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ABSTRACT 

 

Molecular dynamics (MD) simulations have developed into an invaluable tool in 

bimolecular research, due to the capability of the method in capturing molecular events 

and structural transitions that describe the function as well as the physiochemical 

properties of biomolecular systems. Due to the progressive development of more 

efficient algorithms, expansion of the available computational resources, as well as 

the emergence of more advanced methodologies, the scope of computational studies 

has increased vastly over time. We now have access to a multitude of online 

databases, software packages, larger molecular systems and novel ligands due to the 

phenomenon of emerging novel psychoactive substances (NPS). With so many 

advances in the field, it is understandable that novices will no doubt find it challenging 

setting up a protein-ligand system even before they run their first MD simulation. These 

initial steps, such as homology modelling, ligand docking, parameterization, protein 

preparation and membrane setup have become a fundamental part of the drug 

discovery pipeline, and many areas of biomolecular sciences benefit from the 

applications provided by these technologies. However, there still remains no standard 

on their usage. Therefore, our aim within this review is to provide a clear overview of 

a variety of concepts and methodologies to consider, providing a workflow for a case 

study of a membrane transport protein, the full-length human dopamine transporter 

(hDAT) in complex with different stimulants, where MD simulations have recently been 

applied successfully.  

 

 

Keywords: molecular dynamics; computational modelling; protein structure 

preparation; membrane protein simulations; small molecule parameterization; 

molecular docking  
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1. Introduction 

 

Molecular dynamics (MD) simulations have become a powerful and widely accepted 

technique for understanding the detailed structure and dynamics of biomolecular 

systems (Karplus and McCammon, 2002).  In the last decade advances in computer 

hardware (Cheatham and Roe, 2015; Kutzner et al., 2015), algorithm and force field 

developments (Larsson et al., 2011; Aldeghi and Biggin, 2017; Nerenberg and Head-

Gordon, 2018; Jing et al., 2019), and more recently in machine learning (Böhm, 1996; 

Dorn et al., 2014; Behler, 2016; Pérez et al., 2018; Chen et al., 2019; Hu et al., 2019; 

Plante et al., 2019; Rao et al., 2019; Romero et al., 2019; Wang et al., 2019) and 

applications of virtual reality (Glowacki et al., 2018; Amabilino et al., 2019; O’Connor 

et al., 2019) have enabled rapid progress in the field. Any seasoned expert would tell 

you that this is a rather exciting time, as we try to make sense of and then try to apply 

these new methods and tools to our own work. With that being said, we are now more 

so than ever, attracting a record number of junior colleagues who are being taught the 

practical concepts much earlier in their careers, such as in high school, leading them 

to pursue related degrees at University (Burkholder et al., 2009; Lundquist et al., 2016; 

Burgin et al., 2018; Taly et al., 2019). No doubt we will soon be looking at a new 

generation of molecular modellers feverishly entering the field, having been taught that 

the study of the macromolecular structure is a key point in the understanding of 

biology.  

 Putting aside the practical challenges of the applications of molecular modelling 

for biomolecular systems, there is a common problem amongst novices in the lead up 

and preparation for the actual MD simulation that causes much frustration and delays 

in projects. The simulation setup usually depends on following a series of steps. An 

expert modeller would normally carry out these steps skilfully with a set of tools 

(commercially available, open-source or in-house), because they have the necessary 

knowledge and resources to overcome any specific problems that would arise 

because of the countless hours of troubleshooting. However, without the adequate 

training a newcomer to MD simulation would be overcome even if one step fails. This 

usually happens because novices tend to blindly use default procedures sourced 

online or documented by a post-doc or fellow student in the lab setting. This not only 

leads to anguish from making spurious observations, that are hard to discern from the 
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correct ones, but it also leads to the unpopularity of biomolecular simulations and the 

classification that “it is hard” or “makes no sense” by the biochemical community.  

 Hence, we only see MD simulations being restricted to research groups that 

have the necessary tools and expertise. As a community, this does not bode well in 

sharing best practices or making it easy for newcomers to learn how to perform the 

basic tasks. What is shared may not be documented well enough or is standardised 

for a particular molecular system. This leads to a lack of compatibility and 

interoperability when being applied to new systems. We can think of two ways to 

overcome this; a top-down approach, where we design one package that does 

everything and that becomes the standard or a bottoms-up approach, where we make 

it easier to incorporate the already existing packages. The former could be regarded 

as the wrong solution because it just introduces another set of protocols that would 

have to be learnt from scratch. Therefore, the latter would appear to point to a right 

solution, a black box program for novices to use, with an easy to use Graphical User 

Interface (GUI) for the setup of the simulation system that can account for the many 

different codes, force fields, solvation representations, protein structures, ligands, and 

especially if simulating membrane proteins, the all so crucial lipids. If only it was that 

simple! 

 Several tools have attempted to address parts of this problem like InterMol , 

that allows the user to read and write different molecular formats, or MDTraj and 

MDAnalysis that have tools for the end-point analysis of different outputs (Michaud-

Agrawal et al., 2011; McGibbon et al., 2015; Gowers et al., 2016; Shirts et al., 2017). 

These packages have restricted applications and use different scripts for the different 

packages. The closet tool available for use today that addresses the interoperability 

and integration of different software packages is the joint EPSRC supported 

Collaborative Computational Project for Biomolecular Simulation (CCPBioSim) and 

High-End Computing Resources by the Biomolecular Simulation Community 

(HECBioSim) community software called BioSimSpace (biosimspace.org) (Hedges et 

al., 2019). BioSimSpace is intended primarily to be used by novices who may be 

unfamiliar with programming in general. Not only does it allow interoperability for 

common software packages to work together, but it ensures that outputs from one 

package can be easily used as inputs for another package. The flexibility of its 

workflow means that it can work on different hardware and can be run in a number of 

different ways, e.g. command line or JupyterLab. BioSimSpace offers some reprieve 

http://biosimspace.org/
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from the current situation but a novice still needs a working knowledge of the offered 

simulation packages and the different steps in setting up a simulation and most 

importantly how to obtain the raw input files, which will be discussed in the next 

section. 

