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Abstract 28 

Shark and ray megafauna play crucial roles as top predators in many marine ecosystems, but 29 

are currently among the most threatened vertebrates and, based on historical extinctions, 30 

may be highly susceptible to future environmental perturbations. However, our 31 

understanding of their energetics lags behind that of other taxa. Such knowledge is required 32 

to answer important ecological questions and predict their responses to ocean warming, 33 

which may be limited by expanding ocean deoxygenation and declining prey availability. To 34 

develop bioenergetics models for shark and ray megafauna, incremental improvements in 35 

respirometry systems are useful but unlikely to accommodate the largest species.  Advances 36 

in biologging tools and modelling could help answer the most pressing ecological questions 37 

about these iconic species.  38 

Glossary 39 

 Mesothermy: Some elasmobranchs are able to retain heat generated by metabolic 40 

processes to keep certain body parts warmer than the surrounding water, e.g. 41 

elevated temperature of the brain, eyes and body musculature of some sharks may 42 

maintain physiological performance in colder waters. Sometimes referred to as 43 

‘regional endothermy’.  44 

 Metabolic scope: Also known as maximum factorial scope; the difference between 45 

maximum aerobic metabolism and standard aerobic metabolism. Metabolic scope 46 

indicates the capacity to perform energy-using processes, such as locomotion or 47 

digestion, beyond SMR, and is dictated by the rate of oxygen supply to organs. This 48 

supply is dependent on an animal’s physiology and ambient environmental 49 
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conditions. Metabolic scope is distinguished from routine factorial scope, which is 50 

the ratio of daily energy use to standard metabolic rate.  51 

 Obligate ram ventilation: Many large elasmobranchs lack the anatomical features 52 

to pump water over their gills, and hence rely on moving their entire body to 53 

oxygenate their gills. This requires them to constantly move forwards through the 54 

water. 55 

 Q10: The factorial increase in metabolic rate associated with a 10 C increase in 56 

temperature. 57 

 Respirometry: Indirect calorimetry via respirometry quantifies the aerobic 58 

respiration of an animal by measuring its oxygen consumption. By estimating the 59 

substrates being metabolised (commonly 70% carbohydrate, 20% lipid and 10% 60 

protein), these measurements of oxygen consumption can be converted to energy 61 

expenditure.  62 

 Standard Metabolic Rate (SMR): The minimum energy expenditure of an 63 

ectotherm for body functioning and maintenance. As locomotor activity is essential 64 

for respiration in obligate ram ventilators, measures of their SMR include some 65 

locomotor costs. 66 

 67 

 68 

 69 

 70 

 71 

 72 

 73 

 74 
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The value of measuring the energetics of large sharks and rays  75 

 76 

Understanding how megafauna are able to maintain energy balance has intrigued 77 

physiological ecologists for decades. Fundamental to this research is the measurement, or 78 

at least estimation, of metabolic rates. The ability of megafauna to sustain energy balance 79 

has been explored in extinct groups of large vertebrates, such as dinosaurs [1], as well as 80 

some of the largest extant vertebrates such as whales [2, 3], and may help inform our 81 

understanding of the evolution of body size [4, 5]. Large sharks, rays and skates 82 

(elasmobranchs) are a group of megafauna that include the largest fish and have a range of 83 

diets spanning plankton, fish, reptiles and marine mammals. They also include many species 84 

threatened with over-fishing and climate change [6, 7]. Yet how energy balance is 85 

maintained across this diverse group remains poorly understood. Given these long-standing, 86 

unresolved questions and the advent of new technology and methods, it is timely to review 87 

current knowledge of the metabolic rates of large elasmobranchs and examine how our 88 

understanding of this group is changing.  89 

Logistical problems of working with large elasmobranchs means there are few 90 

studies that quantify their energy use [8]. These species are too large for housing in the 91 

laboratory, and, unlike marine mammals, do not surface to respire where they can be easily 92 

accessed. Further, the few existing bioenergetics models (Box 1) for elasmobranch 93 

megafauna extrapolate from species that are orders of magnitude smaller [9] (Figure 1B). In 94 

fact, the heaviest elasmobranch for which metabolic rate (MR) – a key aspect of energetics 95 

– has been measured is only 47.7 kg, despite many elasmobranchs weighing >1,000 kg, with 96 

the whale shark (Rhincodon typus) reaching 34,000 kg. Further, the thermal sensitivity of MR 97 

