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Abstract 21 

Maximum swimming behaviour is rare in the laboratory or the wild, limiting our understanding 22 

of the top-end athletic capacities of aquatic vertebrates. However, jumps out of the water - 23 

exhibited by a diversity of fish and cetaceans - might sometimes represent a behaviour of 24 

maximum burst effort. We collected data on such breaching behaviour for 14 fish and cetacean 25 

species primarily from online videos, to calculate breaching speed. From newly derived 26 

formulae based on the drag coefficient and hydrodynamic efficiency we also calculated the 27 

associated power. The fastest breaching speeds were exhibited by species 2 m in length, 28 

peaking at nearly 11 m/s; from this length, as species size decreases the fastest breaches become 29 

slower, while species larger than 2 m do not show a systematic pattern. The power associated 30 

with the fastest breaches was consistently about 50 W/kg (equivalent to 200 W/kg muscle) in 31 

species from 20 cm to 2 m in length; this value may represent a universal (conservative) upper 32 

boundary. And it is similar to the maximum recorded power output per muscle mass recorded 33 

in any species of similar size, suggesting that some breaches could indeed be representative of 34 

maximum capability. 35 

 36 

Introduction 37 

The maximum speeds an animal can achieve are rarely displayed in the laboratory, or indeed 38 

in the field; wild animals are only occasionally observed moving flat out (Lutcavage et al., 39 

2000; Wilson et al., 2015). Even during predator-prey interactions, maximum speeds are rarely 40 

exhibited (e.g. Husak et al., 2006). Measures of maximum power in animals are therefore 41 

difficult to obtain, and methods that encourage maximum physical effort from subject animals 42 

can be ethically questionable. This is unfortunate, because an understanding of maximum speed 43 

and power provides insights into the morphological and physiological capabilities and 44 

limitations that have evolved in species usually highly adapted to the environments they 45 

inhabit.  46 

 Possibly, however, there is a natural behaviour exhibited by a diversity of aquatic animals 47 

that is not only sometimes undertaken with maximum speed and power but is also easy to 48 

record – jumping clear of the water, otherwise known as breaching. In some species at least, 49 

locomotion speed is documented to be greater during breaching than at any other time 50 

(Johnston et al., 2018; Watanabe et al., 2013). There is only a small amount of published data 51 

quantifying the nature of breaches in jumping animals (Tanaka et al., 2019), but many breaches 52 

have been documented on video, which are freely available on the world wide web. An initial 53 

estimate of an animal’s breaching speed can often be obtained from video recordings simply 54 



by timing the duration that the animal is above the water surface, coupled with breaching angle 55 

from horizontal (Johnston et al., 2018). From breaching speed, the mechanical power needed 56 

to achieve that speed can be estimated with knowledge of the drag coefficient and 57 

hydrodynamic efficiency. In turn, the drag coefficient can be estimated using semi-empirical 58 

methods (Iosilevskii and Papastamatiou, 2016); the hydrodynamic propulsion efficiency (the 59 

ratio of the mechanical power to the power supplied by the muscles) can be estimated from 60 

swimming gait. We present and interpret the analysis of the speed and power of breaching by 61 

fish and cetaceans ranging in length from 20 cm to 14 m. 62 

  63 

Methods 64 

Data on breaching speed and breaching angle from horizontal were collected for 14 species of 65 

fishes and cetaceans spanning (tip of snout to fork of tail) lengths from 0.2 to 14 m (Table 1). 66 

Breaching data were obtained predominantly from videos available on www.youtube.com. 67 

Only those segments of video that represented the entirety of clearly discernible jumps shown 68 

at full speed were analysed. The time that the animal was out of the water τ during a breach 69 

was estimated from video footage, following a refined approach to that taken by Johnston et 70 

al. (2018) for basking and white sharks; that study also validated the approach with direct 71 

measures of speed obtained from an animal-attached data logger. The time was measured from 72 

the moment the snout of the animal broke the water surface until the animal’s estimated centre 73 

of mass reached the same height above the water on descent that it was during ascent at the 74 

point that the body just cleared the water. The angle of the breach from horizontal, γ, was 75 

estimated visually at the same point (only breaches close to vertical were included in analysis). 76 

Justification of this approach is in Supplementary Appendix A. The length of the animal was 77 

bracketed +/- 30% around the typical length associated with the particular species based on 78 

direct observations where possible (Parsons et al., 2016), or otherwise specialist taxonomy 79 

websites, Wikipedia and FishBase. 80 

 The speed of the animal just prior to piercing the water surface, 0v , was estimated from 81 

the time it spent out of the water   with 82 
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where g is the acceleration of gravity, l is body length, γ is the angle of the breach from 84 

horizontal, and A is the ratio of the drag coefficient based on the maximal area of the animal in 85 

the traverse plane and prismatic coefficient of its body (the ratio between the volume of the 86 



body and the minimal cylinder enclosing it). The derivation of (1) is in Supplementary 87 

Appendix A. In equation (1), the first factor 
2sin

g


 is the breach velocity that the animal would 88 

have had if it were a point mass; the second factor (1 4A ) is the correction due to the animal 89 

accelerating when piercing the water surface (even if it had reached a constant velocity 90 

beforehand) owing to differences in drag between moving in water and air; the last term, 91 

2cos
l


 , corrects for the change in trajectory angle during the breach (the breaching angle is 92 

set when the animal clears the water). When breaching at angles close to vertical, the last term 93 

becomes negligibly small  94 

 The key assumptions underlying equation (1) are: 95 

a. the animal is neutrally buoyant, 96 

b. it has a fusiform body resembling a double ogive, 97 

c. its fins are retracted, 98 

d. it reaches a constant velocity 0v  prior to piercing the water surface, 99 

e. it continues to supply constant thrust until its tail leaves the water. 100 

Fortuitously, under assumptions (b) and (c), when the body has width-to-length ratio between 101 

0.15 and 0.25, A can be closely approximated by 102 

    35 2 Ref lA C ,  (2) 103 

where  104 

 
2.580.455 Ref iC     (3) 105 

is the effective (turbulent) friction coefficient between the animal skin and water, which 106 

depends solely on the Reynolds number 0Rel v l   ( being the kinematic viscosity of water) 107 