 The most popular simulation packages (AMBER (Reese et al., 2018), 

CHARMM (Brooks et al., 2009), GROMACS (Pronk et al., 2013; Lundborg and 

Lindahl, 2015) and NAMD (Phillips et al., 2005)) do have accompanying tools, which 

perform most steps of the preparation. Acellera ACEMD (Harvey et al., 2009) and the 

HTMD platform also possess similar tools; although the latter is not freely available; 

some basic versions of the tools are available online at playmolecule.org (Doerr et al., 

2017; Jiménez et al., 2017, 2018; Martínez-Rosell et al., 2017; Galvelis et al., 2019). 

There are also many other combined user-friendly interfaces that provide a solution to 

the simulation setup utilising GROMACS and CHARMM (Kota, 2007; Miller et al., 

2008; Roopra et al., 2009; Sellis et al., 2009; Makarewicz and Kaźmierkiewicz, 2013; 

Paissoni et al., 2014; Lundborg and Lindahl, 2015), while VMD provides a number of 

plug-ins that facilitate simulations with NAMD (Phillips et al., 2005). These tools 

provide the automatic setup functionality to prepare systems for simulation without an 

in-depth knowledge of the inner workings of the software, thereby promoting 

accessibility to the field for novices. However, there still remains a lack of a 

standardised representation of the structural information needed for the input setup, 

most interfaces are restricted to a single MD package, and the data is not easily 

interchangeable, especially force fields. There is usually an embedded scripting 

language that complicates the automation process, and without experience in coding 

this would be a daunting task.  

 Furthermore, a novice would have to decide very early on, depending on the 

size of the system and the mechanism or interactions they would like to observe, the 

level of detail needed to represent their simulated system. There are a number of 

different levels of detail using classical molecular mechanics (MM) and quantum 

mechanical (QM) representations. Generally, MM methods are the choice for protein 

simulations and can either be in an all-atom (atomistic) representation or a course-

grained (CG) representation. An atomistic representation would give the best 

representation of the actual system; however, it can be unfeasible for very large 

systems and timescales because of the computational cost required. While a CG 

representation of a system that is reduced by a number of degrees of freedom, offers 

http://playmolecule.org/
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an alternative approach when studying large systems or when long simulations are 

required. The advantage of these CG simulations, because of the reduced degrees of 

freedom and lack of detailed interactions, means that less resources are required, and 

the calculations are a lot faster than that of the same system in an atomistic 

representation. A third method, using a hybrid approach of QM/MM applies the 

accuracy of the QM and speed of MM approaches to systems where an important but 

small part can be described by QM and the rest modelled by MM. 

 In this review we aim to provide a concise overview of the various concepts and 

methodologies that are required for the initial steps of an atomistic membrane protein 

setup, present their strengths and limitations, and highlight the open challenges faced 

by novices. We will particularly underline how to overcome these challenges with 

recent developments in MD packages and tools. Furthermore, within the context of 

the methodologies discussed, we will provide a workflow for a case study of a 

membrane transport protein, the full-length human dopamine transporter (hDAT) in 

complex with different stimulants, where MD simulations have recently been applied 

successfully (Khelashvili et al., 2015a, 2015b; Razavi et al., 2017, 2018; Sahai et al., 

2017, 2018; Loi et al., 2020). We will discuss the practical considerations of homology 

modelling, ligand docking and parameterization, protein preparation and membrane 

setup; which can be applied to most membrane protein systems before any MD 

simulations are performed. 

 

2. Understanding and obtaining your protein structure  

 

Before embarking on the various steps required for the simulation setup we feel it is 

important to ask a question recently seen on #SciTwitter (Morris, 2019) “If somebody 

gave you a protein structure and you had to open it and look around at it, would you 

know what you were looking at?” Surprisingly from nearly 300 people that participated 

in the poll (similar to the class size of the first year undergraduate Biochemistry course 

at the University of Roehampton), ~40% of them said no. This is a blunt reminder that 

a good place to start, for those unfamiliar and new to structural biology, would be to 

learn basic biochemistry to identify the 20 amino acids, different secondary structures 

(like alpha helices and beta sheets) and inter- and intra-molecular bonds (disulfide 

bond, hydrogen bond, Van der Waals and electrostatic interactions) as well as any 
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features like conserved regions or domains that would allow you to categorise the 

various protein classes (GPCR, transporter, channel, kinase etc).  

 The US Research Collaboratory for Structural Bioinformatics Protein Data Bank 

(RCSB PDB; rcsb.org), and especially PDB-101 (Berman et al., 2000; Minor et al., 

2016) is a good place to start accessing introductory material to help beginners learn 

about these 3-dimensional (3D) structures as well as advanced tutorials for extended 

learning. Additionally, the RCSB PDB is a repository to obtain the 3D structures that 

have been solved by the various biophysical methods that include X-ray 

crystallography and Nuclear Magnetic Resonance spectroscopy (NMR) (Opella, 1997; 

Zhang and Cherezov, 2019).  

The RSC PDB is a member of the Worldwide PDB consortium (wwPDB; 

wwpdb.org) (Burley et al., 2019), whose members also include the Protein Data Bank 

in Europe (PDBe; pdbe.org) (Mir et al., 2018), Protein Data Bank Japan (PDBj; 

pdbj.org) (Kinjo et al., 2017) and BioMagResBank (BMRB; bmrb.wisc.edu) for NMR 

data (Ulrich et al., 2008). Established in 1971, the PDB Core Archive now houses 3D 

atomic coordinates of >144 000 structural models of proteins, DNA/RNA, and their 

complexes with metals and small molecules and related experimental data and 

metadata. The wwPDB also works closely with the Electron Microscopy Data Bank 

(EMDB; emdb-empiar.org), a worldwide repository that houses related experimental 

data/metadata from 3D Electron Microscopy (3DEM) and Electron Tomography (ET) 

(Tagari et al., 2002; Milne et al., 2013). Publication of new macromolecular structures 

in most scientific journals is conditional on mandatory deposition of the 3D atomic 

coordinates comprising the structural model plus experimental data used to derive the 

structures and associated metadata to the PDB. As such these databases should be 

the first places to start looking for your 3D structural information.  

