Boxplots 454 

sharing a common letter for a given time, are not significantly different 455 

Before the arrival of a recruiter, the total percentage of moving ants did not differ between the three 456 

topologies (Fig. 9; GLMM: X²2=4.67, P=0.097). Furthermore, the percentage of active ants did not differ 457 

across chambers from a same nest (GLMM: star: X²6=7.03, P=0.32 |trident: X²6=4.14, P=0.66 |spiral: 458 

X²6=2.87, P=0.82). However, the arrival of a recruiter ant induced, after 30 seconds, an increase in the 459 

total percentages of ants in movement, which differed between nest topologies. (Fig. 9; GLMM: 460 

X²2=7.12, P=0.028). The “star” and the “trident” nests showed respectively the lowest and the highest 461 

total percentage of activated ants while the spread of recruiting stimuli was intermediate in the “spiral” 462 

nests (Pairwise–test - Tukey method: star-spiral P=0.699 | star-trident P=0.028 | trident-spiral P=0.18). 463 

After 180 seconds, the three nest topologies no longer differed by their total percentages of moving 464 

ants (GLMM: X²2=0.16, P=0.925). Furthermore, in each nest topology, the percentage of moving ants 465 

in a given chamber differed across nest chambers at 30 seconds (GLMM: star: X²6=46.90, P<0.0001 466 

|trident: X²6=70.67, P<0.0001 |spiral: X²6=69.46, P<0.0001) and at 180 seconds after the arrival of the 467 

first recruiter (GLMM: star: X²6=37.08, P<0.0001 |trident: X²6=31.02, P<0.0001 |spiral: X²6=35.18, 468 
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P<0.0001). In all cases, the percentage of active ants was higher in the entrance chamber than in the 469 

other ones (see Online Resource 3 for each pairwise comparisons across all chambers). 470 

 471 

Fig. 9 Percentage of moving Myrmica rubra ants observed 0, 30 and 180 seconds after the arrival of the first recruiter ant. 472 

The values in each nest chamber are the percentages of moving ants ± SE out of the number of workers present in this 473 

chamber. Percentages of moving ants are calculated only when at least two ants were present in a chamber. NA: Non-474 

available data when less than two ants were present in the chamber for more than two replicates. N=8 replicates per nest 475 

topology. The total percentages of moving ants in the whole nest are written in the square boxes at the bottom right of each 476 

nest and post-hoc pairwise comparisons were made using the Tukey method. The percentages of moving ants in the whole 477 

nest are not significantly different if they share a common letter at a given time 478 

  479 
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Discussion 480 

The spatial organization of M. rubra colonies within a nest is highly dependent on its topology. 481 

Environmental parameters such as the availability of food (Mailleux et al. 2011) or the 482 

weather/seasonality (Porter & Tschinkel 1993; Caut et al. 2013; Murdock & Tschinkel 2015) are already 483 

known to impact the localization of workers inside and outside the nest. However, our study indicates 484 

that, even in a homogeneous environment, the nest topology alone is enough to influence the level of 485 

nest occupancy as well as the distribution of workers among nest chambers.  486 

A nest topology with a highly connected chamber acting as a hub (i.e. the “star” topology) promoted 487 

a significantly greater occupancy of the whole nest. However, at a local scale, the connectivity degree 488 

of one chamber was not correlated to the number of ants housed in the chamber. In fact, the highly 489 

connected central hub of the “star” topology had a very high connectivity degree of 6 and yet it housed 490 

the same number of ants as the five terminal chambers with a lower connectivity degree of 1. The 491 

“star” topology favored a more homogeneous distribution of the workers across all the chambers. 492 

Furthermore, the little impact of distance to the entrance on the occupation of nest chambers as well 493 

as the high mobility of the queen observed in the “star-shaped” nest suggests that this topology favors 494 

exchanges and movements of nestmates between chambers. Interestingly, this homogeneous 495 

distribution of workers parallels the homogeneous distribution of network parameters: five of the 496 

seven chambers in the “star” topology were characterized by the same connectivity degree as well as 497 

the same distance to the entrance or to the other nodes.  498 

In contrast, the two nest topologies that showed series of successive chambers (i.e. one series for the 499 