(Q10; see Glossary) varies substantially across ectotherms [10] and is not well established for 98 
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elasmobranchs (Figure 1C). This enormous uncertainty in MR for large elasmobranchs 99 

hinders our ability to answer important ecological questions concerning this group, which 100 

includes several unusual species: the largest ectotherm, the planktivorous whale shark; the 101 

longest-lived vertebrate (392 years) - the Greenland shark (Somniosus microcephalus) [11]; 102 

and some of the largest apex predators including the white shark (Carcharodon carcharias).  103 

Large elasmobranchs are also disproportionately at risk of extinction within an 104 

already vulnerable group [6]. The class Chondrichthyes (that contains about 1050 species, of 105 

which 96% are elasmobranchs) has the lowest proportion of non-threatened species of any 106 

vertebrate group based on IUCN Red List criteria [6]. Ocean warming is also expected to raise 107 

the MR of ectotherms [12], which will impact energy balance and reproductive performance 108 

[13]. In previous mass extinctions, large ectotherms and top predators were among the 109 

animals most affected by ocean warming and the resultant water deoxygenation [14, 15]. 110 

Ocean deoxygenation limits metabolic scope, prey availability and ‘aerobic habitat’ - zones 111 

with sufficient oxygen to meet metabolic demands [16, 17]. 112 

Current climate change predictions mimic conditions of past extinctions, suggesting 113 

the largest ectotherms are again likely to be heavily impacted [14, 16, 17]. Most large shark 114 

species went extinct during warming at the end-Cretaceous period, while smaller sharks 115 

survived [14]. Nine of the 15 largest extant ectotherms are elasmobranchs. Unlike other 116 

animals, most large elasmobranchs must move continuously, which requires from 34% to 117 

almost 100% of their metabolic scope, limiting growth, reproduction and foraging ability 118 

when MR is elevated [18]. Prey availability could also be impacted by climate change, with 119 

mean global zooplankton biomass predicted to fall by ~14% this century [19], and in some 120 

areas by 50% [20]. Some large elasmobranchs are hypothesised to rely on efficient foraging 121 

behaviours to overcome an apparent ‘energy-budget paradox’ caused by high feeding costs 122 
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and sparse prey orders of magnitude smaller than themselves [21, 22]. Large elasmobranch 123 

species may therefore be sensitive to a range of environmental perturbations, and the 124 

effects of such perturbations may be mediated by changes in their energy balance. 125 

Although investigating the energetics of large elasmobranchs is challenging, it 126 

remains an important goal in light of their critical role in food webs and the need to 127 

understand their response to climate change [23]. Here, our aim is to promote energetics 128 

research in elasmobranch megafauna and to provide a roadmap for the most promising 129 

research methods and most pressing questions concerning the energetics of this group. This 130 

will enable an understanding of how metabolism, locomotion and feeding affect their 131 

growth, reproduction, ecology, and ultimately their fitness, which will provide the basis for 132 

population and ecosystem models [24].  133 

 134 

 135 

 136 

 137 

 138 

 139 

 140 

 141 

 142 

 143 

 144 
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 145 

 146 

------------------------------------------------------------------------------------------------------------------------------------ 147 

Box 1. What is a bioenergetics model? 148 

A bioenergetics model describes the energy requirements of an animal and how energy is 149 

distributed to processes in the body (i.e. the animal’s ‘energetics’) [25]. It has four main component 150 

processes: standard metabolic rate (SMR); active metabolic rate (cost of activity); food assimilation 151 

(specific dynamic action); and growth and reproduction (Figure I). If the consumption rate is known, 152 

bioenergetics models are commonly used to predict and assess rates of growth and reproduction 153 

[26], both of which are crucial for survival at the individual and population level. However, growth 154 

and reproduction can be depressed in times of elevated energy demand, a situation predicted under 155 

future ocean warming [25]. 156 

An animal’s energy requirements can increase in a number of ways, but is most commonly 157 

due to elevated SMR or activity levels. In ectotherms, SMR increases approximately exponentially 158 

with temperature [12]. Activity levels may increase with migration, changed prey availability, 159 

predator evasion, mating behaviours, weather patterns, tidal state, temperature, or human 160 

interference [27-31]. Consequently, an individual must either increase its food consumption to meet 161 

these new energy requirements, or energy must be diverted away from growth or reproduction and 162 

towards SMR or activity costs [13, 25]. Animals may be able to increase their total energy intake by 163 

consuming more energy-dense food, rather than consuming greater biomass [32], however energy-164 

dense diets are often lacking in sufficient nitrogen for synthesising proteins [33].  165 

-------------------------------------------------------------------------------------------------------------------------------------- 166 

 167 
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What can we learn from the energetics of megafauna? 168 