There are also general databases where you can find biological and structural 

information of the different protein classes such as The National Center for 

Biotechnology Information (NCBI; ncbi.nlm.nih.gov) and UniProt, the universal protein 

knowledgebase (UniProt; uniprot.org) (Bateman, 2019) as well as specialised 

databases like the Transporter Classification Database (TCDB) (Saier et al., 2016), 

GPCRdb: the G protein-coupled receptor Database (Vroling et al., 2011; Munk et al., 

2016) and the Membrane Protein Data Bank (MPDB) (Raman et al., 2006).  

These lists are not intended to be exhaustive, as there are many other 

resources available for the same purposes, but needless to say familiarising yourself 

http://rcsb.org/
http://wwpdb.org/
http://pdbe.org/
http://pdbj.org/
http://bmrb.wisc.edu/
http://emdb-empiar.org/
http://ncbi.nlm.nih.gov/
http://uniprot.org/
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with these databases and methods would help immensely when it comes time for 

understanding how the protein structure was obtained. 

 

2.1 Visualising your protein structure  

 

Going back to part of the #SciTwitter (Morris, 2019) question, would you know how to 

actually open and view the protein structure? A newcomer to structural biology needs 

to grasp many modern biological concepts as well as gain an appreciation of the 

interactions and relative sizes of molecular systems. While structure determines 

function is increasingly recognized as an important scientific concept for students, this 

relationship remains absent from many schematic depictions of biomolecules and 

processes found in biological textbooks. This is especially true when proteins appear 

as colourful blobs or structured boxes or even actual locks and keys when explaining 

enzyme activity or protein-ligand binding. The use of molecular visualization software 

provides a remedy to this however it is not without its own limitations; some of these 

tools have steep learning curves that limit the time that could be used to focus on the 

research project and they often lack the capability for viewing dynamic trajectories, 

when it comes time to analysing the molecular dynamics simulations. Despite its 

practicality, there still exists many hurdles for using molecular visualization tools 

effectively. Choosing the right visualisation tool at the beginning of this journey and 

spending the necessary time to learn its features can be an invaluable advantage.  

There are a number of common 3D molecular viewers, such as UCSF Chimera 

(Pettersen et al., 2004), OpenStructure (Biasini et al., 2010, 2013), Pymol (The PyMOL 

Molecular Graphics System, Version 2.0 Schrödinger, LLC.), Rasmol (Sayle and 

Milner-White, 1995), Swiss PDB Viewer (Guex et al., 1997) and Visual Molecular 

Dynamics (VMD) (Humphrey et al., 1996). The most commonly used software 

packages are free, at least for educational use and are available to run on a wide 

range of architectures and the common operating systems including Microsoft 

Windows, Apple macOS and LINUX. It is good to bear in mind that when choosing the 

software to use most likely this will be influenced by the preference of your research 

group, quality of graphical representations, and if there is a need to view MD 

trajectories. VMD is often used for this latter purpose as it can read the trajectory files 

created during simulations in formats produced by many different software packages 

(Humphrey et al., 1996). Pymol produces excellent images, but is less straightforward 
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for viewing trajectories (The PyMOL Molecular Graphics System, Version 2.0 

Schrödinger, LLC.). Other freely available software, such as UCSF Chimera 

(Pettersen et al., 2004), OpenStructure (Biasini et al., 2010, 2013), Rasmol (Sayle and 

Milner-White, 1995) and Swiss PDB Viewer (Guex et al., 1997) can be used to view 

individual conformations (snapshots) from a simulation, but they lack the ability to 

show trajectories as animations. 

VMD is our preference for visualising protein systems. It has many added 

advantages with the foremost being that it supports the Tcl (Tool Command Language) 

scripting language (Dalke and Schulten, 1997). Users are supported by online 

documentation (tcl.tk) and by books targeting all levels of experience therefore even 

novice users are likely to gain experience with the language. Although this would be a 

new language for a newcomer to learn, the advantages far outweigh any initial 

disadvantage. Tcl can be used to parse the simulation configuration file, allowing 

variables and expressions to be used in initially defining options, and also change 

options during a running simulation, such as in running interactive MD like Steered 

Molecular Dynamics (SMD), implemented in the QwikMD plugin (Ribeiro et al., 2016). 

In addition, VMD can render publication quality animations and images from large 

trajectories stored on clusters and supercomputers with MPI implementations. 

 

3. Stepping towards a molecular dynamics simulation: Our case study 

 

Now that we have covered how to obtain your protein structure and how to visualise it  

in the above sections 2 and 2.1, we can now attempt to work through the 

computational system setup for the membrane transport protein, hDAT, in complex 

with various psychostimulant drugs. At this point we should have a working knowledge 

of a preferred visualisation software and background research on the protein system 

and ligand that will be needed in the atomistic MD simulations. 

 

3.1 3D structure prediction when there is no protein structure in the databases  

 

We previously introduced databases where you can obtain the 3D coordinates of 

protein structures in Section 2. Now what happens if your protein system does not 

appear in any of these databases?  

http://www.tcl.tk/
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Protein structures are uniquely determined by their primary amino acid 

sequences (Anfinsen, 1973), and in some cases, are unknown or unavailable 

(Anfinsen, 1973). However, identifying direct contacts between protein and ligand is 

contingent on having a 3D structure. This is especially important with hDAT, that is 

responsible for the reward and reinforcement properties of stimulants like cocaine and 

novel psychoactive substances (NPS) (Beuming et al., 2008; Bisgaard et al., 2011; 

Dawson et al., 2014; Sahai et al., 2017, 2018). Briefly, hDAT belongs to the family of 

neurotransmitter: sodium symporters, that also includes the serotonin transporter 

(SERT) and norepinephrine transporter (NET) and controls dopamine (DA) 

homeostasis by mediating Na+ and Cl- dependent reuptake of DA (Rudnick and Clark, 

1993; Kristensen et al., 2011). hDAT, like the other members of this family of 

transporters, has both an intracellular amino- and carboxyl-termini and twelve 

transmembrane (TM) helical domains (Yamashita et al., 2005; Penmatsa et al., 2013b; 

Coleman and Gouaux, 2018) (Figure 1). Topological information like this can be easily 

obtained from UniProt (Bateman, 2019) to aid in understanding the structure of the 

protein and to confirm the location of TMs in the membrane environment. A high-

resolution elucidation of hDAT structure, especially regarding its substrate and 

inhibitor recognition sites would be important for any studies linked to understanding 

the reinforcing properties of psychostimulants; none exist. 