– details can be found in Supplementary Appendix B. When some of the fins are either non-108 

retractable or being purposely extended, the combination of (2) and (3) furnishes the lower 109 

bound of A.  It also underestimates the true value of A at high Reynolds numbers, where the 110 

thickness of the boundary layer on the animal becomes comparable with the height of the 111 

roughness elements on its skin. Thus it is possible that we overestimate the true breaching 112 

speed. Nonetheless, because a typical value of A is 0.1 (Table 1), even if the error in A is 30%, 113 

the resulting error in 0v  remains small (see Supplementary Appendix C). In fact, under most 114 

circumstances, a point mass approximation of 0v ,  115 
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will be fairly accurate (and was the approximation used in Johnston et al. 2018). Assumption 117 

(d) can be investigated in the two species which to date have been measured breaching via an 118 

animal-attached data logger – basking sharks and white sharks. In both cases the data suggest 119 

that the breaching animals were not accelerating by the time their snouts had reached the water 120 

surface (Johnston et al., 2018; Semmens et al., 2019; Semmens pers. comm.)     121 

 Mechanical power per unit mass ( P m ) that the animal needs to swim at velocity 0v  was 122 

estimated with 123 
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where h  is the hydrodynamic propulsion efficiency – details can be found in Supplementary 125 

Appendix B. We have set 0.9h  at the upper (theoretical) limit of propulsion efficiency of 126 

carangiform and thunniform gaits (Chopra and Kambe, 1977; Liu and Bose, 1997). Again, 127 

because of our underestimating the true value of A and the application of purposefully high 128 

values of propulsions efficiency, the value furnished by the combination of equations (2) to (5) 129 

should be considered the lower bound for all species that cleared the water when breaching, in 130 

spite of a possible error in 0v  (see Supplementary Appendix C). For large species that did not 131 

leave the water completely, equations (1) and (5) may overestimate both their speed and power, 132 

but bearing this in mind will strengthen the interpretations of the data presented in the 133 

Discussion section. 134 

 Estimation errors in equations (1) and (5) are assessed in Supplementary Appendix C. To 135 

minimize these errors, only high jumps (where γ exceeded 70 degrees) were included. Under 136 

this restriction, the errors in the breaching speed 0v  are estimated at about 10%, whereas the 137 

errors in the mass-specific power ( P m ) can possibly reach 30%.  138 

 139 

Results and Discussion 140 

Velocities of all breaches for each species for which the breaching angle exceeded 70 degrees, 141 

and the mass-specific mechanical power deemed needed to achieve these, are plotted against 142 

body length in Fig. 1. Maximum breaching speed has an upper bound of about 11 m/s, while 143 

maximum mass-specific power has an upper bound of about 50 W/kg. These limits coincide at 144 

about 2-m body length. Breaching velocity increases up to 2-m body length with larger animals 145 



not exhibiting a systematic relationship between length and velocity; mass-specific power is 146 

approximately constant up to 2-m body length, at around 50 W/kg, and is variously lower at 147 

greater body sizes. While sample size varies considerably between species, there is no 148 

substantive regression between the mean breaching speed of the top three fastest breaches and 149 

sample size (Spearman’s rho: 0.141; p = 0.645). The breaching velocity of common bottlenose 150 

dolphins has been determined by an alternate method, high speed underwater camera (Rohr et 151 

al., 2002), which returned a range of maximum speeds similar to those we report, providing 152 

further validation for our method. 153 



 154 

Figure 1: The velocity and mechanical power output of breaching animals (n = 14 species) 155 

at different body lengths, plotted on logarithmic scales. A: velocity immediately prior to 156 

breaching, 0v  (m/s). The upper boundary of each box represents the maximum velocities 157 

observed during breaches for a given species; the left and right boundaries represent the 158 

estimated body length of that species with ±30% uncertainty, and they extend down as far as 159 

the minimum breaching velocities observed. Circles mark the burst swimming speed data 160 

presented by Videler and Wardle (1991) for multiple fish species; blue are for mackerel, and 161 



the larger blue circle represents a single outlier - a swimming speed similar to that exhibited 162 

for that size of fish during breaching. Squares mark the maximal speed of trout, herring, barbell 163 

and nase swimming in a specialised flume (Castro-Santos et al., 2012; Sanz-Ronda et al., 2015), 164 

and sailfish hunting at sea (Marras et al., 2015). The dash-dot lines mark constant mechanical 165 

power-to-mass ratios (in W/kg; magnitudes indicated). B: The same data and formatting as A, 166 

however the ordinate represents mass-specific power, and the dash-dot lines mark constant 167 

speed (in m/s, magnitudes indicated). The silhouettes are four breaching species to scale (silver 168 

carp, common dolphin, white shark, humpback whale) and also the African tetra, magnified 6 169 

fold. Across species, body length relates only very approximately with body mass, however to 170 

provide some idea of how breaching velocity and mass-specific power scale with body mass, 171 

the black boxes between the figures denote the possible range of lengths of aquatic animals 172 

(associated with different body proportions) that have the mass (kg) indicated to the right of 173 

the box. A. tetra: African tetra; m. ray: mobulid ray; s. carp: silver carp; h. porpoise: harbour 174 

porpoise; s. dolphin: spinner dolphin; c. dolphin: common bottlenose dolphin; g. white: great 175 

white shark; b. shark: basking shark. 176 

 177 

 178 

Based on our calculations, as species get larger up to 2 m in length, maximum breaching 179 

velocity exhibited increases, to a highest breaching velocity of nearly 11 m/s (achieved by the 180 

common bottlenose dolphin; Figure 1A).  181 

 There is some suggestion from the breaching data that a number of particularly large 182 

animals do not exhibit higher breaching speeds than do 2-m long species. The maximum 183 

swimming speed of an animal is limited either by its maximal thrust or its maximal power 184 