“spiral” and three series for the “trident” topology) led to more heterogeneous patterns of chambers’ 500 

occupancy. In the case of the “trident” topology, the occupancy of one chamber in each branch seemed 501 

to depend not only on its topological location but also on the geometry of the whole nest structure: 502 

ants were more likely to occupy the lateral branches of the “trident” topology. This geometric effect 503 

could possibly result from the thigmotactic tendency of ants to walk along the walls to reach deeper 504 

nest parts.  505 

Our data also revealed that a single series of successive chambers, as for the “spiral” topology, favored 506 

a heterogeneous spatial distribution of workers, with the number of ants decreasing in chambers that 507 

were the most remote from the nest entrance. These results differed from field data on the vertical 508 

distribution of ants inside natural nests as it can be obtained from wax or dental plaster casts (Tschinkel 509 

2010)-that showed lower ant densities in the upper chambers close to the nest openings (Tschinkel 510 

2004; Murdock & Tschinkel 2015). These lower ant densities could, however, be partially explained by 511 

the top-heavy structure of the studied ant nests, which were characterized by larger and more 512 
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numerous chambers excavated in the upper nest regions. Furthermore, when considering the number 513 

of workers (instead of their density), the upper half part of the nest hosted the majority of the ant 514 

population. Finally, in these field studies, ant workers positionned themselves not only according to 515 

nest topology but also in response to temperature (Ceusters 1986), light (Pamminger et al. 2014) or 516 

even carbon dioxide levels (Hangartner 1969; Kleineidam 1999 but see Tschinkel 2013), which vary 517 

from the entrance until deeper nest chambers. Because of the small size of artificial nests used in our 518 

study and the strictly controlled laboratory conditions, variations in temperature, humidity or CO2 level 519 

were limited inside the nest interior and unlikely to play a major role on the spatial distribution of 520 

workers nor on their clear-cut preference for the entrance chamber in all nest topologies. This suggests 521 

that workers tend to aggregate near the entrance, and indirectly, that workers can detect proximity to 522 

the entrance without necessarily relying on sensing environmental gradients. The distance that they 523 

cover inside the nest when returning from foraging or their rate of encounters with returning foragers 524 

are some of the possible cues that they could use. 525 

As regards the impact of nest topology on the location of the ant queen, she was most frequently 526 

present in the chamber close to the entrance. The entrance chamber was the most occupied by the 527 

queen in the “trident” topology and the second most occupied chamber in the “star” and the “spiral” 528 

topologies. This is quite surprising knowing that selection for disease control is believed to have shaped 529 

the spatial organization of insect societies in a way that mitigates risks for pathogens’ transmission 530 

(Stroeymeyt et al. 2014). This “organizational immunity” implies that key-individuals and susceptible 531 

colony members such as the queen or the larvae should stay further from the entrance (Varoudis et 532 

al. 2018) so as to reduce encounters with potential pathogen vectors like foragers (Mersch et al. 2013). 533 

In natural nests, queens were often observed in deeper parts of the nest and/or in areas of high density 534 

of workers (Tschinkel 1993; Walin et al. 2001). The preferred location of the queen in the entrance 535 

chamber of artificial nests suggests that a high density of nestmates for grooming and humidity 536 

conservation could outweigh the higher sanitary risks associated with interactions with foragers.  537 

The queen was very mobile and ended up visiting chambers in response to the presence of workers. 538 

Indeed, queen relocation from one chamber to another were more frequent in the “star” topology. 539 

This may be a consequence of the homogeneous distribution of workers throughout the chambers for 540 

this nest topology, leading to evenly attractive chambers from the queen’s perspective. Furthermore, 541 

we found that the queen preferred chambers that were highly populated regardless of their 542 

topological properties. The tendency of a queen to stay in the most occupied chambers relates to a 543 

well-known phenomenon in gregarious insects where the probability of leaving a group decreases non-544 

linearly with the group size (e.g. in cockroaches (Jeanson et al. 2005), crickets (Sword et al. 2005) or 545 

ants (Deneubourg et al. 2002; Tennenbaum et al. 2016). This decision rule adds to the ability of ant 546 
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queens, including queens of M. rubra, to produce attractant pheromones (Vienne et al. 1998), that 547 

trigger and maintain the aggregation of ant workers around them. A high density of workers also 548 

implies more mutual grooming as well as a more thorough sanitization of the chamber, which both 549 

reduce transmission rates of pathogens (e.g. in leaf-cutting ants, Hughes et al. 2002).  550 

Because spatial proximity is a prerequisite for ants to interact, the entrance chamber that harbors most 551 

encounters between outside foragers and inner-nest workers plays a key role in the emergence of 552 

collective foraging behavior (Greenee et al. 2013; Pinter-Wollman et al. 2013; Davidson & Gordon 553 