 

[Figure 1 here] 

 

However, we do have access to X-ray crystal structures of proteins homologous 

to the NSS family and now more recently crystal structures of members of this family 

(Penmatsa et al., 2013a, 2013b, 2015; Wang et al., 2015; Coleman and Gouaux, 

2018), however, still none for hDAT. Before 2013, the crystal structure of a bacterial 

leucine transporter (LeuTAa), a protein homologous with the NSS family, for which 

several crystal structures corresponding to various functional states (outward open, 

occluded, and inward open) had been determined (Singh et al., 2007, 2008; 

Krishnamurthy and Gouaux, 2012), was used as a ‘template’ to employ computational 

modelling techniques to produce a feasible 3D hDAT structure. Since then we have 

used the crystal structure of the Drosophila melanogaster dopamine transporter 

(dDAT) (Penmatsa et al., 2013a, 2015; Wang et al., 2015), which shows a remarkable 
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similarity between the TM bundles of LeuTAa (Hansen et al., 2014). Because of 

computational modelling the substrate binding site (S1) is known to be deeply buried 

in the transporter structure (Beuming et al., 2008; Bisgaard et al., 2011; Sahai et al., 

2017) and we can describe a site that overlaps with that of dopamine and many of the 

popular psychostimulants (Sahai et al., 2017, 2018). It is also clearly distinct from the 

site observed for antidepressant binding (S2 site) to the leucine transporter (LeuTAa) 

which is found facing the extracellular vestibule above the S1 site (Quick et al., 2009). 

There are three main computational modelling approaches that may be 

employed in predicting a 3D protein structure: ab initio prediction, ‘‘fold’’ recognition, 

and comparative (homology) modelling (Petrey and Honig, 2005) . These differ 

principally in the sequence and structural database information used. While true ab 

initio methods rely entirely on the physical and chemical information contained in the 

primary amino acid sequence to predict the structure, fold recognition, or ‘‘threading,’’ 

relies heavily on the structural similarities between specific distantly related or 

unrelated proteins (Bonneau et al., 2001; Petrey and Honig, 2005; Das and Baker, 

2008). Comparative (homology) modelling, enables us to construct a 3D structure of 

the unknown, ‘target’ protein based on the structure of a similar protein, principally 

considered the ‘template’ (Sali and Blundell, 1993). Homology modelling involves 

challenges in finding templates with relatively high sequence identities but if the 

proteins that share greater than 40% amino acid sequence identity, comparative 

modelling is straightforward (e.g. dDAT and hDAT). For proteins with less than 30% 

amino acid sequence identity (e.g., LeuTAa and hDAT), comparative modelling 

becomes more challenging. Still, the LeuTAa crystal structure has successfully guided 

the creation of useful comparative models for hDAT computational studies despite the 

absence of appreciable amino acid sequence identity (Beuming et al., 2008; Kniazeff 

et al., 2008; Shi et al., 2008; Quick et al., 2009; Shi and Weinstein, 2010; Bisgaard et 

al., 2011; Zhao et al., 2012; Shan et al., 2011; Zhao et al., 2011; Kantcheva et al., 

2013; Stolzenberg et al., 2015). This has revealed the 3D structure of DAT as 

exhibiting a LeuT-like structure fold (Perez and Ziegler, 2013). 

Conducting computational homology modelling, however, requires more than 

the first step; (1) simple ‘template’ recognition, in fact, it is a multi-step process with 

four more progressive stages; (2) sequence alignment, (3) model building for the 

intended ‘target’, which is based on the 3D structure of the ‘template’, (4) model 

refinement, analysis of alignments, gap deletions as well as additions and finally (5) 
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model validation (Martí-Renom et al., 2000) (Figure 2). Often, alongside ‘template’ 

recognition, the subsequent ‘template’ alignment step is performed. The most popular 

server used to conduct sequence alignment using the ‘target’ to find the 3D coordinate 

for ‘template’ protein sequence is BLAST (Basic Local Alignment Search Tool), which 

is a database from the NCBI (NCBI Resource Coordinators, 2016). This usually relies 

on one obtaining the FASTA (Pearson and Lipman, 1988; Pearson, 2014) sequence 

of your ‘target’ protein (e.g. hDAT), from either NCBI or UniProt (Bateman, 2019) and 

then using the ‘Standard Protein BLAST’ feature, and selecting the ‘Protein Data Bank 

proteins (pdb)’ as the ‘Database’, to search for any sequence similarities from the 

deposited structures. Usually, the most significantly aligned sequences are presented 

first with the identifiable sequence identity, important in helping to choose the 

‘template’.  

 

[Figure 2 here] 

 

There are alternative options and servers available in the case of BLAST being 

unable to find protein structures with an appropriate sequence identity. UniProt is one 

such option. After searching for the name of the protein, and selecting the correct 

organism and gene name, the results page displays a number of options. Under 

‘Structure’, you would find a list of available PDB entries as well as a prediction from 

the 3D structure databases, SWISS-MODEL (SMR) (Bienert et al., 2017) and 

ModBase (Pieper et al., 2006), with prepared 3D predicted structures. The Protein 

Model Portal (PMP; proteinmodelportal.org) (Arnold et al., 2009), an online server, 

also consists of millions of model structures provided by different partner resources 

including ModBase and SMR. A careful warning at this stage; it is extremely important 

a user of these databases is aware of the ‘template’ being used as well as the 

alignment that is produced. Reproducibility of the ‘target’ produced amongst the 

different tools should also be cross-linked with background literature i.e. (5) model 

validation, since steps (3) model building and (4) model refinement are performed 

automatically behind the scenes. 