(Iosilevskii and Papastamatiou, 2016). Thus maximum swimming speed is the lower of the 185 

theoretical speeds at which hydrodynamic drag equals maximal thrust, and at which rate of 186 

work done by the animal on the water (loosely, the product of drag and speed) equals maximal 187 

power. Maximal thrust is proportional to the cross section area of the animal’s locomotion 188 

muscles, and hence scales with the length of the animal squared. Maximal power is 189 

proportional to the volume (mass) of those muscles, and hence scales with the length of the 190 

animal to the third power. Because hydrodynamic drag is proportional to the product of the 191 

swimming speed squared and length of the animal squared, while maximal thrust is 192 

proportional to animal length squared, if the maximal speed is limited by muscle thrust, 193 

maximal speed should be independent of length.  If, on the other hand, the maximal speed of 194 

an animal is limited by power, it should scale with length to the power (1/3). Our data suggests 195 



that for animals smaller than 2 m in length, the breaching speed increases with length to the 196 

power (1/3), implying that it is limited by the mass-specific (volume-specific) power of the 197 

locomotion muscles. For larger animals, the breaching speed remains practically independent 198 

of length, implying that it is limited by the alternative possibility – the thrust it can generate 199 

per unit cross section area of its muscles. 200 

 Figure 1A also includes data for burst swimming fish during containment in several 201 

different swimming apparatuses reported across multiple studies (taken from Table 4 in Videler 202 

et al. 1991). In all cases except for small mackerel, the maximum speeds observed in the lab 203 

for burst swimming fish are much lower than breaching speeds we calculated for similarly 204 

sized species, suggesting that those burst swimming fish were swimming sub-maximally. 205 

Castro-Santos et al. (2012) have developed a flume larger than used in previous studies of fast 206 

swimming fish, which appears to elicit close to maximal swimming speeds in multiple 207 

relatively small species. Trout Salvelinus fontinalis and Salmo trutta of 0.145-m length 208 

volitionally swum against a fixed flow at up to about 4 m/s, while herring Alosa aestivalis (0.22 209 

m) reached 4.5 m/s. Similar feats were observed in comparably sized barbels Luciobarbus 210 

comizo and nase Pseudochondrostoma duriense (Sanz-Ronda et al., 2015). These speeds are 211 

remarkably similar to the highest speeds we would predict species of this size would breach at 212 

based on our data (Figure 1A). Due to size constraints, however, very few fish greater than 1  213 

m in length have been swum in the laboratory (though see Sepulveda et al., 2007), particularly 214 

at higher speeds. 215 

 Small cetaceans can be trained to swim fast in captivity, and the fastest swimming speed 216 

reported for dolphins under such conditions (11 m/s; Lang and Pryor, 1966) matches the speed 217 

exhibited by dolphins during their fastest breaches calculated in the present study. (Fish, 1998) 218 

recorded captive orca swimming up to 7.9 m/s, a speed that does not match the fastest breaching 219 

speed we calculated of 9 m/s. Extensive tabulations of cetacean swimming speeds are provided 220 

in Fish and Rohr (1999). 221 

 Maximum speed capabilities of larger fishes can be potentially recorded in the field, 222 

although sometimes tagged individuals do not exhibit such behaviour. For example, tagged 223 

blue marlin Makaira nigricans, at least 1 m long, were recorded swimming no faster than 2.25 224 

m/s during 165 h of continuous tracking (Block et al., 1992). This may indicate that they did 225 

not hunt while tagged. In contrast, however, 1.5-m-long sailfish Istiophorus platypterus 226 

hunting sardines exhibited maximum speeds of 8.8 m/s (mean of top 3 fastest bursts; Marras et 227 

al., 2015; P. Domenici, pers. comm.). This speed is very close to the maximum breach speed 228 

observed for animals of a similar length in our dataset, and might suggest that during such 229 



hunts the sailfish are swimming close to their maximum speed. Devil rays Mobula tarapacana, 230 

about 3-m long (Thorrold, pers. comm.), reach speeds of up to 6 m/s during descents into the 231 

water column (Thorrold et al., 2014), while short-finned pilot whales Globicephala melas, 4 m 232 

in length, were recorded at mean maximum sprint speeds of 6 m/s (Aguilar Soto et al., 2008). 233 

These swimming speeds are commensurate with breaching speeds of similarly sized animals 234 

(Figure 1a). During burst swimming, tagged sperm whales Physeter microcephalus, between 235 

6 and 10 m in length, were never observed swimming faster than 8 m/s (Aoki et al., 2012); this 236 

top speed is similar to that exhibited during breaches by the similarly sized orca and humpback 237 

whale (Figure 1a). Spinner dolphins responding to an approaching ship reached swimming 238 

speeds up to 4.8 m/s (Au and Perryman, 1982) – considerably slower than the single fastest 239 

breach we recorded. Humpback whales have not been recorded in the wild swimming as fast 240 

as their most powerful breaches (e.g. 4.1 m/s; Williamson 1972).   241 

 Given that breaching speeds represented in our data set match the speeds of animals 242 

swimming in flumes designed to elicit maximum effort, and also match if not surpass the 243 

maximum swimming speeds of animals observed in the wild, the locomotion athleticism of 244 

fish and cetaceans during their fastest breaches may represent maximum capability. We 245 

conservatively estimate that the maximum mass-specific mechanical power exhibited by 246 

breaching species is about 35 to 50 W/kg of body mass (Figure 1b), though our calculations 247 

have assumed fin retraction, neutral buoyancy and that the animal is no longer accelerating just 248 

prior to breaching. Interestingly, this power production was attained by species across an order 249 

of magnitude in size from 20 cm to 2 m body length (very approximately 100 g to 100 kg) and 250 

as such may represent a power ceiling in general, based on an isometric relationship between 251 

maximum power and body mass within this range.  252 

 While we cannot fully validate our model estimating power, we can compare the resultant 253 

values to those in the literature obtained by alternate means. The fastest breaching species in 254 

our dataset were dolphins; our maximum power estimates for breaching dolphins are similar to 255 

the maximum fluke-beat-averaged value of 48 W/kg for the Pacific white-sided dolphin 256 

Lagenorhynchus obliquidens swimming at 7.4 m/s calculated by (Tanaka et al., 2019), the 257 

common bottlenose dolphin while tail standing (62.2 W/kg; Isogai, 2014) and porpoises 258 

Stenella attenuata encouraged to swim maximally fast along a 25-m course (50 W/kg; Lang 259 

and Pryor, 1966). Because the mass of the locomotor muscles is approximately half of the body 260 

mass (fao.org/3/T0219E/T0219E01.htm), and, at a given instant, only half of them are 261 

propelling the animal during the tail beat cycle, muscle power output at our estimated 262 

maximum is 140 to 200 W per kg. We therefore propose that these values represent an 263 



approximate maximum attainable power output by fish and cetaceans. And this is supported by 264 

the observation that 200W/kg muscle during fast flights in Phyllostomus bats (Thomas, 1975; 265 