Terrestrial megafauna and hard-to-study species 169 

Although megafauna are difficult to study because they are often highly mobile, too 170 

large for captivity, dangerous to handle, or live in extreme environments, energetics studies 171 

can reveal how these animals survive, especially in unusual environments or with unusual 172 

life histories. For example, energetically-economical long-distance travel and foraging are 173 

achieved through morphological adaptation in large sea-birds that stay airborne for months 174 

[34], and through migratory and feeding behaviour strategies in African elephants 175 

(Loxodonta africana) [35] and blue whales (Balaenoptera musculus) [2]. Likewise, MR 176 

measurements have shown how energetic costs of prey capture are linked to hunting 177 

success and hence population viability at small population sizes in endangered species 178 

including cheetah (Acinonyx jubatus) and puma (Puma concolor) [36, 37]. Similarly, MR 179 

measurements can help identify challenges and threats that animals face with climate 180 

change. The measured MR of free-living polar bears (Ursus maritimus) has revealed 181 

unusually high energy requirements associated with carnivory, and hence how increased 182 

search costs for prey due to sea ice loss linked to warming threatens their survival [38]. 183 

  184 

Elasmobranchs 185 

 186 

Although energetics studies of large elasmobranchs are challenging, they have 187 

increased our fundamental understanding of how these species survive. Megafauna, 188 

particularly ectotherms, may have advantages for feeding on widely dispersed prey, since 189 

energy reserves of larger individuals sustain them for longer because of their lower mass-190 
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specific SMR [39]. Conversely, filter-feeding and mesothermy appear as the two key 191 

evolutionary pathways for the largest elasmobranchs, but also puts them at greater 192 

extinction risk due to potentially unsustainable metabolic demands if prey availability 193 

declines in changed environmental conditions [40]. Human activities are probably already 194 

having direct consequences on the energetics of elasmobranchs; for example tourism 195 

operations cause reef sharks (Triaenodon obesus) to be active during times they normally 196 

rest, increasing energy expenditure [29].  197 

Many energetics studies of elasmobranchs have focused on how they minimise 198 

transport costs. Locomotion is energetically costly, yet many megafauna regularly migrate 199 

thousands of kilometres. Understanding long-distance migrations, and how climate change 200 

impacts them, is a key research topic for marine megafauna [41]. Studying energetics of 201 

animals has informed why they move to areas that yield the greatest net energy gain. For 202 

example, movement patterns of many terrestrial and marine animals are partially driven 203 

by the energetic demands of traversing different environments [35, 42]. It is proposed that 204 

ectotherms choose habitats with high food availability regardless of temperature to 205 

maximise net energy gains when feeding, but preference colder areas to minimise energy 206 

expenditure when not feeding [30, 43, 44]. For example, basking shark (Cetorhinus 207 

maximus) movements are both thermally driven and dependent on prey (zooplankton) 208 

biomass [45, 46].  209 

Energetics has provided insights into the underlying reasons for long-distance 210 

migrations in elasmobranchs. When the purpose of migration is primarily to improve 211 

foraging, then marine megafauna ensure that the energy gained through better feeding 212 

conditions exceeds the energetic cost of migration, in a number of ways. For example, 213 

whale sharks may reduce locomotor costs by 32% by adjusting swimming patterns while 214 
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foraging [22]. Most sharks are negatively buoyant and are able to use a passive, downward 215 

glide to cover considerable horizontal distances without expending energy on swimming 216 

(e.g. [47, 48]) and reduce the cost of vertical movements, in which they may dive 2000 m in 217 

search of prey [49, 50]. Blue sharks (Prionace glauca) remain at ~400 m when migrating to 218 

reduce their cost of transport [51]. Their MR in this cool water is estimated to be 40% of 219 

that in warmer surface waters, though such estimates are based on the measured 220 

temperature dependence of metabolism in other ectotherms [51]; no data are available 221 

for blue sharks. Although energetics studies have improved our understanding of the 222 

behaviour, morphology and ecology of elasmobranch megafauna, several methods must 223 

be developed further to fill the information void regarding fundamental energy use. 224 

 225 

 226 

Future Research 227 

 228 

Building on recent methodological advances in measuring the energetics of 229 

marine megafauna 230 

 231 

Mega-flumes and respirometry: measuring the metabolism of large animals 232 

Respirometry remains the primary method for measuring the MR of water-breathers, 233 

as other methods used for terrestrial and aquatic air-breathing species are not applicable 234 