For step (2) sequence alignment in the hDAT modelling, a previously published 

sequence alignment of the NSS-family proteins (Beuming et al., 2006) is used to first 

construct homology models for the transmembrane (TM) part of the hDAT (contained 

in residues 57−590) based on the ‘template’, the outward-facing dDAT structure (PDB 

http://proteinmodelportal.org/
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code: 4M48). See the Supplementary data for details about the alignment files, 

Modeller script and output. For the N- and C- termini we have employed ab initio 

methods to predict these segments [38].  All additional steps for the TM generation 

are then conducted using the MODELLER program (Eswar et al., 2006), available for 

most common operating systems. Incidentally, The ModWeb comparative protein 

structure modelling webserver is based on Modeller but has the added advantage of 

control of choosing the ‘template’ and the alignment. It is worth noting that there are 

some commercially available software packages that also include a homology 

modelling module that you can control, such as Schrödinger’s Prime Homology 

Modelling workflow (Schrödinger, LLC: Portland, OR, 2007, Web address: 

www.schrodinger.com.) and MOE (Molecular Operating Environment) (C. C. G. I. 

Molecular Operating Environment (MOE), 1010 Sher- booke St. West, Suite #910, 

Montreal, QC, Canada, H3A 2R7, 2013) 

To use MODELLER, you only need the pdb file for the ‘template’, an alignment 

file for the ‘target’ and ‘template’ and the Python MODELLER script; 

salilab.org/modeller provides excellent tutorials on how to use MODELLER with 

examples of the syntax used in the alignment files (usually FASTA (Pearson and 

Lipman, 1988; Pearson, 2014)) as well as the scripts. Careful editing of the alignment 

file and script avoids any spurious errors with syntaxes that can cause initial errors.  If 

there are internal ions they can also be added to the alignment file with specialised 

syntaxes, allowing ions to also be modeled into the ‘target’. 

Step (3) model building requires you to run the MODELLER Python script. 

Despite any experimental errors in the ‘template’ such as poor electron density, 

backbone generation usually reveals a good model from a series of models 

irrespective of such errors. In some cases, the ‘target’ and ‘template’ alignment can 

comprise of gaps or missing very flexible regions that could not be resolved by 

crystallography. Therefore, to overcome this, helices are inserted or deleted from the 

alignment and instead annotated as loops; this is known as the loop modelling stage 

and forms part of step (4) model refinement. Figure 3 gives details of the extracellular 

loop 2 (EL2). It is much shorter in dDAT and is truncated in the crystal structure while 

the longer EL2 region in hDAT is then modeled in by the loop modelling.  Side-chain 

modelling is performed to ensure the inclusion of all the atoms within the protein. This 

is a fundamental component as it enables us to understand further protein-ligand 

interactions.  

http://salilab.org/modeller
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MODELLER also includes step (5) model validation. Usually, this is included 

after the model building step to include a model optimisation step that outputs 

statistical potential, to help you assess the models built. Optimisation also can prevent 

incorrect backbone predictions on rotamers by restraining atom positions or applying 

energy minimisations. In MODELLER, Discrete Optimized Protein Energy, 

abbreviated as DOPE, is the statistical potential that is produced as an output from 

MODELLER and can help you assess the protein structures (Verdonk et al., 2011). 

While increased energies are displayed with higher DOPE scores, these are usually 

disregarded as the best model due to potential unfavourable non-bonded interactions. 

A lower DOPE score also assesses the compatibility of the structure, both in regard to 

its sequence as well as the generated model. To aid in this assessment it is important 

to visualise a 3D alignment of the ‘target’ and the ‘template’ with your favourite 

visualisation tool (Figure 3) and consider the scoring potentials from the homology 

modelling software. This model validation stage is a common technique as it affirms 

the predicted 3D protein structure is free from any errors. 

 

[Figure 3 here] 

 
 
 
3.2 Ligand preparation and docking 

 

Molecular docking has emerged as a powerful approach in the structure-based drug 

discovery pipeline (McConkey et al.; Bohacek et al., 1996; Chou, 2004; Hou and Xu, 

2004; Kitchen et al., 2004). It can be used to model the interaction between a small 

molecule (ligand) and a protein at the atomic level, allowing us to characterize and 

understand fundamental biochemical processes when the ligand is in the binding site 

of its ‘target’ protein. The docking process involves two basic steps: (1) prediction of 

the ligand conformation as well as its position and orientation within the binding site 

(or ‘pose’) and (2) assessment of the binding affinity (Bohacek et al., 1996). These two 

steps are related to sampling methods and scoring algorithms based on different 

criteria including steric clashes, electrostatic interactions, force field interactions and 

hydrogen bonding to predict the most energetically favourable orientation of the ligand 

and thus to quantify the likelihood of the biochemical nature of docking in that position.  
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Knowing the location of the binding site before the docking process significantly 

increases the docking efficiency, which is the case when there are crystal structures 

of the protein in complex with ligands in the binding site. You can also obtain 

information about the sites by comparison of the ‘target’ protein with a family of 

proteins sharing a similar function (LeuTAa and hDAT) or with similar proteins co-

crystallized with other ligands (dDAT and hDAT). If knowledge about the binding site 

is lacking, then there are various binding site prediction software or online servers that 

can be utilised to identify putative binding sites within proteins. Although not an 

exhaustive list, it includes software like CAVER (Jurcik et al., 2018), SURFNET 

(Laskowski, 1995), SiteMap module of Schrödinger suite of programs (Schrödinger, 

LLC: Portland, OR, 2007, Web address: www.schrodinger.com.), 3DLigandSite (Wass 

et al., 2010) and DeepSite, a protein-binding site predictor using 3D-convolutional 

neural networks (Wass et al., 2010). Docking without any prior knowledge about the 

binding site is called blind docking.   