Weis-Fogh and Alexander, 1977) and 214 W/kg of muscle exhibited by small lizards during 266 

vigorous movement Curtin et al. (2005) are the highest reported power output values we have 267 

found in the literature for any species within the size range of the breaching species represented 268 

in the current study (some higher values have been recorded for individual muscles; Table 1 in 269 

Josephson, 1993). Moreover, power output measurements for human participants requested to 270 

apply maximum effort at best match these values. For example, high-level rugby players 271 

produced a mean peak power of 66.6 W/kg body mass during standing jumps (Tillin et al., 272 

2013) - assuming 25 to 30 kg of leg muscle mass (Tillin, pers. comm.), their leg muscles were 273 

providing around 200 W/kg of power. 274 

 Valid estimates of maximum power are not only insightful physiologically, but in turn 275 

they elucidate an animal’s behavioural limitations. In the case of breaching, for example, 276 

calculations of the necessary dimensions of dam spillways to enable fish to pass up them 277 

(Baigún et al., 2012; Beach, 1984) will greatly benefit from an understanding of breach 278 

velocity. 279 
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Table 1. The fastest three breaches of the species included in the analyses, from the data compiled from the listed data sources. Approximate 

timings of those fastest breaches in the data sources are provided where appropriate. 

                                         Data sources  

Species N l 

(m)  

 τ  

(s) 

γ   

(°) 

 A 
0v  

(m/s) 

P/m 

(W/kg) 

Video length (l) 

African tetra1 

Genus: Alestes 

- 0.2 0.90 90 0.17 4.4 36.2 (Matthes, 1977) 

 

FishBase 

Basking shark† 

Cetorhinus maximus 

13 6.4 1.2 

1.1 

1.0 

80 

80 

80 

0.09 

0.09 

0.09 

6.0 

5.5 

5.2 

1.5 

1.1 

0.9 

The dataset published in (Johnston et al., 2018) 

 

FishBase 

Common bottlenose 

dolphin2 

Genus: Tursiops 

9 2.2 2.24 

2.20 

2.08 

90 

80 

90 

0.10 

0.10 

0.10 

10.7 

10.7 

10.0 

30.4 

29.9 

24.6 

Youtube 

https://www.youtube.com/watch?v=swsfdv2jhbc 

https://www.youtube.com/watch?v=m3tZxo8ljL4 

07:18, 09:38, 10.25 

https://www.youtube.com/watch?v=Sfb8wtAdy1o 

Wikipedia 

Gulf sturgeon 

Acipenser 

oxyrinchus desotoi 

5 1.5 1.28 

1.12  

1.12 

90 

90 

90 

0.11  

0.12 

0.12 

6.3 

5.5 

5.8 

9.5 

6.5 

6.5 

Youtube 

https://www.youtube.com/watch?v=oSC0AZ5_0F8 

00:16, 00:29, 00:48 

https://www.youtube.com/watch?v=e1a_mBGLucQ 

 Visual 

assessment of 

videos 

Harbour porpoise 

Phocoena phocoena 

9 1.65 1.44 

1.44 

70 

80 

0.11 

0.11 

7.5 

7.2 

13.5 

12.3 

Youtube 

Video (‘*Wild Dolphins Jumping* New Zealand, 

Wikipedia 

https://www.youtube.com/watch?v=swsfdv2jhbc
https://www.youtube.com/watch?v=m3tZxo8ljL4
https://www.youtube.com/watch?v=Sfb8wtAdy1o
https://www.youtube.com/watch?v=oSC0AZ5_0F8
https://www.youtube.com/watch?v=e1a_mBGLucQ


1.40 75 0.11 7.1 11.8 Kaikoura’) currently unavailable online. 

00:03, 01:15, 02:23 

Humpback whale† 

Megaptera 

novaeangliae 

20 13.0 1.83 

1.76 

1.70 

80 

90 

90 

0.08 

0.08 

0.08 

9.1 

8.6 

8.3 

2.2 

2.0 

1.8 

Youtube 

https://www.youtube.com/watch?v=ZLkWGNs2Yc0

&t=39s 

https://www.youtube.com/watch?v=fhfIpUgxgm8&t=

91s 

https://www.youtube.com/watch?v=ee79_7CZ0uM 

00:08 

https://www.youtube.com/watch?v=7NAKaSo19us 

00:05 

https://www.youtube.com/watch?v=oMKQPpbIs3Q 

01:08 

 

https://iwc.int/li

ves 

Mackerel (kingfish) 

Scomberomorus 

cavalla 

10 1.0 1.83 

1.84 

1.80 

80 

90 

90 

0.11 

0.11 

0.11 

9.1 

9.0 

8.8 

43.9 

42.7 

40.1 

Youtube 

https://www.youtube.com/watch?v=1HjLZ3k2osI&t=

16s 

00:11, 00:51 

https://www.youtube.com/watch?v=cYQt7Q2ZCUA 

00:05 

https://www.youtube.com/watch?v=e0_7g6WSLjg 

https://www.youtube.com/watch?v=9-

Inferred from 

length-weight 

curve in 

FishBase 

https://www.youtube.com/watch?v=ZLkWGNs2Yc0&t=39s
https://www.youtube.com/watch?v=ZLkWGNs2Yc0&t=39s
https://www.youtube.com/watch?v=fhfIpUgxgm8&t=91s
https://www.youtube.com/watch?v=fhfIpUgxgm8&t=91s
https://www.youtube.com/watch?v=ee79_7CZ0uM
https://www.youtube.com/watch?v=7NAKaSo19us
https://www.youtube.com/watch?v=oMKQPpbIs3Q
https://iwc.int/lives
https://iwc.int/lives
https://www.youtube.com/watch?v=1HjLZ3k2osI&t=16s
https://www.youtube.com/watch?v=1HjLZ3k2osI&t=16s
https://www.youtube.com/watch?v=cYQt7Q2ZCUA
https://www.youtube.com/watch?v=e0_7g6WSLjg
https://www.youtube.com/watch?v=9-pEANtcqW8&t=14s


pEANtcqW8&t=14s 

Mako shark 

Genus: Isurus 

10 2.5 1.67 

1.60 

1.52 

90 

90 

90 

0.10 

0.10 

0.10 

8.2 

7.9 

7.5 

11.3 

10.0 

8.7 

Youtube 

https://www.youtube.com/watch?v=Qktk9vYRuVc 

00:05 

https://www.youtube.com/watch?v=F781RwUtFVY 

00:26 

‘Mako jumping’ video no longer available on youtube 

00:00 

FishBase 

Mobulid ray3 

Genus: Mobula 

33 0.7 1.48 

1.44 

1.40 

90 

80 

90 

0.13 

0.13 

0.13 

7.3 

7.2 

7.0 

 