(Box 2). Advances in laboratory infrastructure, animal husbandry, and capture and transport 235 

techniques have allowed researchers to perform respirometry on increasingly large marine 236 

animals [52]. The MR of freely-swimming elasmobranchs up to 47.7 kg has been measured 237 
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using large (up to ~3,800 L) respirometers [9]. The main issue with this method remains the 238 

size-limitation of laboratory respirometry systems. To understand allometric scaling of MR 239 

in elasmobranchs (Figure 1B), the MR of incrementally larger individuals may be measured 240 

with larger systems or opportunistic methods. For example, the MR of white sharks up to 241 

36.2 kg was measured in an 11,360-L transport tank en-route to an aquarium [53]. 242 

Besides SMR, another key component of bioenergetics is the energy cost of activity. 243 

Total activity cost (e.g. daily) can be determined if the cost of transport (COT) per unit 244 

distance or swimming effort is known. Total activity cost is often estimated as a constant 245 

value proportional to SMR, although this is usually a spurious assumption [54]. Total activity 246 

cost can be quantified using a combination of laboratory and field techniques [55]. In water-247 

breathers, this is usually achieved using a swim-tunnel (‘flume’), which comprises a closed 248 

system where water is circulated at specific speeds, and the subject animal swims to hold its 249 

position while its MR or COT is monitored [9]. Until recently, the largest elasmobranch for 250 

which COT was measured was a 9.5-kg mako shark (Isurus oxyrinchus) in a 3,000-L flume 251 

[56]. The ‘mega-flume’ is a 26,000-L sea-deployable flume that was originally tested by 252 

measuring the COT of a 36-kg zebra shark (Stegostoma fasciatum) [9], and this remains the 253 

largest animal that it has been used to measure. Flumes are yet to overcome the logistical 254 

challenges required to measure COT in the largest sharks, including the potential of stress to 255 

inflate MR and that animals may require training to swim in a flume appropriately [57]. 256 

Although flumes can be used to calibrate a measure of activity to then quantify total activity 257 

cost in free-ranging animals (see below), similar results may be achieved in simple 258 

respirometry setups relying on volitional activity by the animal [58]. Flumes may overcome 259 

their logistical challenges and continue to increase in size, allowing COT measurements of 260 
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larger animals, but are unlikely to accommodate an animal >10 m in length such as a whale 261 

shark. 262 

-------------------------------------------------------------------------------------------------------------------------------------- 263 

Box 2. What can we learn about elasmobranch energetics from other megafauna? 264 

 265 

What can we learn from other megafauna? 266 

One approach to gain insights into the energetics of elasmobranchs is to compare them with other 267 

species exhibiting similar traits (Table I) and for which energetics is more easily measured. For 268 

example, feeding, reproductive costs and costs of activity can be more easily measured in air-269 

breathers such as cetaceans (whales, dolphins and porpoises; see below). 270 

Feeding: A shared zooplankton diet between some elasmobranchs and cetaceans implies similar 271 

problems in energy acquisition, including patchy prey, high feeding costs, minimum prey density 272 

requirements, and declining zooplankton biomass in the future [19, 59]. The assumed energy cost of 273 

whale lunge-feeding is used to estimate minimum prey intake from feeding events [60]. A similar 274 

approach could be used for sharks hunting large vertebrate prey, whereby the estimated cost of 275 

hunting attempts could define the required success rate.  276 

Reproductive costs: Although elasmobranchs exhibit diverse reproductive methods, many large 277 

species produce a few, well-developed offspring, similarly to cetaceans. Therefore both may have 278 

similar gestation costs, although parental energy input differs substantially due to lactation costs in 279 

cetaceans [61].  280 

Cost of activity: Although SMR cannot be extrapolated from mammals to fish [62], activity cost may 281 

be estimated using kinematic modelling [63], and these groups may have similar costs of transport 282 

per unit body weight.  283 

 284 
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Table I: Similarities and differences in traits of elasmobranch and marine mammal megafauna. Marine 285 

mammals represent the largest group of non-elasmobranch marine megafauna, and of these, the cetaceans 286 

are the most morphologically and ecologically similar to large elasmobranchs.  287 

Trait Large elasmobranchs Marine mammals 

Oxygen exchange Water (gills), most must swim 

continuously  

Air (lungs), no swimming 

required 

Energy storage Primarily in liver as lipids Subcutaneous fat (blubber) 

Thermoregulation Mostly ectothermic Endothermic 

Fecundity Mostly low Low 

Diet Largest are planktivores, some 

are highly active hunters 

Largest are planktivores, some 

are highly active hunters 

Buoyancy Changes with body size and 

habitat. Large or deep-sea 

sharks may be neutral or 

slightly positive, others are 

slightly negative 

Generally positive at surface, 

may decrease with depth as is 

influenced by lung volume 

Parental care None (but offspring may be 

large at birth) 