You can find other such tools or the database repositories for structure-based 

drug design such as Click2Drug, click2drug.org and BBCU, 

https://bip.weizmann.ac.il/toolbox/structure/binding.htm. 

Docking programs, like the Autodock (Morris et al., 1998), AutoDock Vina (Trott 

and Olson, 2010), GOLD (Verdonk et al., 2003) and GLIDE module of Schrödinger 

suite of programs (Schrödinger, LLC: Portland, OR, 2007, Web address: 

www.schrodinger.com.) all follow the same general steps of preparing the protein and 

the ligand, defining the binding site and adjusting the ligand pose according to 

thermodynamic principles to minimise free energy of binding. There are many choices 

for each user, including mode of docking (flexible ligand and rigid receptor docking or 

flexible ligand and flexible receptor docking), formatting of the input files, naming and 

indexing of residues, orientation of the protein, and identification of ions. The “lock-

and-key” assumption was the basis for the earliest reported docking methods, which 

states the ligand and receptor are to be treated as rigid bodies, and their affinities for 

one another should be equivalent to a geometric fit amidst their shape (Mezei, 2003). 

The “induced-fit” theory was introduced years later, proposing that the ligand and 

receptor should be treated as flexible during the docking (Hammes, 2002). Under this 

assumption, the various backbone movements of protein and ligand residues are able 

to affect various side chains of each structure, allowing the residues of each part to 

better fit one another. Therefore, the sampling procedure is of a higher order of 

http://click2drug.org/
https://bip.weizmann.ac.il/toolbox/structure/binding.htm
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magnitude in terms of the number of degrees of freedom when it is within a fully flexible 

receptor/ligand docking, compared to flexible docking in a rigid receptor. Despite the 

larger computational cost of this methodology, it predicts the binding mode of the 

molecule with a higher accuracy than rigid body algorithms (Hammes, 2002). 

Ultimately, the docking process should discover the most favourable pose 

between a receptor and a ligand. Prior to docking, a number of steps should be 

performed to prepare both the ligand and protein crystal structure or homology model 

for docking. This includes adding hydrogen atoms, optimising hydrogen bonds, 

removing atomic clashes in the protein structure. Similarly, the 3D coordinates of the 

ligand is either downloaded from databases like the PDB or the NCBI PubChem, 

pubchem.ncbi.nlm.nih.gov or manually prepared to manufacture 3D geometries, 

assign bond orders, and generate accessible ionisation and tautomer states (Madhavi 

Sastry et al., 2013). 

Docking schemes comprise of two parts: (1) an algorithm that scans the 

translational, rotational and conformational space available to a chosen molecule in 

the binding region, alongside (2) an objective function that must be minimised in this 

process. The function calculates an approximate measure of binding affinity, normally 

referred to as a scoring function (Schulz-Gasch and Stahl, 2003). Verdonk et al. (2011) 

discovered six specific limitations for all molecular docking studies (Verdonk et al., 

2011). These include 1) the quality of the docking programs used, although there may 

be variability with the same docking program; 2) the types of targets and ligands 

included in the studies; 3) the level of experience the user has with the docking 

software; 4) the quality of the X-ray structures, where structures may have poor 

electron density for the ligands, disorder, or not be fully refined; 5) the preparation of 

the binding sites and ligands (protonation states might be incorrect) and 6) protocol 

differences (site grid definitions can differ between user experience while some users 

pre-optimize complexes).  

We perform our docking procedure using the Schrödinger software suite 

(Schrödinger, LLC: Portland, OR, 2007, Web address: www.schrodinger.com.), which 

requires a license for academic purposes. We have docked a number of ligands and 

psychostimulants into the binding site of full length hDAT (Khelashvili et al., 2015b; 

Sahai et al., 2017, 2018) using GLIDE implemented in the Induced fit docking (IFD) 

protocol, in the Schrödinger software suite (Schrödinger, LLC: Portland, OR, 2007, 

Web address: www.schrodinger.com.). We are also limited in our assumption that the 

http://pubchem.ncbi.nlm.nih.gov/
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ligands being used will have been crystallised before. Without a crystallised structure, 

it is precarious to generate a structure and to trust the orientation, chirality and 

properties. However, if caution is given to the building, preparation, and docking of this 

ligand, and if the poses are considered in the context of an extensive literature review, 

it is still possible for this docking methodology to serve its purpose of revealing 

biochemical details at the binding site of a protein. 

Here we will provide an example of how three very different ligands can be 

prepared for docking: cocaine, 5-IT and a more complex ligand diphenylprolinol 

(D2PM) (Figure 4). The 3D coordinates of cocaine can be retrieved from the crystal 

structure of dDAT in complex with cocaine, PDB ID: 4XP4; 5-IT is a phenethylamine 

derivative or substituted amphetamine and can be built by modifying an already 

existing crystal structure of amphetamine bound to dDAT (PDB ID: 4XP9). The 2D and 

3D build function that is a part of Schrödinger’s GUI Maestro can do this and is freely 

available. The 3D coordinates of D2PM can be retrieved from PubChem: Compound 

CID: 7045371 (NCBI Resource Coordinators, 2016) and then prepared with the 

LigPrep module in Schrödinger [44]. If you are inundated with search results from 

PubChem for your own compound, it is best to write out the name of the compound 

e.g. ‘diphenylprolinol’ for your search instead of its abbreviation. The prepared 

compounds should all carry a net positive charge and can be assigned by Epik, a 

module within Schrödinger that provides pKa Prediction [44]. In preparation for 

molecular dynamics simulations, ligand parameterisation of novel compounds may 

need to be performed. Therefore, at this stage the prepared ligand should be save in 

.mol2 format. Ligand parameterisation will be discussed in Section 4. 