38.1 

36.8 

33.9 

Youtube 

https://www.youtube.com/watch?v=EAhCKoVxDZs

&t=9s 

https://www.youtube.com/watch?v=7Lt41sTba_E 

00:22, 00:32, 00:54  

Chris Lawson, 

unpublished 

data 

Mullet 

Mugil cephalus 

43 0.4 1.20 

1.24 

1.24 

60 

90 

90 

0.14 

0.14 

0.14 

6.1 

6.1 

5.5 

39.8 

39.8 

29.8 

Youtube 

https://www.youtube.com/watch?v=HuSZo-6RL0o 

00:33, 00:37, 00:40 

Visual 

assessment 

Orca (Killer whale)† 

Orcinus orca 

12 6.5 1.83 

1.52 

1.33 

90 

80 

90 

0.09 

0.09 

0.09 

9.0 

7.5 

6.5 

5.0 

2.9 

2.0 

Youtube 

https://www.youtube.com/watch?v=lfat0eJMpPA&t=

171s 

https://www.youtube.com/watch?v=EMVyOMiqTLc 

https://www.youtube.com/watch?v=aEStursrpiE 

 Wikipedia 

https://www.youtube.com/watch?v=9-pEANtcqW8&t=14s
https://www.youtube.com/watch?v=Qktk9vYRuVc
https://www.youtube.com/watch?v=F781RwUtFVY
https://www.youtube.com/watch?v=EAhCKoVxDZs&t=9s
https://www.youtube.com/watch?v=EAhCKoVxDZs&t=9s
https://www.youtube.com/watch?v=7Lt41sTba_E
https://www.youtube.com/watch?v=HuSZo-6RL0o
https://www.youtube.com/watch?v=lfat0eJMpPA&t=171s
https://www.youtube.com/watch?v=lfat0eJMpPA&t=171s
https://www.youtube.com/watch?v=EMVyOMiqTLc
https://www.youtube.com/watch?v=aEStursrpiE


00:02 

https://www.youtube.com/watch?v=W_24PxFbJ6I 

00:05 

https://www.youtube.com/watch?v=WzhFBx1pwyQ 

00:01 

Silver carp4 

Hypophthalmichthy

s molitrix 

31 0.8 1.60  

1.56 

1.56 

90 

80 

90 

0.12 

0.12 

0.12 

7.9 

7.8 

7.7 

37.0 

35.8 

34.5 

Youtube 

https://www.youtube.com/watch?v=x3Bf0WhvsNk 

01:22, 02:06, 03:19 

Visual 

assessment, 

confirmed by 

FishBase 

Spinner dolphin 

Stenella longirostris 

12 1.8 2.00 

1.03 

1.00 

80 

90 

80 

0.10 

0.11 

0.11 

10.0 

5.2 

5.0 

28.7 

4.3 

3.9 

Youtube 

https://www.youtube.com/watch?v=3b4FGlWGsuo 

00:31, 01:54 

https://www.youtube.com/watch?v=9teNVevwKzU 

01:58 

https://www.youtube.com/watch?v=B5KNNwO87-8 

https://www.youtube.com/watch?v=H70nPv4NQsw 

Wikipedia 

White shark 

Carcharodon 

carcharias 

12 3.3 1.24 

1.16 

1.16 

80 

80 

80 

0.10 

0.10 

0.10 

6.2 

6.0 

5.8 

3.5 

3.2 

2.9 

The dataset published in (Johnston et al., 2018) Mean length for 

individuals in 

videos, 

provided by 

Alison Koch. 

https://www.youtube.com/watch?v=W_24PxFbJ6I
https://www.youtube.com/watch?v=WzhFBx1pwyQ
https://www.youtube.com/watch?v=x3Bf0WhvsNk
https://www.youtube.com/watch?v=3b4FGlWGsuo
https://www.youtube.com/watch?v=9teNVevwKzU
https://www.youtube.com/watch?v=B5KNNwO87-8
https://www.youtube.com/watch?v=H70nPv4NQsw


 

1Only a single value available. 

2Breaching velocity values are within the maximum velocity range reported in (Rohr et al., 

2002). 

3Mobulid rays have a very different surface to volume ratio compared to the fusiform (double-

ogive) shapes of the other animals represented in the table, and are propelled from mid-body, 

rather than from the caudal end as other species presented in this study do. Corrections to 

equations (1) and (2) for mobulid rays can be found in Supplementary Appendix D. 

4Breaching velocity values very similar to those reported in Parsons et al. (2016) 

5FishBase 

6Wikipedia 

†Typically, these species did not completely clear the water. 

 

N - Number of breaches included in analyses 

l - Estimated standard body length, defined as from distal end to tail fork (m). Some length 

values taken from sources were for total body length and thus adjusted to approximately 

account for tail shape. 

τ – Breaching duration (s) 

γ - Breaching angle of three fastest breaches (°) 

A - Ratio of drag coefficient to prismatic coefficient of body; it was estimated using equations 

(2) and (3) (see also equations (B5) and (B10) of Supplementary Appendix B) 

0v - Breaching velocity (m/s); it was estimated using equation (1) (see Supplementary 

Appendix A for details)  

P/m – Power to mass ratio (W/kg); it was estimated using equation (5) (see also equation (B12) 

of Supplementary Appendix B)
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Appendix A: A breaching event 

Preliminaries 
The information in this appendix details how to estimate the swimming speed of a breaching 

fish immediately before it has pierced the water surface, 0v . This problem, however, is not as 

trivial as it may appear. If the fish could have been approximated by a point mass, its air time 

   could have been correlated with the vertical speed on leaving the water, 0w , by 

 0 2w g  ,   (A1) 

where g is the acceleration of gravity. In turn, given the trajectory angle (relative to horizon) 

0   at which the fish leaves the water, 0w  could have been correlated with take-off speed, 0v , 

by 

 0 0 0sinv w    .    (A2) 

 The fish, however, is not a point mass, and it likely gains energy (on the account of 

reduced wet area) between the moment when its nose (snout) pierces the water surface and the 

moment when its tail leaves the water. Consequently, the speed that the fish reaches 

immediately before piercing the water surface, 0v , is probably smaller than 0v . Moreover, 

between the time the centre-of-mass leaves the water and the time the tail leaves the water, the 

motion of the fish is still assisted by buoyancy, and during that time, the fish decelerates at less 

than the acceleration of gravity. It increases the actual air time   as compared with the air time 

   it would have had if it were a point mass leaving the water at 0v . The aim of this appendix 

is to estimate the relations between   and   ,  and between 0v  and 0v . To remain concise, the 

analysis will be based on the following seven assumptions: 

1. The fish is neutrally buoyant; 

2. It has reached a constant speed before piercing the water surface; 

3. Its thrust (T) remains constant until the tail clears the water; 



4. Its drag (D) is proportional to the wetted area and to the swimming speed squared; 

5. Its body is symmetrical nose to tail; 

6. Its fins (other than caudal) are contracted. 

This list pertains to appendix B (the next one) as well. 