2017). On the one hand, we found that the number of M. rubra workers in the entrance chamber did 554 

not influence the speed of recruitment. On the other hand, we noticed that the highest number of 555 

moving ants 30 seconds after the return of a recruiter was observed in the “trident” topology for which 556 

the entrance chamber showed the highest level of connectivity. These two findings somehow 557 

corroborate previous studies made on the harvester ant Veromessor andrei (Pinter-Wollman 2015) 558 

where the connectivity of the entrance chamber had a greater impact on the recruitment speed than 559 

the number of workers this chamber can potentially hold. Indeed, as the connectivity of the entrance 560 

chamber increases, so does the number of locations from which ants can be aroused and mobilized 561 

for foraging. As regards the average distance of nest chambers to the entrance, it did not influence the 562 

recruitment intensity. Indeed, neither the outgoing flow of foragers nor the total number of moving 563 

ants differed between the “trident” and the “spiral” nest, even though these two topologies showed 564 

respectively the lowest and the highest average distance to the entrance. This finding could be 565 

explained by a propagation of information mostly limited to the entrance chamber which showed the 566 

highest percentage of moving ants stimulated by the arrival of successful recruiting ants.  567 

Interestingly, the “spiral” topology was the one that most facilitated the activation of deeper nest 568 

chambers with at least 5% of the workers moving in every chamber 3 minutes after the first 569 

recruitment events. This may result from the serial arrangement of chambers that canalizes the 570 

recruitment signals along a single axis extending from the entrance chamber to the deepest one. The 571 

“spiral” topology could promote a delayed, yet more efficient sharing of information and food 572 

throughout the whole nest. Further studies should investigate the differential timescales at which a 573 

given nest structure shows its optimal functionality. Indeed, a topology could be more functional on 574 

long time scales because it optimizes food transfer within the whole nest while another topology could 575 

be optimal on short time scales because it facilitates the rapid activation of workers and the 576 

recruitment of many individuals to a new outside task. 577 

Our study confirms that the nest topology alone affects the pattern of nest occupation by workers as 578 

well as their activation in the context of foraging. This potentially opens new questions about the 579 



 

25 
 

adaptive value of different topologies. One can hypothesize that ant species relying on collective 580 

foraging and on a strategy of food monopolization could benefit from a high level of connectivity of 581 

near-surface nest chambers. Conversely, for small-sized population and/or ant species using signals of 582 

poor recruiting efficiency, high connectivity between chambers may no longer be beneficial or may 583 

even hamper any recruitment process to take place. Previous research on social insect nests has mainly 584 

focused on the mechanisms of nest digging (Theraulaz et al. 2003; Buhl et al. 2006) and of nest size 585 

regulation (Rasse & Deneubourg 2001; Buhl et al. 2004). Topology characterizes a whole set of nest 586 

properties that are not captured by size descriptors alone. Our study confirms that topological features 587 

of nests are important for understanding not only the mechanisms but also the function of insect-built 588 

architecture. Together with previous studies, our work is now casting light on how the topology of nest 589 

structures can shape the spatial organization of workers and can thus affect the efficiency of 590 

information flow inside the nest. By extending our approach to the study of other ant species with 591 

different social organizations and different ecology we will gain a better understanding of the 592 

functional value of different nest architectures in relation to the species-specific modes of food 593 

exploitation. 594 
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Supplementary 785 

 786 

 787 

Supplementary 1a: Separated components of the artificial ant nest. From Left to Right and Top to Bottom: Petri dish with 788 
access ramp, water-absorbing fabric, plaster disc, ceiling plug, ceiling with red filter paper, Plexiglas nest. 789 

 790 

 791 

Supplementary 1b: Artificial ant nest with the spiral topology. 792 

 793 
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 794 

Supplementary 1c: Artificial nest with the star topology, occupied by Myrmica rubra ants. The queen, indicated by a black 795 
arrow and characterized by a larger thorax, can be observed in a chamber. 796 

 797 

 798 

Supplementary 2: Results from the permutation test performed on the occupation of the seven nest chambers by Myrmica 799 
rubra ants for each nest topology separately, on day 7, for 1000 samples. The numbers express the expected percentage of 800 
ants in each chamber. 801 

 802 
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 803 

Supplementary 3: Results from the pairwise comparison of the percentage of Myrmica rubra ants moving between each nest 804 
chamber with the Tukey method. In bold are the significantly different chambers. Abbreviations for each chamber: F=Front 805 
(Entrance); C=Center; B=Back; FL=Front Left; FR=Front Right; BL=Back Left; BR=Back Right. 806 
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