 

[Figure 4 Here] 

 

The hDAT homology model was then prepared using the Protein Preparation 

Wizard module in Maestro, following which the Induced fit docking (IFD) protocol, in 

the Schrödinger software suite was implemented to dock the ligand. We used the 

binding site residues Phe76, Asp79, Ser149, Val152, Tyr156, Asn157, Phe326, 

Val328 and Ser422, previously identified as important for binding psychostimulants of 

comparable size to define the docking grid box (Beuming et al., 2008; Bisgaard et al., 

2011). IFD Docking was then performed using standard precision (SP). Random initial 
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positions and conformations of the ligand were screened for clashes with the protein 

and subsequently refined by allowing flexibility of the side-chains in the binding.  

Depending on the number of poses generated, Schrödinger’s IFD protocol, like 

other docking protocols will produce output structures ranked by a specific score. The 

IFDScore is calculated by 1.0 Glide_Gscore + 0.05 Prime_Energy, and accounts for 

the protein-ligand interaction energy alongside the overall energy of the system and 

utilised to rank the conformations. The lower the IFDScore, the more favourable the 

binding. A careful warning is to not take these scores at face value as it is important 

to visualise all the poses generated as many of the worst poses may meet the criteria 

of lowest IFDScore. As a result, once the docking procedure has completed, numerous 

potential poses will be provided, each with their associated docking scores and 

penalties associated with unfavourable biochemical interactions or steric clashes. To 

choose the most biologically realistic pose, it is suggested to compare each pose with 

known binding site interactions, specific electrostatic and hydrogen bonds, crystallized 

orientations of similar ligands or similar proteins, and to consider the probability of 

each pose given what is known about the ligand and the protein into which it is docked. 

Figures 4 and 5 explain the workflow for the preparation of the protein and 

ligands for docking as well as the final docked result (Figure 4).  

 

[Figure 5 Here] 

 

3.3 Immersion of docked complex into a membrane environment 

 

For most docked systems, it is necessary to consider the dynamics of the complex in 

the context of a membrane in which it would be natively found. Proteins are known to 

interact with the membrane in which they are embedded, and they can influence and 

be influenced by lipid-protein interactions (Mondal et al., 2013). Both experimental and 

computational studies have remarked that the environment surrounding NSS 

transporter proteins can play a critical role in their function and can influence 

reorientations of TM segments and their direct relation to the functional mechanism 

(Mondal et al., 2013; Khelashvili et al., 2015a). Careful evaluation of the membrane-

protein interaction patterns is essential in order to understand the functional 

mechanisms of these important proteins.  
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 Therefore, once the specific complex has been chosen (from Section 3.2), it 

should then be immersed in a realistic biological environment with lipids known to be 

found surrounding that transmembrane protein. In our hDAT system, a mixture of 

POPE/POPC/POPS/PIP2/cholesterol lipids, closely resembling the neuronal cell 

plasma membrane is used (Ariga et al., 1988). CHARMM-GUI membrane builder 

(Brooks et al., 2009) was used to create bilayer models of desired lipid compositions. 

The membrane preparation protocol in the software takes advantage of experimentally 

determined values for the area per molecule for different lipids and makes use of the 

extensive library of lipid conformations to generate a lipid bilayer.  

 Besides the CHARMM-GUI membrane builder, VMD also has a Membrane 

plugin. Additionally, the Acellera suite of tools (Doerr et al., 2017); has introduced 

MembraneBuilder on playmolecule.org, an application to build complex membranes, 

necessary to build and run atomistic simulations of membrane proteins. However, at 

the moment the lipid components are limited to POPC and POPE for the VMD plugin 

and POPC, POPE and cholesterol for MembraneBuilder.  

 Following the generation of the lipid bilayer, the docked complex can then be 

inserted. We refer back to the common simulation codes (AMBER (D.A. Case, I.Y. 

Ben-Shalom, S.R. Brozell, D.S. Cerutti, T.E. Cheatham, III, V.W.D. Cruzeiro, T.A. 

Darden, R.E. Duke, D. Ghoreishi, M.K. Gilson, H. Gohlke, A.W. Goetz, D. Greene, R 

Harris, N. Homeyer, S. Izadi, A. Kovalenko, T. Kurtzman, T.S. Lee, S. LeGra, 2018; 

Reese et al., 2018), CHARMM (Brooks et al., 2009), GROMACS (Pronk et al., 2013; 

Lundborg and Lindahl, 2015) and NAMD (Phillips et al., 2005)) that have 

accompanying tools to help in this process. Considerations here would be orientation 

in the membrane and removing any membrane lipids overlapping into the protein 

environment. No doubt the automation of this crucial step can be invaluable to a 

novice’s toolkit.  

 

4. Ligand Parameterization and final steps before MD simulations 

 

Molecular dynamics (MD) simulations must overcome many barriers to be 

considered a viable method for probing biological systems, of which includes the 

limitations of time scale, system size and accuracy in the representation of the 

underlying molecular system. With the first two relying on advances within the 

formations in hardware and algorithms, the latter requires diligent development of 

http://playmolecule.org/
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better force fields that are to sufficiently describe key interactions in the simulation 

system. An important limitation is the complexity of developing missing force field 

parameters for novel chemicals, such as small molecule ligands. These chemical 

entities are often vital components in the biological system of interest, but can obstruct 

the utility of the molecular dynamics technologies for fields that include drug discovery 

when difficulties arise in accurately parameterising small molecules (Durrant and 

McCammon, 2011; Borhani and Shaw, 2012).  

 Various empirical force fields including OPLS, AMBER, CHARMM as well as 

GROMOS have been developed for MD simulations (Guvench and MacKerell, 2008). 

In order to apply these general force fields to an arbitrary drug-like molecule, 

functionality for assignment of atom types, parameters and charges is required. 