Energy balance 
Ignoring the resistance of air, the total mechanical energy of the fish E  is preserved once its 

tail clears the water. During breaching, however, E is governed by 

 
 

    2 ,
dE x

T x D v x x
dx

  ,  (A3) 

where  0,x l  is the length of the fish above the water surface (l is the fork length), whereas 

 T x  and   2 ,D v x are thrust and drag of the (partially submerged) fish. Under assumptions 2 

and 3, 

     2 0 ,0T x D v   (A4) 

for each  0,x l . Under assumptions 4 and 6,  

           
 

 
2 2 2 w

w

, 1, 1,0
0

S x
D v x x v x D x v x D

S
  , (A5) 

where, with  p x  being the local girth,   

    
w

l

x

S x p x dx     (A6) 

is the respective wetted area. It is acknowledged that, in general, the drag comprises both form 

(pressure) and friction constituents (see appendix B), and therefore equation (A5) is coherent 

only if the form drag is small as compared with the friction drag.  

 Total mechanical energy of the fish is the sum 

      
p kE x E x E x     (A7) 

of the respective kinetic energy, 



    2

k 2E x mv x ,   (A8) 

and potential energy, 

       
p

0

sin

x

E x mg B x x dx    ;  (A9) 

it is tacitly assumed that kinetic energy associated with rotational motion is negligibly small as 

compared with the energy associated with translational motion.1 In (A8) and (A9), m is the 

mass of the fish, g is the acceleration of gravity,   is the breaching angle,  

    
l

x

B x g s x dx       (A10) 

is the buoyancy of the submerged portion of the fish,  s x  is the local cross section area of the 

fish, and, consistent with the assumption 1,   is the density of water;  

  0B mg    (A11) 

by assumption 1. We have tacitly assumed that the added mass (in the swimming direction) of 

a fusiform animal is negligibly small as compared with its ‘real’ mass (Iosilevskii et al, 2012). 

 Exploiting (A8), (A7), (A5) and (A4), equation (A3) can be recast as 

  
 

           k p

2 2 2
1, 0 1,0 1,

dE x
E x D x E D E x D x

dx m m m
   . (A12) 

Subject to the initial condition, 

      2 2

k 00 0 0 2 2E E mv mv       (A13) 

(  
p 0 0E   by (A9)), equation (A12) lends itself to a closed-form solution 

                                                 
1 Kinetic energy associated with rotational motion is 

2 2

a
2

y
k mr  where 

y
r  is the respective radius of gyration, ω 

is the angular velocity, and  
a

1, 2k   is a certain parameter correcting for the added inertia effects. Typically, a 

jumping fish makes less than half a revolution per air time, but in this last case  can be as high as   radians per 

second.  For a double-ogive body, as the one described by (A43),  2 7
y

r l , l being the length of the fish. 

Consequently, kinetic energy of the rotational motion can exceed the kinetic energy of translational motion when 

moving slower than approximately one body length per second. It can be ignored for a 1-m fish breaching at 6 

m/s, but it cannot be ignored for a summersaulting 4-m great white breaching at the same speed.   



   
 

            
p

0

1 2
0 0 1,0 1,

x

E x E E D E x D x F x dx
F x m

 
      

 
 , (A14) 

in which 

    
0

2
exp 1,

x

F x D x dx
m

 
   

 
 .  (A15)  

Velocity follows the energy by (A7)-(A8): 

         2

k p

2 2
v x E x E x E x

m m
   ;   (A16)  

the time to cross the water surface, nose-to-tail,  t l , follows the velocity by quadrature,    

  
 

0

x
dx

t x
v x




 .  (A17) 

Once the fish clears the water, it will return to the same height above water surface after 

    
free

2
sint v l l

g
   (A18) 

(compare with (A1)-(A2)). Whether or not the fish will touch the water at that point depends 

on the orientation of the body relative to horizon. To make the analysis simple, we will assume 

that it does touches the water at that point and therefore the time from piercing the surface on 

the way up to touching it on the way down is estimated at 

      
 free

0

2
sin

l
dx

t t l v l l
g v x

 


   
 .  (A19) 

Possible error in (A19) stems from the assumption that the fish touches the water on the way 

back at the same height as it cleared the water on the way up. This height is  sinl l . If the 

fish has rotated in the air, it can land either vertically, in which case it will touch the water 

earlier, at height l , or it can land flat, in which case it will touch the water at height max 2d , 

where maxd  is the maximal diameter of the body. Consequently, there can be an error   in 

the flight time 



 
 

  
 

  maxsin 1 sin
2 2

dl l
l l

v l v l l
  

 
     

 
.  (A20) 

Because   is estimated from video footage of a breach by counting frames, the error can be 

reduced by extrapolating the fish trajectory and ending the frame count when the fish is 

approximately at the same height as when it has cleared the water; the frame count invariably 

starts when the fish pierces the water (Fig. A1). 

 

Figure A1: The start and end of a jump. The frame count starts when the nose pierces the 

water; the count ends when the centre of mass returns to the same height above the water as it 

were when the tail cleared the water on the way up.  