Substantial in most species, 

and offspring large at birth 

Migrations Some long distance (1000s of 

km) 

Some long distance (1000s of 

km) 

 288 

 289 

Currently non-transferable methods  290 

Unfortunately, many insights into the energetics of non-elasmobranch megafauna have been 291 

derived using methods that are inapplicable to elasmobranchs. 292 

Surfacing rates to estimate MR: Air-breathing marine megafauna surface for respiration, offering an 293 

opportunity to estimate their MR that is not possible with water-breathers. Specifically, MR for 294 

cetaceans can be estimated from respiration timing, pre-existing oxygen stores, tidal lung volume 295 

and oxygen extracted from inspired air (measured) [3]. 296 

Doubly-labelled water (DLW): DLW is used to quantify energy use in wild terrestrial megafauna (e.g. 297 

polar bears [38] and cheetahs [37]), whereby stable isotopes of oxygen and hydrogen trace the flow 298 

of CO2 and water through the body to quantify MR. Unfortunately, the DLW method is unsuitable for 299 

fish due to high water fluxes between the body and environment.  300 
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MR estimates from fish otoliths: A new method of determining energy use in teleosts has been 301 

developed using isotopic composition of carbon found in ear bones (otoliths) [64]. This method has 302 

provided total MR estimates to a resolution of approximately 15 d [64]. Elasmobranchs lack the 303 

calcified structures necessary for this analysis. 304 

------------------------------------------------------------------------------------------------------------------------------------ 305 

Using captive elasmobranchs and back-calculating metabolic costs  306 

Commercial aquaria may be valuable for determining fundamental relationships such 307 

as allometric and thermal scaling of MR in the largest elasmobranchs. Some aquaria house 308 

many large elasmobranchs, including the largest ectotherm, the whale shark. Harnessing 309 

these commercial enterprises can advance our understanding of the charismatic megafauna 310 

they display, without the need for capturing wild animals. Existing infrastructure may allow 311 

large animals to be isolated and their MR measured via respirometry, providing a solution to 312 

the size-limitation of traditional laboratory respirometry systems. However, issues remain in 313 

obtaining MR measurements that reflect a normal existence in the wild [58]. 314 

Captive elasmobranchs can provide insight into energy requirements without the need 315 

for directly measuring MR. If the food intake, growth, and assimilation costs (dependent on 316 

diet composition) of an individual are monitored, the remaining energy devoted to MR can 317 

be calculated (Box 1). This has been partially achieved in captive white sharks; in a simple 318 

bioenergetics model, assimilation costs were assumed constant (27%) and the food 319 

consumption and mass of individuals were tracked [65]. The model estimated that 320 

metabolism (SMR + activity cost) and growth accounted for 45% and 28% of energy use, 321 

respectively [65]. However, white sharks in captivity grew at twice the rate of wild sharks, 322 

suggesting energy allocation to growth is probably higher in captive sharks due to reduced 323 

activity and/or, as is commonly the case, energy ingestion may typically be a limiting factor 324 
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for growth [65]. Nevertheless, this ‘back-calculation’ method can estimate feeding 325 

requirements to maintain growth rates, indicate metabolic sensitivity to temperature, and 326 

provide insight into the interplay between reproductive rate and body size [66]. 327 

Using new biologgers in the field to estimate the energy expenditure of locomotion 328 

Advances in biologging technology have allowed researchers to progress from 329 

describing animal movement or behaviour patterns to explaining their underlying causes. 330 

Growing demand and commercial viability has seen a surge in development and use of new 331 

animal-borne sensors, along with attachment and retrieval methods, to explore the activity, 332 

behaviour, movement and physiology of wild animals [73] (Figure 2, Box 2). For example, 333 

combined with respirometry, animal activity measures can provide proxies of energy 334 

expenditure [67]. In the laboratory, data loggers can calibrate an activity measure, often 335 

body acceleration or tail-beat frequency, against MR by simultaneously measuring both at 336 

multiple swim speeds [68]. The same activity measure can then be recorded in free-ranging 337 

animals via animal-borne loggers, enabling activity energy cost to be quantified [55, 68]. 338 

While activity measures enable an understanding of total energy use (e.g. [69]), they can 339 

also elucidate costs of fine-scale behaviours including differences with swimming patterns 340 