Historically, quantum mechanics (QM) can parameterize them with better accuracy 

but they are computationally expensive and slow, which limits applicability to a small 

number of molecules. While accurate force fields are not generally available for all 

molecules, like novel drug-like molecules. Therefore, it is biased to suggest a single 

parameter set can sufficiently characterise a large number of compounds. Therefore, 

to address this “small molecule problem”, one approach was to develop a limited set 

of building blocks covering a particular class or family of molecules. This has been a 

principle of CHARMM General Force Field (CGenFF) (Vanommeslaeghe et al., 2010) 

as well as General Amber Force Field (GAFF) (Wang et al., 2004), of which only target 

drug-like molecules within a biological environment. Commonly used AMBER and 

CHARMM force fields contain parameters for biomolecules (proteins, nucleotides, 

saccharides, lipids, etc.), but lack parameters for other biologically relevant molecules 

(co-factors, drugs, etc.) and are not guaranteed to be transferable to all possible 

chemical environments. 

There have been a variety of tools that have been developed in assigning missing 

parameters directly from analogy to already pre-existing ones, which depend on 

databases of molecules of already parameterized compounds for a particular force 

field.  Some examples of these tools include ParamChem (Vanommeslaeghe et al., 

2012a, 2012b), and MATCH (Yesselman et al., 2012) web servers for CGenFF. VMD 

also offers a parameterization tool known as the force field toolkit (ffTK) (Mayne et al., 

2013), which is also designed specifically for the parameterization of small molecules. 

ffTK provides many advantages including 1) the optimization of the energetic 

contribution of each component contributing to intramolecular interactions including 
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charges, bonds, angles and dihedrals; 2) user-selected level of QM theory; 3) 

visualization at each step; and 4) a manual or automatic option in parameter guessing 

and refining. With so many options, however, there are molecule-dependent hurdles 

at each step of ffTK that require user-manipulation and troubleshooting. Newer tools 

like Parameterize found in the Acellera HTMD platform (Galvelis et al., 2019) or online 

on playmolecule.org, can also improve the quality of the parameters by QM data, by 

refitting electrostatic potentials (ESP) charges and rotatable dihedral angle 

parameters. As such, tools like Parameterize and ffTK are poised to fundamentally 

solve the problem of transferability for atom types and parameters. One only needs to 

prepare a .mol2 file of your ligand, with added hydrogens and knowledge of the charge 

to use tools like Parametrize, ffTK, PubChem and MATCH. However, careful 

inspection of the prepared topologies and parameters, in addition to a simple 

minimisation in water can reveal if the parameters are correct.  

Following the steps in Section 3 and this section, we have all the parts to put 

together the complex for an MD simulation. The standard MD packages will allow the 

protein-membrane complex to be solvated and ionized in order to mimic a near-

physiological environment. The system dimensions and approximate number of atoms 

can vary depending on the hydration number of water molecules per lipid and 

concentration of ions used in the system. Following this the system can then be 

evaluated by MD techniques in your favourite MD package, such as AMBER (Reese 

et al., 2018), CHARMM (Brooks et al., 2009), GROMACS (Pronk et al., 2013; 

Lundborg and Lindahl, 2015) and NAMD (Phillips et al., 2005) and Acellera ACEMD 

(Harvey et al., 2009).   

 

5. MD Analysis 

 

MD simulations produce very complex data where essentially the cartesian 

coordinates of each atom of the system are recorded at every timestep of the 

trajectory. Depending on the size of the system this could be thousands or millions of 

steps with huge MD generated trajectories taking up gigabytes or more of space. 

Therefore, data analysis has to be specialised to extract useful information in addition 

to data management and storage, which pose a major challenge for accessibility. We 

http://playmolecule.org/
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will concentrate our discussion on the types of analyses that one can perform on the 

data from MD simulations. 

 In general, there are many tools that can analyse the trajectories. It all depends 

on what data you want extracted and importantly how it is extracted. If you are familiar 

with programming languages, you can either write the code yourself in your favourite 

language or you can find already built code on open-source forums like GitHub 

(github.com) which hosts version-controlled software.  

 MDTraj and MDAnalysis, which have been introduced previously, can analyse 

the simulation trajectory for many different packages (Michaud-Agrawal et al., 2011; 

McGibbon et al., 2015; Gowers et al., 2016), while CHARMM (Brooks et al., 2009) and 

GROMACS (Pronk et al., 2013; Lundborg and Lindahl, 2015) packages contain a large 

number of programs that perform particular analysis tasks. Various VMD plug-ins can 

analyse NAMD trajectories (Phillips et al., 2005) and HTMD can analyse ACEMD 

trajectories (Harvey et al., 2009). This is of course not an exhaustive list but they all 

perform standard tasks including calculating a root mean square deviation (RMSD) 

i.e. the structural distance between coordinates, root mean square fluctuation (RMSF) 

i.e. the average deviation over time of a protein residue from a reference position or 

for performing principal component analysis (PCA) on the trajectory i.e. the conversion 

of the movement of all atoms in the protein into a set of principal components which 

are linearly independent. Other measurements can include hydrogen bonding, 

dihedral angle and distance measurements or solvent accessibility.  

 All these tools and more solve the data generation and analysis problem, but it 

is up to the user to understand what information needs to be extracted and which tool 

matches their skills and expertise to be utilised efficiently.  

 

6. Concluding remarks 

 

The field of molecular mechanics has developed enormously since its inception in the 

1970s. Due to the rapid improvements of hardware, algorithms, and force fields we 

can now simulate complex systems at even better and longer time scales and 

resolutions. By applying molecular modelling methods from ligand docking to MD 

simulations, scientists are able to discover details of biochemical events such as 

oligomerization and neurotransmitter transport mechanisms of novel compounds. 

http://github.com/
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Nevertheless, we must equip newcomers to the field with the basics in a simple and 

straightforward manner.  

Although the procedures detailed above provide advantages to existing methods, 

list solutions and provides limitations, gaps will still remain in consistency as new 

software and force fields are created. To overcome this weakness, we recommend 

taking robust measures in examining the software and outputs generated. We cannot 

account for all methodologies, but in establishing means to overcome these 

challenges at each step, it is our hope that we begin to bridge the disparities between 

existing methods and to pave the way for new methods that researchers may find 

workable for them.  

In this way the great hurdle that appears to be the field of molecular modelling can 

be approached willingly to achieve higher accuracy when studying systems with 

increased chemical complexity. 
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