Fish as a point mass 

By definition,  E l is the mechanical energy of the fish when it clears the water. It is preserved 

afterwards, until the fish touches the water again on its way back – in fact, it is the basis 

underlying (A18). By extension, it is also the mechanical energy of the fish, if it were a point 

mass, on crossing the water surface on the way up. Because the potential energy of a point-

mass-fish is zero at the surface, its effective take-off speed and angle are 

  
 

 
2 2

0 0
0

E l
v v

E
  ,  (A21)   

 
   

1

0

0

cos
cos

v l l

v


  


;  (A22)  

the last equation is based on the notion that horizontal velocity component, cosv  , remains 

constant during a free flight. Both parameters are different from the respective speed  2v l  

water surface 

start 

end 



and angle  2l  at the time the centre-of-mass of the ‘real’ fish crosses the surface – recall 

that during a breach, motion of the ‘real’ fish is assisted by thrust and buoyancy. Likewise, the 

flight time of the point mass fish, 

    2 2 2

0 0 0

2 2
sin cosv v v l l

g g
        , (A23)  

differs, at least in principle, from the flight time   of the ‘real’ fish. 

Dimensionless form 
The above formulae are hardly simple, and have to be simplified to become practical. To this 

end, it will prove convenient to introduce dimensionless quantities. Represented by overbars, 

we set 

 
x

x
l

 , 0tv
t

l
 ,  

 p xl
p x

l
 ,    
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2

s xl
s x

l
 ,  (A24) 
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v xl
v x

v
 ,   

 
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B xl
B x

B
 ,   

 

 
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1,0

D xl
D x

D
 ,  (A25) 

  
 

 0

E xl
E x

E
 ,   

 

 
k

k
0

E xl
E x

E
 ,   

 

 
p

p
0

E xl
E x

E
 . (A26) 

Thus, with  

  
2

1,0A D l
m

 ,  (A27) 

 0 0Fr v gl ,  (A28) 

equations (A5), (A6), (A10), (A14), (A15), (A9), (A16), (A17) and (A18) take on the respective 

forms 

      

1
1 1

0x

D x p x dx p x dx



  
      

  
    (A29) 

      

1
1 1

0x

B x s x dx s x dx



  
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Likewise,  

  2

0 1v E  ,  (A37)  

      2 2

0 k2Fr 1 1 cos 1E E       (A38)  

by (A21) and (A23). 

Approximate solution 
Recalling that the accuracy of capturing the flight time is a few percent at best (one frame count 

at 30 frames/s for flight time of the order of 1 s), we seek a simplified (approximate) variant of 

the above formulae.   

 Drag of the fish can always be expressed in terms of its drag coefficient DC  as  

   max

1
1,0

2
DD S C ,   (A39) 

where 
 

 
max

0,
max
x l

S s x


 is the maximal cross section area of the fish. Consequently,  

 pcDA C k   (A40) 

by (A27), where 



 pc

max

m
k

S l
   (A41) 

is equivalent to the prismatic coefficient – the ratio between the volume of fish and the volume 

of the minimal cylinder enclosing it. Typically, DC  is a small number of the order of 0.1 

(appendix B), whereas pck  is invariably bounded between 0.5 and 0.6 (it is 8 15  for a double-

ogive body, as the one described by (A43) below). Consequently, A  can be considered a small 

parameter, furnishing  (A31) in asymptotic form, 
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 Next, we assume that the body of a fish is, indeed, a double-ogive, whereby its effective 

diameter d changes along the fish as 
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where 
2

max max4d S l . In this case, one will readily find  
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Noting the positive-definiteness of the respective integrands, we can pull sin  out of the 

integral sign in (A33) and (A42) to obtain 
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where  
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and in which *x  and x  are certain points in the interval  0, x . Consequently,  
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Fortuitously, the ratio of the second term in the parentheses to the first does not exceed 

2

00.135 Fr  for any  0,1x . Consequently, it can be conveniently neglected as compared with 

the first, leaving 
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independent of the pre-breaching Froude number 0Fr  (it is tacitly assumed that as the Froude 

number is of the order of unity – otherwise the shark would not have been able to clear the tail 

out of the water).  

 The instantaneous (reduced) velocity,    
kv x E x , is given by (A34), but even with 

(A51),  
kE x  is still a sixth-order polynomial, and hence cannot be easily integrated in (A35) 

to obtain the crossing time,  1t  . To this end, we suggest approximating kE  and E  by  
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which fit both the values and the derivatives of kE  and E at 0 and 1 (replacing  *x  by  1

is consistent with the order of the approximation). Here, H stands for the Heaviside step 

function. They manifest the notion that the energy is gained only after the centre of mass has 

raised above the water, and up to that point the velocity remains practically constant (in fact, 
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for the crossing time. The accuracy of (A52)-(A54) can be assessed from Figs. A2a-c. 

  The flight time, measured between the time that the nose pierces the water on the way 

up and the time when some part of the fish touches the water on the way back, is  
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by (A54) and (A36). Its asymptotic series with respect to   
1

2Fr sin 1


 and A  is 
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where the ellipsis stands for terms of the order   
1

2Fr sin 1


 and A . The accuracy of this 

approximation can be assessed from Fig. A2d. 

 By comparison, the air time of a point-mass fish (from the point it leaves the water until 

the points it enters it again) is  
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Its asymptotic series with respect to   
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 and A  is remarkably the same as (A56) 
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Figure A2: Approximate (dashed) versus exact quantities. Contours of total energy ((A31) and 

(A53)) are shown on (a); contours of the kinetic energy ((A34) and (A52)) are shown on (b); 

contours of the crossing time ((A35) and (A54)) are shown on (c); contours of the air time (the 

conjunction of (A36) and (A35) versus (A56)) are shown on (d). 

 Recalling that  

 0 Frv l g l      (A59) 

by definition (A24), equation (A56) actually furnishes a quadratic equation for Fr , which has 

an obvious solution, 
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Its asymptotic form is 
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where the ellipsis stands for terms of the order  
2

2g l
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, 2A  and  
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 (Fig. A3). The 

formula that relates 0v  and τ, 
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follows (A61) by (A28). The two correcting factors are the energy added due to reduced drag 

– this is the coefficient  1 4A  in the first term – and trajectory angle correction, manifested 

in the last term. 

 

Figure A3: Estimating the Froude number from air time. The figure is based on solutions of 

(A56)-(A59) with 0A  . The approximate solution (A61) is dashed; the exact solution (A60)

is marked solid. The accuracy suffers when the breaching angle is less than about 70. 