[28], time of day [55], weather [31], tides [27] or tourism operations [29]. The rigid fins of 341 

large sharks represent ideal surfaces for sensor attachment, allowing a range of data to be 342 

measured. However, the reliance on laboratory calibration of such devices inherits the same 343 

problems as traditional respirometry for megafauna, in that the required laboratory systems 344 

are size limiting. Calibration with larger elasmobranchs will require advances such as the 345 

mega-flume or other large respirometry setups [9]. However, the MR-activity relationship 346 
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may shift reliably with body mass, which would allow extrapolations from smaller animals 347 

with similar morphologies [70].  348 

Heart rate is commonly included in terrestrial and aquatic biologging studies to 349 

estimate activity cost and total energy expenditure. For example, heart rate measurements 350 

have shown unexpected efficiencies in birds on long-distance migrations [34], a low daily 351 

activity cost in great cormorants (Phalacrocorax carbo) allowing them to survive Arctic 352 

winters [71], and unusual energy usage in narwhals (Monodon monoceros) following net 353 

entanglement [72]. However, the use of heart rate sensors in free-ranging fish has lagged 354 

behind other taxa [73]. Traditionally, the variation among individuals in the MR-heart rate 355 

relationship was thought to be greater in fish (including elasmobranchs) than other taxa 356 

[74], which may have slowed the development of commercially-available heart rate sensors 357 

for fish [73]. However, more recent work suggests there is a reliable relationship between 358 

heart rate and MR (e.g. [75]). As with activity, heart rate must first be calibrated in the 359 

laboratory before being employed as a quantitative measure in the field, thus making it 360 

problematic for megafauna for the reasons described above. Additionally, loggers must be 361 

physically retrieved by re-capture; a difficult task for large elasmobranchs that traverse 362 

oceans. 363 

Swim speed has occasionally been used as a proxy for activity energy cost in 364 

bioenergetics models (e.g. [76]) and has provided useful qualitative insights into 365 

elasmobranch energetics (e.g. [77]). Swim speed is an essential parameter of kinematic 366 

modelling (KM), a promising approach that uses hydrodynamics to estimate transport cost. 367 

KM estimates forces such as lift and drag produced as an animal of known morphology 368 

moves though water at a certain speed. In combination with estimates of muscle efficiency, 369 

KM can be used to infer activity cost [63]. This modelling can outline differences in activity 370 
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cost of different movements within individuals and environments, and can be incorporated 371 

into bioenergetics models if data on SMR, prey capture and prey energy content are 372 

available [63]. KM is also useful in understanding the evolution of morphology associated 373 

with different lifestyles. For example, similarly to seabirds with high aspect-ratio wings, 374 

pelagic sharks in oligotrophic environments have disproportionately large pectoral fins that 375 

reduce the cost of a high cruising speed needed to search vast areas for prey [63]. 376 

Additionally, the kinematics of breaching events may provide insights into maximum 377 

movement speeds, power outputs and energy expenditure [78]. However, KM remains 378 

vulnerable to uncertainty of influential parameters that are difficult to measure, such as 379 

hydrodynamic efficiency (see Outstanding Questions), for which more work is required 380 

before reliable comparisons can be made between species and morphologies. Nevertheless, 381 

if swim speed measurements are obtained for more large elasmobranchs, KM can provide 382 

insights into activity cost without laboratory calibration, such as relative cost of activity or 383 

environmental influence on activity levels [63]. 384 

Finally, machine-learning and artificial intelligence are already being used to identify 385 

elasmobranch behaviour based on an acceleration signature [79]. Future use of machine-386 

learning, especially in conjunction with improved biologging sensors and an understanding 387 

of activity cost, will allow for an array of pattern recognition in energy use of wild animals; 388 

comparable to machine-learning that out-performs human specialists in diagnosing disease 389 

[80]. This may elucidate fine-scale differences in energy use linked to particular behaviours 390 

or prey availability, or prediction of metabolic responses to complex environmental 391 

conditions associated with future warming and deoxygenation. 392 

 393 
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Energetics of large elasmobranchs in the Anthropocene  394 

By building on recent methodological advances in measuring the energetics of 395 

marine megafauna, a suite of important questions can be answered related to the long-term 396 

survival of elasmobranch megafauna in the Anthropocene. 397 

Warming and elasmobranch movement 398 

Unlike most other ectotherms, the relative increase of SMR with warming in 399 

elasmobranchs is not well established (Figure 1C), making it difficult to predict how growth, 400 

reproduction or activity may change as oceans warm. Further, activity cost increases with 401 

warming, but not necessarily in line with SMR [54]. Warming raises activity cost in multiple 402 

ways: energy cost of transport per unit distance increases [63], the speed at which minimum 403 

cost of transport occurs increases (therefore increasing absolute energy use)[63], and 404 