Appendix B: Swimming power 

Drag coefficient 
Estimation of the drag coefficient will be based on aircraft preliminary design tools compiled 

in Raymer (1992). They have already been used to the same end in Iosilevskii and 

Papastamatiou (2016), and they are briefly recapitulated here. Having assumed that the fish 

has no retracted fins (this ensures that the drag estimate furnishes the lower bound of possible 

drag) and having assumed that the fish is neutrally buoyant, its drag coefficient based on the 

maximal cross section area, 
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is  
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where wS  is the wet surface area of the body, maxd  is the maximal effective diameter, 
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if the form factor manifesting the effect of the pressure drag,  

 0Re v l    (B4) 

is the respective Reynolds number based on the body length (μ stands for the viscosity of 

water), and fC  is the respective friction coefficient, which can be approximated by 
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Re
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if the boundary layer on the body is mostly turbulent, and by 

  
1.33

Re
Re

fC  ,  (B6) 

if the boundary layer is mostly laminar (Raymer, 1992). At Reynolds numbers in excess of, 

say, 105, we render the boundary layer over scaled surface turbulent.  

 For a double ogive body, as the one described by (A43), 

  w max2 3S d l ;  (B7) 

and, consequently, 
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The coefficient with fC  is shown on figure B1. Because most fish have maxd l  in the range 

(0.15,0.25), it can be closely approximated by 20. In other words, the drag coefficient of a 

finless fish approximates by 

  20 ReD fC C ,  (B9) 

irrespective of its body proportions. With pc 8 15k  , the ratio, pcDA C k , introduced in  

(A40), approximates by 

    75 2 RefA C .  (B10) 



 Having multitude of non-retractable fins, sharks probably represent the most 

hydrodynamically ‘dirty’ of the fusiform fish. At zero lift, their drag coefficient exceeds the 

estimate of (B9) by about 30%  (Iosilevskii and Papastamatiou, 2016).  

 

Figure B1: The coefficient with fC  in equation (B8) (a) and fC (b). Most fish have maxd l  in 

the range (0.15, 0.25), and hence the coefficient in equation (B8) can be closely approximated 

by 20. The right curve on (b) represents a turbulent boundary layer (B5); the left curve 

represents the laminar one (B6). 

Swimming power 
Mechanical power needed to overcome hydrodynamic resistance is given by 
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where h is the effective propulsion efficiency (Iosilevskii and Papastanatiou, 2016). The 

expression on the right was obtained with the help of (A5). The value of h is controversial, 

probably because of the inherent difficulty in separating the drag and thrust of a self-propelling 

body. Theoretical predictions put it between 0.8 and 0.9 (Chopra and Kambe, 1977); more 

accurate analysis put it between 0.8 and 0.85 (Liu and Bose, 1997) The effective mass-specific 

power 
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follows (B11) by (A27). 



Appendix C: Estimation errors 
The set of logarithmic derivatives, 
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which immediately follow from (A62) and (B12), relate the uncertainties in 0v  and P m  with 

uncertainties in A ,  ,  1  and l. They are shown in Fig. C1. Typical values of A ,  ,  1  

and l were 0.1, 1 s, 1 rad and 1 m, respectively. They yield 0v  between 5 and 10 m/s, rendering 

the combination 0l v  to be bounded to the interval (0.1, 1). We estimate that uncertainties in 

A ,  ,  1  and l  are 30%, 3%, 1/4 rad (15°), and 30%, respectively. The uncertainty in A  is 

associated mainly with the uncertainty in the wetted area; the uncertainty in   was taken to be 

one frame (at 30 frames/s); the uncertainty in  1  is guessed based on observations, and the 

uncertainty in l  stems directly from our taking a typical length of a species instead of the 



particular one. Toward what follows (but not in the text), it will be tacitly assumed that the 

uncertainties in l and in A  are independent.  

 

Figure C1: The left column shows contour maps of the derivatives 0ln
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 Based on (C1), a 30% uncertainty in A  has practically no effect on 0v  (less than 1%). 

Based on (C2), a 30% uncertainty in length has no effect on 0v  if the breach is near vertical 

(say, above 75°), but can lead to a large uncertainty if the animal is large (e.g. 5 m) and breaches 

at a shallow angle (Fig C1a). Based on (C3), a 3% uncertainty in the air time yields a 3% to 

6% uncertainty in 0v  (see Fig. C1c). Based on (C4), a quarter-radian uncertainty in the 



breaching angle has no effect on 0v  when the animal breaches almost vertically, but can render 

the estimate of 0v  unreliable when the breaching angle becomes less than about 60° (see Fig. 

C1e).  

 Being dependent on 
3

0v , the uncertainties in P m  are naturally larger than those in 0v . In 

particular, uncertainties of 30% in length and in A  are reflected in comparable uncertainties in 

P m  – see (C5), (C6), (C1) and (C2). A 3% uncertainty in the air time yields 9% to 18% 

uncertainty in P m  – see (C7), (C3) and Fig. C1d. Perhaps the biggest uncertainty is associated 

with the breaching angle – see (C8), (C4) and Fig. C1f;  it can be reduced by considering only 

those cases where the breaching angle exceeds 70-75°. 

Appendix D: Lesser devil ray 
A mobulid ray do not fit the assumptions underlying the preceding Appendices. Because its 

propulsion does not come from the caudal end, it is plausible that it does not accelerate when 

crossing the water surface. It renders the correction factors in (A62) redundant, leaving  
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as a simple leading order approximation for the breaching speed. Its drag coefficient is also 

different. With S being the planform area, it can be estimated with 
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where wS  is the surface area and f   is an empirical correction accounting for drag due to 

separation of the boundary layer. In principle, f   depends on the thickness to chord ratio of 

the ray, but because it changes dramatically across the span (width) of the ray, it is difficult to 

assess. We will take it, cautiously, as 1.2 by equation (12.30) in Raymer (1992).  

 



Figure D1: Width-length and mass-length relations for mobulid rays. The red lines are 

regressions w wl  and 
3m ml  with 1.7w   and 0.06m  . Based on data courtesy of Chris 

Lawson.   

 Mobulid rays are practically diamond shaped, and hence  

 wS wl , (D3) 

where w is the width. Assuming that the proportions of the animal’s body do not change with 

length, we can set 

 w wl  and 
3m ml ,  (D4) 

which closely fit the available morphological data (provided courtesy of Chris Lawson) with 

1.7w   and 0.06m   (see Fig. D1). Thus, 
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by (B11), (D4), (D3) and (D2). Comparison between (D5) and (B12) yields 
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which is practically the same as in (B10). The analysis in the text was based on the latter. 
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