activity rates may increase [54, 81]. Animals may be able to buffer against these effects by 405 

increasing rest periods or tracking optimal temperatures [81], e.g. some elasmobranchs 406 

avoid warm surface waters once a temperature threshold is met [82]. However, obligate 407 

ram ventilating elasmobranchs may have limited ability to reduce activity, and optimal 408 

temperatures may no longer coincide with suitable prey habitats, aggregation sites, 409 

spawning grounds, or migration patterns [83]. Any unavoidable increases in activity cost 410 

may strain the already limited metabolic scope of obligate ram ventilators, reducing their 411 

ability for growth and reproduction [18]. Understanding plasticity in thermal responses will 412 

be important for predicting resilience of ectotherms to climate change and the sustainability 413 

of long-distance migrations [10].  414 
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Ocean deoxygenation  415 

Accelerating water deoxygenation, now seen in all oceans, is considered one of the 416 

most significant ecological consequences of climate change [84]. Future deoxygenation is 417 

predicted to mimic conditions during the end-Permian period, when a collapse of suitably 418 

aerobic habitat caused the largest marine extinction in history [16]. Although similarities in 419 

modern climate change to conditions seen in multiple previous extinctions of large sharks 420 

suggest elasmobranch megafauna are particularly vulnerable to the effects of ocean 421 

deoxygenation and warming [14], further work is needed to understand their metabolic 422 

responses to these changing conditions and their ability to find suitably oxygenated 423 

habitats. 424 

Lower levels of dissolved oxygen have far-reaching effects on animal physiology and 425 

behaviour, including the ability to maintain energy balance [85]. Reduced oxygen partial 426 

pressure and increased oxygen demand in warmer water (due to elevated SMR) reduces 427 

the ‘metabolic index’ of ectotherms (the ratio between O2 partial pressure and SMR [86]), 428 

meaning a limited capacity to increase foraging time when needed [16]. Additionally, 429 

elevated environmental CO2 associated with deoxygenation can increase metabolic 430 

demands of maintaining pH homeostasis, and activity may increase with low dissolved 431 

oxygen as animals move to find oxygenated water [85]. Deep anoxic zones can limit the 432 

diving of water-breathers, but do not directly affect air-breathers [87]. Therefore, deep-433 

diving water-breathers may miss opportunities to hunt hypoxia-tolerant prey [85, 87]. 434 

Historically, as the ratio between dissolved oxygen supply and demand declines, animals 435 

that have been most susceptible include those with high energy requirements (e.g. highly 436 

active sharks), a reduced available metabolic scope (e.g. obligate ram ventilating 437 
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elasmobranchs) [18], and the largest ectotherms [16]. The five largest extant ectotherm 438 

species are elasmobranchs, and future research needs to examine if their size, energy use 439 

and lifestyle are sustainable with declining ocean oxygen levels. For example, it would be 440 

valuable to determine the reliance of elasmobranchs on deep cooler waters for energy 441 

acquisition or reducing MR (Figure 2), that may become hypoxic and uninhabitable. 442 

 443 

Concluding remarks  444 

Elasmobranchs play important roles as top predators in ecosystems, but are threatened 445 

by fishing and climate change. More work is needed to understand fundamental 446 

physiological traits and the vulnerability of elasmobranch megafauna compared to other 447 

marine life. Of particular importance is their metabolic response to elevated temperatures 448 

and body size, reliance on deep waters that may become hypoxic, and ability to increase 449 

energy acquisition under climate change. By obtaining fundamental metabolic relationships 450 

(e.g. Q10) for large elasmobranchs, biologging and modelling can enable a better 451 

understanding of their energetics without the need for size-limiting laboratory systems. MR 452 

data for large elasmobranchs is difficult to obtain, but similar data in other hard-to-study 453 

groups has provided crucial insights into their ecology [38]. Collaboration between 454 

researchers in different fields may be key to predicting future impacts of climate change on 455 

the largest ectotherms. Already, work between ecologists and physicists has used kinematic 456 

modelling to understand energy use [63, 78], and machine-learning may be incorporated 457 

into existing work between physiologists and oceanographers to understand future ocean 458 

warming and deoxygenation scenarios, and how this will affect animals with extreme traits.  459 

 460 
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Figure 1. Extrapolation to obtain metabolic rate estimates for large elasmobranchs. To 679 

calculate the MR of large animals, smaller species or juveniles of the same species are 680 

commonly used to calculate the allometric scaling of MR, and the trend extrapolated (e.g. 681 

[18, 69]). Choice of proxy species is important, as metabolism is affected by physiology, 682 

morphology, activity levels, swimming style, thermal acclimation, and endothermy [9, 54, 62]. 683 

How MR scales with body mass is an on-going debate (e.g. [62, 88]), and small errors can 684 

result in large differences in MR estimates when extrapolating to megafauna [9]. Similarly, 685 

the sensitivity of MR to temperature (Q10) for elasmobranchs is not well established 686 

compared with other taxa [18, 26, 58]. Pictured (A) a whale shark (Rhincodon typus); the 687 

world’s largest ectotherm. (B) The range of SMR estimates for large sharks based on the 688 

common range of allometric scaling exponents (b = 0.67-0.89), with all other parameters held 689 

constant (temperature=20℃, Q10=2.1). For example, the estimated SMR of a 10,000 kg whale 690 

shark is likely to be between 69 and 523 kJ h-1 (>7-fold range).  (C) The range of inferred SMR 691 

for a 10,000 kg whale shark within its natural temperature range based on Q10 values 692 

described in the literature for sharks (Q10=1.3-2.9) [18, 89], teleosts (Q10=1.83) [90] and the 693 

mean across ectotherm taxa (Q10=2.19) [91], with other parameters kept constant (b=0.70). 694 

At 30℃, estimated SMR ranges from 45 to 502 kJ h-1. Photo and silhouettes reproduced from 695 

Simon Pierce (simonjpierce.com; (A)), and Natasha Sinegina, T. Michael Keesey, Steven Traver 696 

(phylopic.org; (B, C)).  697 
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Figure 2. Estimating metabolic rate for free-living sharks using data from animal-borne 701 

tags. It is now possible to track sharks routinely (e.g. via satellite or by using acoustic tags) 702 

while obtaining continuous data that enable changes in MR over time to be estimated. (A) A 703 

blue shark (Prionace glauca). (B) Tracks of seven individuals that moved in and out of the Gulf 704 

Stream [51]. When in warm waters of the Gulf Stream, the sharks tend to dive and occupy 705 

deeper, relatively cool waters (~400 m). In surface waters of the Gulf Stream, the MR of 706 

sharks is estimated to be 2.5x higher than at depth, once body temperature equilibrates with 707 

water temperature [51]. (C) Simulated biologging data on the depth of blue sharks and 708 

associated water and body temperatures. Water temperature is taken from dive profiles of 709 

blue sharks [51], with resulting body temperature based on the measured thermal inertia of 710 

leopard sharks (Triakis semifasciata) and ocean sunfish (Mola mola) during short dives [92, 711 

93]. The rate of change in body temperature (thermal inertia) will depend on animal body 712 

size and gill surface area (where most heat-loss occurs in fish), the difference in temperature 713 

between the body and surrounding water, and heat generated by metabolism. Some sharks 714 

demonstrate mesothermy, and so their heat loss may differ. Thermal inertia has not been 715 

measured in large, fully ectothermic elasmobranchs, but likely causes substantial differences 716 

between water and body temperature of large elasmobranchs that traverse the water 717 

column. (D) Simulated data to illustrate how instantaneous estimates of MR could be 718 

achieved by integrating animal-borne sensor data such as body temperature and 719 

acceleration. For example, metabolic costs of blue sharks diving to cooler waters can be more 720 

accurately determined if their body temperature and swimming effort are considered; the 721 

sharks likely have a low cost of activity as they passively glide to descend, but increase activity 722 

costs at depth as they forage and then return to the warmer surface (see reviews on 723 
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elasmobranch biologging [94, 95]). Reproduced from Mark Conlin/NMFS (A) and [51] under 724 

the Creative Commons Attribution License (B).  725 
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Box 1 Figure I. (A) A bioenergetics model calculates total daily energy expenditure by summing the 753 

energy costs of four broad body processes. These components may be simple (a single number for 754 

each) or more complex (multiple interdependent equations). Generally, four components are 755 

measured (SMR, active metabolic rate, assimilation, and growth and reproduction) and summed to 756 

calculate total energy requirements. Food consumption is then assumed to be equal to those total 757 

energy requirements. Alternatively, consumption is measured directly and then any other single 758 

unknown component can be estimated. (B) The mass-balance equation of a bioenergetics model. 759 

Processes on the left sum to the daily energy requirements, but are also dependent on consumption 760 

level.  For example, if warmer temperatures cause an increase in SMR, the animal must either 761 

consume more energy or compensate (keeping consumption constant) by devoting less energy to 762 

another process (usually growth or reproduction). Silhouette reproduced from Dmitry Bogdanov 763 

(vectorized by T. Michael Keesey). 764 


